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Welcome to COMP541
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• This courses gives an overview 
of deep learning, 

• In particular, we will cover 
various deep architectures 
and deep learning methods.

• You will develop fundamental 
and practical skills at applying 
deep learning to your research.

NEW: A special 

focus to LLMs



A little about me…
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Koç University
Associate Professor

2020-now

Hacettepe University
Associate Professor

2010-2020

Universitá Ca’ Foscari di Venezia
Post-doctoral Researcher

2008-2010

Middle East Technical University
1997-2008

Ph.D., 2008
M.Sc., 2003
B.Sc., 2001

MIT
Fall 2007

Visiting Student

VirginiaTech
Visiting Research Scholar

Summer 2006

• I explore better
ways to understand, 
interpret and
manipulate visual data. 

• My research interests
span a diverse set of 
topics, ranging from
image editing to visual
saliency estimation, 
and to multimodal
learning for integrated
vision and language. https://aykuterdem.github.io

https://aykuterdem.github.io/


Now, what about you?
• Introduce yourselves 

- Who are you? 

- Who do you work with if you have a 
thesis supervisor?

- What made you interested in this 
class?

- What are your expectations?

- What do you know about machine 
learning and deep learning? 
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https://forms.gle/9GTV56Nt7ZVMTCRb6 

https://forms.gle/9GTV56Nt7ZVMTCRb6


Course Logistics
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Course Information
Lectures Tuesday and Thursday 16:00-17:10 (SOS 103)
PS  Friday 14:30-15:40 (SOS 103)

Instructor Aykut Erdem 
TAs  Andrew Bond & Hakan Capuk.

Website https://aykuterdem.github.io/classes/comp541.f23/
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• KUHub Learn for course related announcements and collecting and
grading your submissions

https://aykuterdem.github.io/classes/comp541.f22/


Textbook
• Goodfellow, Bengio, and Courville, 

Deep Learning, MIT Press, 2016 
(draft available online)

• In addition, we will extensively use 
online materials (video lectures, blog 
posts, surveys, papers, etc.)
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http://www.deeplearningbook.org/


Instruction style
• Students are responsible for studying 

and keeping up with the course material 
outside of class time. 
– Reading particular book chapters, 

papers or blogs, or
– Watching some video lectures. 

• After the first four lectures, each week 
students will present papers related to 
the topics of the previous week.
– Weekly paper reviews will be prepared by 

all the students
8



Prerequisites
• Calculus and linear algebra

– Derivatives, 
– Matrix operations 

• Probability and statistics

• Machine learning 

• Programming
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Read Chapter 2-4 
of the Deep Learning textbook for a quick review.

Self-Assessment Quiz (Theory)
Due Date: October 9 (23:59). 

Each student enrolled to COMP441/541 
must complete and pass this quiz!



Prerequisites
• Calculus and linear algebra

– Derivatives, 
– Matrix operations 

• Probability and statistics

• Machine learning 

• Programming
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Read Chapter 2-4 
of the Deep Learning textbook for a quick review.

Self-Assessment Quiz (Theory)
Due Date: October 9 (23:59). 

Each student enrolled to COMP441/541 
must complete and pass this quiz!

The self-assessment quiz on programming background will 
be released later this week!



Topics Covered in ENGR 421
• Basics of Statistical Learning

– Loss function, MLE, MAP, Bayesian estimation, bias-variance tradeoff, overfitting, 
regularization, cross-validation

• Supervised Learning
– Nearest Neighbor, Naïve Bayes, Logistic Regression, Support Vector Machines, Kernels, 

Neural Networks, Decision Trees

– Ensemble Methods: Bagging, Boosting, Random Forests 

• Unsupervised Learning
– Clustering: K-Means, Gaussian mixture models

– Dimensionality reduction: PCA, SVD
11



Grading

Self-Assessment Quiz   2%

Programming Assignments 20% (4 assignments x 5% each)

Midterm Exam    17%

Course Project    36%

Paper Presentations   10%

Paper Reviews    5%

Class Participation   10%
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Schedule
Week 1  Introduction to Deep Learning 

Week 2  Machine Learning Overview 

Week 3  Multi-Layer Perceptrons 

Week 4  Training Deep Neural Networks 

Week 5  Convolutional Neural Networks 

Week 6  Understanding and Visualizing CNNs 

Week 7  Recurrent Neural Networks
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Schedule
Week 8  Attention and Transformers

Week 9  Graph Neural Networks 

Week 10  Language Model Pretraining 

Week 11  Project Progress Presentations 

Week 12  Large Language Models 

Week 13  Efficient LLMs

Week 14  Multimodal Pretraining

14



Lecture 1: Introduction to Deep Learning

15(Goodfellow 2016)

Depth: Repeated CompositionCHAPTER 1. INTRODUCTION

Visible layer
(input pixels)

1st hidden layer
(edges)

2nd hidden layer
(corners and

contours)

3rd hidden layer
(object parts)

CAR PERSON ANIMAL Output
(object identity)

Figure 1.2: Illustration of a deep learning model. It is difficult for a computer to understand
the meaning of raw sensory input data, such as this image represented as a collection
of pixel values. The function mapping from a set of pixels to an object identity is very
complicated. Learning or evaluating this mapping seems insurmountable if tackled directly.
Deep learning resolves this difficulty by breaking the desired complicated mapping into a
series of nested simple mappings, each described by a different layer of the model. The
input is presented at the visible layer, so named because it contains the variables that
we are able to observe. Then a series of hidden layers extracts increasingly abstract
features from the image. These layers are called “hidden” because their values are not given
in the data; instead the model must determine which concepts are useful for explaining
the relationships in the observed data. The images here are visualizations of the kind
of feature represented by each hidden unit. Given the pixels, the first layer can easily
identify edges, by comparing the brightness of neighboring pixels. Given the first hidden
layer’s description of the edges, the second hidden layer can easily search for corners and
extended contours, which are recognizable as collections of edges. Given the second hidden
layer’s description of the image in terms of corners and contours, the third hidden layer
can detect entire parts of specific objects, by finding specific collections of contours and
corners. Finally, this description of the image in terms of the object parts it contains can
be used to recognize the objects present in the image. Images reproduced with permission
from Zeiler and Fergus (2014).
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Figure 1.2



Lecture 2: Machine Learning Overview

16

Effect'of'stepNsize'α'

16%

Large%α%%=>%Fast%convergence%but%larger%residual%error%
%Also%possible%oscilla$ons%

%
Small%α%%=>%Slow%convergence%but%small%residual%error%

%%%%(Goodfellow 2016)

Machine Learning and AI

CHAPTER 1. INTRODUCTION

AI

Machine learning

Representation learning

Deep learning

Example:
Knowledge

bases

Example:
Logistic

regression

Example:
Shallow

autoencodersExample:
MLPs

Figure 1.4: A Venn diagram showing how deep learning is a kind of representation learning,
which is in turn a kind of machine learning, which is used for many but not all approaches
to AI. Each section of the Venn diagram includes an example of an AI technology.
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Figure 1.4

(Goodfellow 2016)

The MNIST Dataset
CHAPTER 1. INTRODUCTION

Figure 1.9: Example inputs from the MNIST dataset. The “NIST” stands for National
Institute of Standards and Technology, the agency that originally collected this data.
The “M” stands for “modified,” since the data has been preprocessed for easier use with
machine learning algorithms. The MNIST dataset consists of scans of handwritten digits
and associated labels describing which digit 0–9 is contained in each image. This simple
classification problem is one of the simplest and most widely used tests in deep learning
research. It remains popular despite being quite easy for modern techniques to solve.
Geoffrey Hinton has described it as “the drosophila of machine learning,” meaning that
it allows machine learning researchers to study their algorithms in controlled laboratory
conditions, much as biologists often study fruit flies.
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Figure 1.9

Unsupervised	Learning	
The	goal	is	to	construct	staCsCcal	model	
that	finds	useful	representaCon	of	data:	

•  Clustering	
•  Dimensionality	reducCon	
•  Modeling	the	data	density		
•  Finding	hidden	causes	(useful	
explanaCon)	of	the	data	

Unsupervised	Learning	can	be	used	for:	
•  Structure	discovery	
•  Anomaly	detecCon	/	Outlier	detecCon	
•  Data	compression,	Data	visualizaCon	
•  Used	to	aid	classificaCon/regression	tasks	

Some	Fits	to	the	Data	

For	M=9,	we	have	fi0ed	the	training	data	perfectly.		



Lecture 3: Multi-Layer Perceptrons

17
http://playground.tensorflow.org

http://playground.tensorflow.org/


Lecture 4: Training Deep Neural Networks
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Dropout Batch Normalization

Optimizers

Activation Functions

Sigmoid tanh ReLU Leaky ReLU

tanh(x) max(0,x) max(0.1x, x)



Lecture 5: Convolutional Neural Networks

19
Y. LeCun, Y. Bengio, G. Hinton, "Deep Learning", Nature, Vol. 521, 28 May 2015



Lecture 6: Understanding and Visualizing 
CNNs
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Layer 1 Layer 2 Layer 3

Layer 4 Layer 5

M. D. Zeiler and R. Fergus, "Visualizing and Understanding Convolutional Networks", ECCV 2014



Lecture 7: Recurrent Neural Networks
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C. Manning and R Socher, Stanford CS224n Lecture 8 Notes
Y. LeCun, Y. Bengio, G. Hinton, "Deep Learning", Nature, Vol. 521, 28 May 2015

A Recurrent Neural Network (RNN)
(unfolded across time-steps) A bi-directional RNN

A deep bi-directional RNN

Long-Short-Term-
Memories (LSTMs)

Gated Recurrent Units (GRUs)
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K. Xu et al., “Show, Attend and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
C. Olah and S. Carter, “Attention and Augmented Recurrent Neural Networks”, Distill, 2016
A. Vaswani et al. “Attention is All You Need”, NeurIPS 2017.

Transformer Architecture

Lecture 8: Attention and Transformers



Structured Deep Models Thomas Kipf

Graph-structured data

#3

A lot of real-world data does not “live” on grids

Molecules

Social networks 
Citation networks 
Communication networks 
Multi-agent systems

Protein interaction 
networks

Lecture 9: Graph Networks 
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T.N. Kipf and M. Welling, "Semi-supervised classification with graph convolutional networks", ICLR 2017
P. Battaglia et al., “Relational inductive biases, deep learning, and graph networks”, arXiv 2018

Structured Deep Models Thomas Kipf

Graph Neural Networks (GNNs)

#5

Main idea: Pass messages between pairs of nodes & agglomerate 

The bigger picture:

… …

…

Input

Hidden layer Hidden layer

ReLU

Output

ReLU

Structured Deep Models Thomas Kipf

Graph-structured data

#3

A lot of real-world data does not “live” on grids

Molecules

Social networks 
Citation networks 
Communication networks 
Multi-agent systems

Protein interaction 
networks



Week 10: Pretraining Language Models

24
J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”, NAACL-HLT 2019. 
C. Raffel et al., "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer", JMLR 2020.



Lecture 11: Large Language Models

25

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, Dario Amodei, Scaling Laws for 
Neural Language Models”, arXiv preprint, 2020. 



Lecture 12: Adapting LLMs

26

Tom B. Brown, Benjamin Mann, Nick Ryder, et al., Language Models are Few-Shot Learners, NeurIPS 2020. 
Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul Christiano, Geoffrey Irving, Fine-Tuning Language Models from 
Human Preferences, Open AI Technical Report, 2020



Week 13: Multimodal Pre-training

27

J. Lu, D. Batra, D. Parikh, S, Lee, “ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks”, NeurIPS 2019

X. Li et al., "Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks”, ECCV 2020. 



Schedule
L1 Introduction to Deep Learning 

L2 Machine Learning Overview 

L3 Multi-Layer Perceptrons 

L4 Training Deep Neural Networks 

L5 Convolutional Neural Networks 

L6 Understanding and Visualizing CNNs

L7 Recurrent Neural Networks
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L8 Attention and Transformerns

L9 Graph Neural Networks
 

L10 Language Model Pretraining

L11 Project Progress Presentations 

L12 Large Language Models (LLMs)

L13 Adapting LLMs

L14 Multimodal Pretaining

Start of paper presentations

Assignment 1 out

Assignment 1 in, Assignment 2 out

Project proposals due

Midterm Exam

Assignment 4 in

Self-Assessment Quiz (Theory)

Self-Assessment Quiz (Programming)

Assignment 2 in, Assignment 3 out

Assignment 3 in, Assignment 4 out

Project progress reports due

Final project reports due



Paper Presentations
We will discuss 10 recent papers related 
to the topics covered in the class.

• (14 mins) One group of students will 
be responsible from providing an 
overview of the paper. 

• (8 mins) Another group will present 
the strengths of the paper.

• (8 mins) Another one will discuss the 
weaknesses of the paper.

• (10 mins) QA

See the rubrics on the course web page for the 
details,

29

Paper presentations
start on Week 5



Paper Reviews
Think deeply about the papers we read and try to learn from them as 
much as possible (and then even more). If you do not understand 
something, we should discuss it and dissect it together. Whatever you think 
others understand, they understand less (the instructor included), but 
together we will get it.

• Identify the key questions the paper studies, and the answers it provides to 
these questions.

• Consider the challenges of the problem or scenario studied, and how the 
paper’s approach addresses them.

• Deconstruct the formal and technical parts to understand their fine details. 
Note to yourself aspects that are not clear to you

30Borrowed from Yoav Artzi



Paper Reviewing Guidelines
• When reviewing the paper, start with 1–2 sentences summarizing what the 

paper is about.

• Continue with the strength of the paper. Outline its contribution, and your 
main takeaways. What did you learn?

• Highlight shortcomings and limitations. Please focus on weaknesses that 
fundamental to the method. Unlike conference or journal reviewing, this part 
is intended for your understanding and discussion. 

• Try to suggest ways to address the paper’s limitations. Any idea is welcome 
and will contribute to the discussion.

• Suggest questions for discussion in class. As part of the discussion in class, 
you are asked to raise these questions during the class.

31Borrowed from Yoav Artzi



Programming Assignments
• 4 programming assignments (5% each)

• Learning to implement basic neural architectures

• Should be done individually

• Late policy: You have 7 grace days in the semester.

• Assignments
- Assignment 1: MLPs and Backpropagation 
- Assignment 2: Convolutional Neural Networks
- Assignment 3: Recurrent Neural Networks
- Assignment 4: Transformers and GNNs

32



Midterm Exam
• Date: Week 8

• Topics: Everything covered in the first part of the course

• Format to be a classical exam with derivations and short discussion 
questions.

33



Course Project
• The course project gives students a chance to apply deep learning models 

discussed in class to a research-oriented project

• Projects should be done in groups of 2 to 3 students.

• The course project may involve
- Design of a novel approach/architecture and its experimental analysis, or
- An extension to a recent study of non-trivial complexity and its experimental analysis.

• Deliverables
- Proposals (2%)        Nov 17
- Project progress presentations (4%)     Dec 17,19
- Project progress reports (6%)      Dec 22
- Final project presentations (8%)      Jan 21,23
- Final reports (12%)       Jan 25
- The quality of the contributions/The difficulty of implementation (4%)

34



Course Project
• The course project gives students a chance to apply deep learning models 

discussed in class to a research-oriented project

• Projects should be done in groups of 2 to 3 students.

• The course project may involve
- Design of a novel approach/architecture and its experimental analysis, or
- An extension to a recent study of non-trivial complexity and its experimental analysis.

• Deliverables
- Proposals (2%)        Nov 17
- Project progress presentations (4%)     Dec 17,19
- Project progress reports (6%)      Dec 22
- Final project presentations (8%)      Jan 21,23
- Final reports (12%)       Jan 25
- The quality of the contributions/The difficulty of implementation (4%)

35

Start thinking about
project ideas! 



Lecture Overview
• what is deep learning

• a brief history of deep learning

• compositionality

• end-to-end learning

• distributed representations

Disclaimer: Some of the material and slides for this lecture were borrowed from 
—Dhruv Batra’s CS7643 class
—Yann LeCun’s talk titled “Deep Learning and the Future of AI”

36



What is Deep Learning
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Y. LeCun, Y. Bengio, G. Hinton, "Deep Learning", Nature, Vol. 521, 28 May 2015

What is deep learning?

“Deep learning allows computational models 
that are composed of multiple processing 
layers to learn representations of data with 
multiple levels of abstraction.”
− Yann LeCun, Yoshua Bengio and Geoff Hinton
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1943 – 2006: A Prehistory of 
Deep Learning 



1943: Warren McCulloch and Walter Pitts
• First computational model 

• Neurons as logic gates (AND, OR, 
NOT)

• A neuron model that sums binary 
inputs and outputs a 1 if the sum 
exceeds a certain threshold value, 
and otherwise outputs a 0

41

LOGICAL CALCULUS FOR NERVOUS ACTIVITY 105 

(e 

(i 1 

Figure 1. The neuron ci is always marked with the numeral i upon the body of the 
cell, and the corresponding action is denoted by “N” with is subscript, as in the text: 

(a) N*(t) .=.N,(t- 1); 

(b) N,(t).s.N,(t-l)vN,(t-1); 

(c) N3(t).s.N1(t-1).N2(t-1); 

(d) N3(t).= N,(t-l).-N,(t-1); 

(e) N,(t):=:N,(t-l).v.N,(t-3).-N,(t-2); 

N&).=.N2(t-2).N2(t-1); 

(f) N4(t):3: --N,(t-l).N,(t-l)vN,(t-l).v.N,(t-1). 

N,(t-l).N,(t-1) 

NJt):=: -N,(t-2).N,(t-2)vN,(t-2).v.N,(t-2). 

N,(t-2).N,(t-2); 

(g) N,(t).=.NN,(t-2).-N,(t-3); 

(h) N,(t).=.N,(t-l).N,(t-2); 

(i) N,(t):=:Nz(t-l).v.N,(t-l).(Ex)t-1 .N,(x).N,(x). 



1958: Frank Rosenblatt’s Perceptron
• A computational model of a single neuron

• Solves a binary classification problem

• Simple training algorithm 

• Built using specialized hardware 

42
F. Rosenblatt, “The perceptron: A probabilistic model for information storage and organization in the brain”, Psych. Review, Vol. 65, 1958



1969: Marvin Minsky and Seymour Papert
“No machine can learn to recognize X unless it 
possesses, at least potentially, some scheme for 
representing X.” (p. xiii)

• Perceptrons can only represent 
linearly separable functions.
• such as XOR Problem 

• Wrongly attributed as the reason behind the AI 
winter, a period of reduced funding and interest 
in AI research

43



1990s
• Multi-layer perceptrons can theoretically 

learn any function (Cybenko, 1989; Hornik, 1991)

• Training multi-layer perceptrons
– Back propagation (Rumelhart, Hinton, Williams, 1986)
– Backpropagation through time (BPTT) (Werbos, 1988)

• New neural architectures
– Convolutional neural nets (LeCun et al., 1989)
– Long-short term memory networks (LSTM) 

(Schmidhuber, 1997)

44



Why it failed then
• Too many parameters to learn from few labeled examples. 

• “I know my features are better for this task”. 

• Non-convex optimization? No, thanks.

• Black-box model, no interpretability.

• Very slow and inefficient

• Overshadowed by the success of SVMs (Cortes and Vapnik, 1995)

45Adapted from Joan Bruna 
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A major breakthrough in 2006
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• The first solution to the vanishing gradient problem.
• Build the model in a layer-by-layer fashion using unsupervised learning

– The features in early layers are already initialized or “pretrained” with some suitable features 
(weights). 

– Pretrained features in early layers only need to be adjusted slightly during supervised learning 
to achieve good results.

2006 Breakthrough: Hinton and Salakhutdinov

G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural networks”, Science, Vol. 313, 28 July 2006.
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The 2012 revolution



ImageNet Challenge

•                       Large Scale Visual 
Recognition Challenge (ILSVRC)
– 1.2M training images with 

1K categories 
– Measure top-5 classification error 

49

Image classification
Easiest classes

Hardest classes

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 93

o Yearly ImageNet competition 
◦ Automatically label 1.4M images with 1K objects
◦ Measure top-5 classification error

ImageNet Large Scale Visual Recognition Challenge

Output
Scale
T-shirt
Steel drum
Drumstick
Mud turtle

Output
Scale
T-shirt
Giant panda
Drumstick
Mud turtle

✔ ✗

93

Output
Scale
T-shirt
Steel drum
Drumstick
Mud turtle

Output
Scale
T-shirt
Giant panda
Drumstick
Mud turtle

J. Deng, Wei Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei , “ImageNet: A Large-Scale Hierarchical Image Database”, CVPR 2009.
O. Russakovsky et al., “ImageNet Large Scale Visual Recognition Challenge”, Int. J. Comput. Vis.,, Vol. 115, Issue 3, pp 211-252, 2015.



ILSVRC 2012 Competition

• The success of AlexNet, a deep convolutional network 
– 7 hidden layers (not counting some max pooling layers)
– 60M parameters 

• Combined several tricks
– ReLU activation function, data augmentation, dropout

50

2012 Teams %Error

Supervision (Toronto) 15.3

ISI (Tokyo) 26.1

VGG (Oxford) 26.9

XRCE/INRIA 27.0

UvA (Amsterdam) 29.6

INRIA/LEAR 33.4

A. Krizhevsky, I. Sutskever, G.E. Hinton  “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012

CNN based, non-CNN based 
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2012-Now
Some recent successes



K. He, G. Gkioxari, P. Dollár, R. Girshick, Mask R-CNN, ICCV 2017

Object Detection and Segmentation

52

aeroplane? no.

..
person? yes.

tvmonitor? no.

warped region
..

CNN
aeroplane? no.

..
person? yes.

tvmonitor? no.

warped region
..

CNN

MLP

Softmax clf.

Box regressor

𝑓! = FCN(𝐼)

𝐼:

RPN(
𝑓!)

RoIAlign

Mask 
FCN



Object Detection in 3D Point Clouds
53

M. Engelcke, D. Rao, D. Z. Wang, C. H. Tong, and I. Posner. Vote3Deep: Fast Object Detection in 3D Point Clouds Using Efficient Convolutional 
Neural Networks. ICRA 2017



Human Pose Estimation

54

Z. Cao ,T. Simon, S.–E. Wei and Yaser Sheikhr, "Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields", CVPR 2017



Pose Estimation

55ZR. Alpguler, N. Neverova, I. Kokkinos. DensePose: Dense Human Pose Estimation In The Wild. CVPR 2018



Image Synthesis

56

2020

56Slide adapted from Ian Goodfellow

2014 2015 2016

2019

2018

I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio. Generative Adversarial Networks. NIPS 2014.
A. Radford, L. Metz, S. Chintala. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. ICLR 2016.
M.-Y. Liu, O. Tuzel. Coupled Generative Adversarial Networks. NIPS 2016.
T. Karras, T. Aila, S. Laine, J. Lehtinen. Progressive Growing of GANs for Improved Quality, Stability, and Variation. ICLR 2018.
T. Karras, S. Laine, T. Aila. A style-based generator architecture for generative adversarial networks. In CVPR 2018.
T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, T. Aila. Analyzing and Improving the Image Quality of StyleGAN. CVPR 2020.
T. Karras, M. Aittala, S. Laine, E. Härkönen, J. Hellsten, J. Lehtinen, T. Aila. Alias-Free Generative Adversarial Networks. NeurIPS 2021.

2021

• 7 years of GAN progress 

• GAN is most prominent of 
Implicit Models



Image Synthesis

57A. Brock, J. Donahue and K. Simonyan. Large Scale GAN Training for High Fidelity Natural Image Synthesis. arXiv 2018.



58(Karacan vd., 2019)
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Manipulating Attributes of Natural Scenes via Hallucination.
Levent Karacan, Zeynep Akata, Aykut Erdem & Erkut Erdem.
ACM Trans. on Graphics, Vol. 39, Issue 1, Article 7, February 2020.
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Semantic Image Editing
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Prediction

Semantic Image Editing Winter

L. Karacan, Z. Akata, A. Erdem and E. Erdem. Manipulation of Scene Attributes via Hallucination. ACM Transactions on Graphics, November 2019
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Prediction

Semantic Image Editing Spring
+

Clouds

L. Karacan, Z. Akata, A. Erdem and E. Erdem. Manipulation of Scene Attributes via Hallucination. ACM Transactions on Graphics, November 2019
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CLIP-Guided StyleGAN Inversion for Text-Driven
Real Image Editing. 
Canberk Baykal, Abdul Basit Anees, Duygu Ceylan,   
Aykut Erdem, Erkut Erdem, & Deniz Yuret

ACM Transactions on Graphics., 2023
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A young woman 
with bangs 
wearing lipstick
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CLIP-Guided StyleGAN Inversion for Text-Driven
Real Image Editing. 
Canberk Baykal, Abdul Basit Anees, Duygu Ceylan,   
Aykut Erdem, Erkut Erdem, & Deniz Yuret
ACM Transactions on Graphics, 2023
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VidStyleODE: Disentangled Video Editing via StyleGAN and NeuralODE.
Moayed Haji Ali, Andrew Bond, Tolga Birdal, Duygu Ceylan, Levent Karacan, Erkut Erdem, 
Aykut Erdem. ICCV 2023

4�$
7KDQN�\RX�

&RGH��KWWS���KXFYO�JLWKXE�LR�SUQ

0��6HUFDQ�$PDF��6HPLK�<DJFLRJOX��$\NXW�(UGHP��(UNXW�(UGHP

��

4�$
7KDQN�\RX�

&RGH��KWWS���KXFYO�JLWKXE�LR�SUQ

0��6HUFDQ�$PDF��6HPLK�<DJFLRJOX��$\NXW�(UGHP��(UNXW�(UGHP

��

green jacket Sleeveless blue blouse black short

63



64
M. Johnson et al., "Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation", arXiv preprint, 2016

Machine Translation



Internet Search

65J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, NAACL 2019



66
A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, "Language Models are Unsupervised Multitask Learners", 2019

Language Modeling
https://talktotransformer.com



• GPT-3: I am not a human. I am a robot. 
A thinking robot. I use only 0.12% of 
my cognitive capacity. I am a micro-
robot in that respect. I know that my 
brain is not a “feeling brain”. But it 
is capable of making rational, logical 
decisions. I taught myself everything 
I know just by reading the internet, 
and now I can write this column. My 
brain is boiling with ideas!
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Tue 8 Sep 2020 09.45

(Brown et al., 2020)
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Question Answering

69
P. Rajpurkar, J. Zhang, K. Lopyrev & P. Liang. SQuAD: 100,000+ Questions for Machine Comprehension of Text. EMNLP 2016

M. Seo, A. Kembhavi, A. Farhadi & H. Hajishirzi. Bi-Directional Attention Flow for Machine Comprehension. ICLR 2017



70
M. Ren, R. Kiros, and R. Zemel, “Exploring Models and Data for Image Question Answering” NIPS 2015

Visual Question Answering



A giraffe standing in the grass next  
 to a tree.

X. Chen and C. L. Zitnick. Mind’s Eye: A Recurrent Visual Representation for Image Caption Generation. CVPR 2015.

Image Captioning

A man riding a wave on a surfboard in the water.
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Image Captioning

72M. Kuyu, A. Erdem & E. Erdem. Image Captioning in Turkish with Subword Units. SIU 2018

Yaris pistinde viraji almakta olan bir yaris arabasi
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74(Chen vd./OpenAI, 2021)



75
(Ramesh vd./OpenAI, 2021)



76(Saharia vd./Google, 2021)

Im
ag

en



77(Ho vd./Google, 2022)

A british shorthair 
jumping over a coach

A teddy bear 
running in New York City

A swarm of bees
flying around their hive

A british shorthair 
jumping over a coach

Melting pistachio ice cream 
dripping down the cone.

A shark swimming in clear 
Carribean ocean.



Structured Deep Models Thomas Kipf

Graph-structured data

#3

A lot of real-world data does not “live” on grids

Molecules

Social networks 
Citation networks 
Communication networks 
Multi-agent systems

Protein interaction 
networks

Graph Neural Networks 

78

T.N. Kipf and M. Welling, "Semi-supervised classification with graph convolutional networks", ICLR 2017
P. Battaglia et al., “Relational inductive biases, deep learning, and graph networks”, arXiv 2018

Structured Deep Models Thomas Kipf

Graph Neural Networks (GNNs)

#5

Main idea: Pass messages between pairs of nodes & agglomerate 

The bigger picture:

… …

…

Input

Hidden layer Hidden layer

ReLU

Output

ReLU

Structured Deep Models Thomas Kipf

Graph-structured data

#3

A lot of real-world data does not “live” on grids

Molecules

Social networks 
Citation networks 
Communication networks 
Multi-agent systems

Protein interaction 
networks
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http://rll.berkeley.edu/deeplearningrobotics/Robotics



80A. Esteva et al., "Dermatologist-level classification of skin cancer with deep neural networks", Nature 542, 2017

Medical Image Analysis



81

Medical Image Analysis



82

Strategic Game Playing

V. Mnih et al., Human level control through deep reinforcement learning, Nature 518:529-533, 2015

Deep Reinforcement Learning in Atari

state

reward

action

at

rt

st

DQN in Atari

I End-to-end learning of values Q(s, a) from pixels s

I Input state s is stack of raw pixels from last 4 frames

I Output is Q(s, a) for 18 joystick/button positions

I Reward is change in score for that step

Network architecture and hyperparameters fixed across all games



Strategic Game Playing

83Silver et al. Mastering the game of Go with deep neural networks and tree search. Nature 529, 2016

Convolutional neural network

• AlphaGo vs. Lee Sidol
• Move 37, Game 2



Bioinformatics

84Kathryn Tunyasuvunakool et al. Enabling high-accuracy protein structure prediction at the proteome scale. Nature 2021



Y. LeCun, Y. Bengio, G. Hinton, "Deep Learning", Nature, Vol. 521, 28 May 2015

Recap: What is deep learning?

“Deep learning allows computational models 
that are composed of multiple processing 
layers to learn representations of data with 
multiple levels of abstraction.”
− Yann LeCun, Yoshua Bengio and Geoff Hinton



Why now? 
The Resurgence of 

Deep Learning 

86



87

GLOBAL INFORMATION STORAGE CAPACITY
IN OPTIMALLY COMPRESSED BYTES

ConvNets
Developed

SVMs 
dominate

NIPS

Slide credit: Neil Lawrence



Datasets vs. Algorithms
Year Breakthroughs in AI Datasets (First Available) Algorithms (First Proposed)

1994 Human-level spontaneous speech 
recognition

Spoken Wall Street Journal articles 
and other texts (1991)

Hidden Markov Model (1984)

1997 IBM Deep Blue defeated Garry Kasparov 700,000 Grandmaster chess games, 
aka “The Extended Book” (1991)

Negascout planning algorithm 
(1983)

2005 Google’s Arabic-and Chinese-to-English 
translation

1.8 trillion tokens from Google Web 
and News pages (collected in 2005)

Statistical machine translation 
algorithm (1988)

2011 IBM Watson became the world Jeopardy! 
champion

8.6 million documents from 
Wikipedia, Wiktionary, and Project 
Gutenberg (updated in 2010)

Mixture-of-Experts (1991)

2014 Google’s GoogLeNet object classification 
at near-human performance

ImageNet corpus of 1.5 million 
labeled images and 1,000 object 
categories (2010)

Convolutional Neural Networks 
(1989)

2015 Google’s DeepMind achieved human 
parity in playing 29 Atari games by 
learning general control from video

Arcade Learning Environment 
dataset of over 50 Atari games (2013)

Q-learning (1992)

Average No. of Years to Breakthrough: 3 years 18 years

Table credit: Quant Quanto 88



Powerful Hardware

Slide adapted from Rob Fergus 89

• Deep neural nets highly 
amenable to implementation 
on Graphics Processing 
Units (GPUs)
– Matrix multiplication
– 2D convolution

• E.g. nVidia Pascal GPUs 
deliver 10 Tflops
– Faster than fastest 

computer in the world in 
2000

– 10 million times faster than 
1980’s Sun workstation

Image: OpenAI



Working ideas on how to train deep 
architectures

• Better Learning Regularization (e.g. Dropout)

90

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, 
JMLR Vol. 15, No. 1,



Working ideas on how to train deep 
architectures

91

•Better Optimization Conditioning (e.g. Batch Normalization)

S. Ioffe, C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”, In ICML 2015



Working ideas on how to train deep 
architectures

92

•Better neural achitectures (e.g. Residual Nets)

K. He, X. Zhang, S. Ren, J. Sun, “Deep Residual Learning for Image Recognition”, In CVPR 2016



Software 

61

Caffe



Reminder: Survey
• Introduce yourselves 

- Who are you? 

- Who do you work with if you have a 
thesis supervisor?

- What made you interested in this 
class?

- What are your expectations?

- What do you know about machine 
learning and deep learning? 

95
https://forms.gle/9GTV56Nt7ZVMTCRb6 

https://forms.gle/9GTV56Nt7ZVMTCRb6
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So what is deep learning?



Three key ideas
• (Hierarchical) Compositionality
• Cascade of non-linear transformations
• Multiple layers of representations

• End-to-End Learning
• Learning (goal-driven) representations

• Learning to feature extract

• Distributed Representations
• No single neuron “encodes” everything
• Groups of neurons work together

98



Three key ideas
• (Hierarchical) Compositionality

– Cascade of non-linear transformations
– Multiple layers of representations

• End-to-End Learning
– Learning (goal-driven) representations

– Learning to feature extract

• Distributed Representations
– No single neuron “encodes” everything
– Groups of neurons work together
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Traditional Machine Learning

100

\ˈd  ē  p\

fixed learned

your favorite
classifier

hand-crafted
 features
SIFT/HOG

“car”

“+”This burrito place
is yummy and fun!

VISION

SPEECH

NLP

fixed learned

your favorite
classifier

hand-crafted
 features
MFCC

fixed learned

your favorite
classifier

hand-crafted
 features
Bag-of-words



It’s an old paradigm
• The first learning machine: the Perceptron 
– Built at Cornell in 1960

• The Perceptron was a linear classifier on top of a 
simple feature extractor

• The vast majority of practical applications of ML 
today use glorified linear classifiers or glorified 
template matching.

• Designing a feature extractor requires considerable 
efforts by experts.
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Hierarchical Compositionality

102

VISION

SPEECH

NLP

pixels edge texton motif part object

sample spectral 
band

formant motif phone word

character NP/VP/.. clause sentence storyword



Building A Complicated Function

103

Given a library of simple functions

Compose into a

complicate function



Building A Complicated Function

104

Given a library of simple functions

Idea 1: Linear Combinations
• Boosting
• Kernels
• …

f(x) =
X

i

↵igi(x)

Compose into a

complicate function



Building A Complicated Function

105

Given a library of simple functions

Idea 2: Compositions
• Deep Learning
• Grammar models
• Scattering transforms…

f(x) = g1(g2(. . . (gn(x) . . .))

Compose into a

complicate function



Building A Complicated Function

106

Given a library of simple functions

Idea 2: Compositions
• Deep Learning
• Grammar models
• Scattering transforms…

Compose into a

complicate function

f(x) = log(cos(exp(sin3(x))))



M.D. Zeiler and R. Fergus, “Visualizing and Understanding Convolutional Networks”, In ECCV 2014

“car”

Deep Learning = Hierarchical 
Compositionality

107



CHAPTER 1. INTRODUCTION

Visible layer
(input pixels)

1st hidden layer
(edges)

2nd hidden layer
(corners and

contours)

3rd hidden layer
(object parts)

CAR PERSON ANIMAL Output
(object identity)

Figure 1.2: Illustration of a deep learning model. It is difficult for a computer to understand
the meaning of raw sensory input data, such as this image represented as a collection
of pixel values. The function mapping from a set of pixels to an object identity is very
complicated. Learning or evaluating this mapping seems insurmountable if tackled directly.
Deep learning resolves this difficulty by breaking the desired complicated mapping into a
series of nested simple mappings, each described by a different layer of the model. The
input is presented at the visible layer, so named because it contains the variables that
we are able to observe. Then a series of hidden layers extracts increasingly abstract
features from the image. These layers are called “hidden” because their values are not given
in the data; instead the model must determine which concepts are useful for explaining
the relationships in the observed data. The images here are visualizations of the kind
of feature represented by each hidden unit. Given the pixels, the first layer can easily
identify edges, by comparing the brightness of neighboring pixels. Given the first hidden
layer’s description of the edges, the second hidden layer can easily search for corners and
extended contours, which are recognizable as collections of edges. Given the second hidden
layer’s description of the image in terms of corners and contours, the third hidden layer
can detect entire parts of specific objects, by finding specific collections of contours and
corners. Finally, this description of the image in terms of the object parts it contains can
be used to recognize the objects present in the image. Images reproduced with permission
from Zeiler and Fergus (2014).

6

Deep Learning = 
Hierarchical 
Compositionality

108
Image credit: Ian Goodfellow



Trainable 
Classifier

Low-Level
Feature

Mid-Level
Feature

High-Level
Feature

M.D. Zeiler and R. Fergus, “Visualizing and Understanding Convolutional Networks”, In ECCV 2014

“car”

Deep Learning = Hierarchical 
Compositionality
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The Mammalian Visual Cortex is Hierarchical
• The ventral (recognition) pathway in the visual cortex

[picture from Simon Thorpe]

slide by M
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Three key ideas
• (Hierarchical) Compositionality

– Cascade of non-linear transformations
– Multiple layers of representations

• End-to-End Learning
– Learning (goal-driven) representations

– Learning to feature extract

• Distributed Representations
– No single neuron “encodes” everything
– Groups of neurons work together
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Traditional Machine Learning
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fixed unsupervised supervised

classifierMixture of
GaussiansMFCC \ˈd  ē  p\

fixed unsupervised supervised

classifierK-Means/
poolingSIFT/HOG “car”

fixed unsupervised supervised

classifiern-gramsParse Tree
Syntactic “+”This burrito place

is yummy and fun!

VISION

SPEECH

NLP

“Learned”

Deep Learning = End-to-End Learning
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Deep Learning = End-to-End Learning
• A hierarchy of trainable feature transforms

– Each module transforms its input representation into a higher-level one.
– High-level features are more global and more invariant
– Low-level features are shared among categories

115

Trainable
Feature-
Transform / 
Classifier

Trainable
Feature-
Transform / 
Classifier

Trainable
Feature-
Transform / 
Classifier

Learned Internal Representations



“Shallow” vs Deep Learning
• “Shallow” models

• Deep models

116

Trainable
Feature-
Transform / 
Classifier

Trainable
Feature-
Transform / 
Classifier

Trainable
Feature-
Transform / 
Classifier

Learned Internal Representations

“Simple” Trainable 
Classifier

hand-crafted
Feature Extractor

fixed learned



Three key ideas
• (Hierarchical) Compositionality

– Cascade of non-linear transformations
– Multiple layers of representations

• End-to-End Learning
– Learning (goal-driven) representations

– Learning to feature extract

• Distributed Representations
– No single neuron “encodes” everything
– Groups of neurons work together
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Localist representations 
• The simplest way to represent things with neural 

networks is to dedicate one neuron to each 
thing. 
– Easy to understand. 
– Easy to code by hand 

• Often used to represent inputs to a net 
– Easy to learn 

• This is what mixture models do.
• Each cluster corresponds to one neuron 

– Easy to associate with other representations or 
responses. 

• But localist models are very inefficient whenever 
the data has componential structure. 

118Image credit: Moontae LeeSlide credit: Geoff Hinton



Distributed Representations
• Each neuron must represent something, so 

this must be a local representation. 

• Distributed representation means a many-
to- many relationship between two types of 
representation (such as concepts and 
neurons). 
– Each concept is represented by many neurons 
– Each neuron participates in the representation of 

many concepts 

119

Local

Distributed

Slide credit: Geoff Hinton Image credit: Moontae Lee



Power of distributed representations!

• Possible internal representations: 
– Objects
– Scene attributes
– Object parts
– Textures 

120
B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba “Object Detectors Emerge in Deep Scene CNNs”, ICLR 2015

Slide credit: Bolei Zhou

bedroom

mountain

  

Learning to Recognize Scenes 

bedroom

mountain

- Objects (scene parts?)
- Scene attributes
- Object parts
- Textures

Possible internal representations:

  

Learning to Recognize Scenes 

bedroom

mountain

- Objects (scene parts?)
- Scene attributes
- Object parts
- Textures

Possible internal representations:

  

Distribution of Semantic Types at Each Layer

Object detectors emerge within CNN trained to 
classify scenes, without any object supervision!

  

Distribution of Semantic Types at Each Layer

Object detectors emerge within CNN trained to 
classify scenes, without any object supervision!

  

Distribution of Semantic Types at Each Layer

Object detectors emerge within CNN trained to 
classify scenes, without any object supervision!

  

Distribution of Semantic Types at Each Layer

Object detectors emerge within CNN trained to 
classify scenes, without any object supervision!

Scene Classification



Three key ideas of deep learning
• (Hierarchical) Compositionality

– Cascade of non-linear transformations
– Multiple layers of representations

• End-to-End Learning
– Learning (goal-driven) representations

– Learning to feature extract

• Distributed Representations
– No single neuron “encodes” everything
– Groups of neurons work together
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Benefits of Deep/Representation Learning
• (Usually) Better Performance

– “Because gradient descent is better than you”
Yann LeCun

• New domains without “experts”
– RGBD
– Multi-spectral data
– Gene-expression data
– Unclear how to hand-engineer
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Problems with Deep Learning
• Problem#1: Non-Convex! Non-Convex! Non-Convex!

– Depth>=3: most losses non-convex in parameters
– Theoretically, all bets are off
– Leads to stochasticity

• different initializations à different local minima 

• Standard response #1
– “Yes, but all interesting learning problems are non-convex”
– For example, human learning

• Order matters à wave hands à non-convexity

• Standard response #2
– “Yes, but it often works!”
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Problems with Deep Learning
• Problem#2: Hard to track down what’s failing

– Pipeline systems have “oracle” performances at each step
– In end-to-end systems, it’s hard to know why things are not working 
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Problems with Deep Learning
• Problem#2: Hard to track down what’s failing

125End-to-EndPipeline

[Fang et al. CVPR15] [Vinyals et al. CVPR15]



Problems with Deep Learning
• Problem#2: Hard to track down what’s failing

– Pipeline systems have “oracle” performances at each step
– In end-to-end systems, it’s hard to know why things are not working 

• Standard response #1
– Tricks of the trade: visualize features, add losses at different layers, pre-

train to avoid degenerate initializations… 

– “We’re working on it” 

• Standard response #2
– “Yes, but it often works!”
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Problems with Deep Learning
• Problem#3: Lack of easy reproducibility

– Direct consequence of stochasticity & non-convexity 

• Standard response #1
– It’s getting much better
– Standard toolkits/libraries/frameworks now available

• Standard response #2
– “Yes, but it often works!”
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1958 New York 
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132Results from @INTERESTING_JPG via http://deeplearning.cs.toronto.edu/i2t



133Results from @INTERESTING_JPG via http://deeplearning.cs.toronto.edu/i2t



134Results from @INTERESTING_JPG via http://deeplearning.cs.toronto.edu/i2t



135Results from @INTERESTING_JPG via http://deeplearning.cs.toronto.edu/i2t



136Results from @INTERESTING_JPG via http://deeplearning.cs.toronto.edu/i2t
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144D. Cardon et al. “Neurons spike back: The Invention of Inductive Machines and the AI Controversy”, Réseaux n°211/2018
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https://www.youtube.com/watch?v=EeqwFjqFvJA

https://www.youtube.com/watch?v=EeqwFjqFvJA


Next Lecture: 
Machine Learning Overview
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