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MIT III._ Image editing to visual |
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Now, what about you?

llllllllllllllllllllllll

E-mail Address: *

Status *

(O PhD: 1styear V4

(O PhD: 2nd year

https://forms.gle/9GTV56Nt/ZVMTCRDb6
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Course Information

Lectures Tuesday and Thursday 16:00-17:10 (SOS 103)

PS Friday 14:30-15:40 (SOS 103)
Instructor Aykut Erdem

TAs Andrew Bond & Hakan Capuk.
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Website  https://avkuterdem.github.io/classes/comp541.f23/

« KUHub Learn for course related announcements and collecting and
grading your submissions


https://aykuterdem.github.io/classes/comp541.f22/

Textbook

» Goodfellow, Bengio, and Courville,
Deep Learning, MIT Press, 2016
(draft available online)

 |n addition, we will extensively use
online materials (video lectures, blog
POStS, surveys, papers, etc.)



http://www.deeplearningbook.org/

Instruction style

« Students are responsible for studying
and keeping up with the course material
outside of class time.

— Reading particular book chapters,
papers or blogs, or

— Watching some video lectures.

» After the first four lectures, each week
students will present papers related to
the topics of the previous week.

— Weekly paper reviews will be prepared by
all the students
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Prerequisites

 Calculus and linear algebra
— Derivatives,
— Matrix operations

* Prol The self-assessment quiz on programming backgro'u‘nd will

be released later this week!
* MacnmeTearnimng

* Programming

Self-Assessment Quiz (Theory)
Due Date: October 9 (23:59).

: . . Each student enrolled to COMP441/541
of the Deep Learning textbook for a quick review. must complete and pass this quiz!

Read Chapter 2-4




Topics Covered in ENGR 421

» Basics of Statistical Learning

— Loss function, MLE, MAP, Bayesian estimation, bias-variance tradeoff, overfitting,
regularization, cross-validation

» Supervised Learning

— Nearest Neighbor, Naive Bayes, Logistic Regression, Support Vector Machines, Kernels,
Neural Networks, Decision Trees

— Ensemble Methods: Bagging, Boosting, Random Forests

* Unsupervised Learning
— Clustering: K-Means, Gaussian mixture models
— Dimensionality reduction: PCA, SVD
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Grading

Self-Assessment Quiz
Programming Assignments
Midterm Exam

Course Project

Paper Presentations

Paper Reviews

Class Participation

2%

20% (4 assignments x b% each)
17%

36%

10%

5%

10%

12



Schedule

Week 1
Week 2
Week 3
Week 4
Week 5
Week 6
Week 7

Introduction to Deep Learning
Machine Learning Overview
Multi-Layer Perceptrons

Training Deep Neural Networks
Convolutional Neural Networks
Understanding and Visualizing CNNs

Recurrent Neural Networks

13



Schedule

Week 8

Week 9

Week 10
Week 11
Week 12
Week 13
Week 14

Attention and Transformers
Graph Neural Networks
Language Model Pretraining
Project Progress Presentations
Large Language Models
Efficient LLMs

Multimodal Pretraining

14



Lecture 1: Introduction to Deep Learning

Output
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Lecture 3: Multi-Layer Perceptrons

DATA

Which dataset do
you want to use?

Ratio of training o
test data: 50%

_‘ .

Noise: 0

Batch size: 10
—i

REGENERATE

FEATURES

Which properties
do you want to
feed in?

+ — 2 HIDDEN LAYERS

+ - + -

4 neurons 2 neurons

weights. s

e neuron

http://playground.tensorflow.org

OUTPUT

Test loss 0.003
Training loss 0.001

Colors shows 5 —
data, neuron and ! I

weight values.

[[] Showtestdata [] Discretize output
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http://playground.tensorflow.org/

Lecture 4: Training Deep Neural Networks
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(a) Standard Neural Net
Dropout

SGD

Momentum Sigmoid
NAG S
Adagrad A ghr
Adadelta
Rmsprop 7
u;;‘

e o s

(b) After applying dropout.

tanh

Leaky RelL,U

10

tanh(x) max(0,x)

Activation Functions

Input: Values of z over a mini-batch: B = {z1_,, };
Parameters to be learned: v, 8
Output: {y; = BN, s(z;)}

1 m
MB = Zzz
i=1

1 m
of — > (zi — ps)?
=1

Li — UB

\/ag + €

Yi < % + B = BN, (i)

// mini-batch mean

// mini-batch variance

T; // normalize

// scale and shift

Batch Normalization

max(0.1x, x)

18



Lecture 5: Convolutional Neural Networks
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Y. LeCun, Y. Bengio, G. Hinton, "Deep Learning", Nature, Vol. 521, 28 May 2015 5



Lecture 6: Understanding and Visualizing
CNNs

M. D. Zeiler and R. Fergus, "Visualizing and Understanding Convolutional Networks", ECCV 2014
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Lecture 7: Recurrent Neural Networks
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.
New memory: Compute 1y
< A and potential
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C. Manning and R Socher, Stanford CS224n Lecture 8 Notes
Y. LeCun, Y. Bengio, G. Hinton, "Deep Learning", Nature, Vol. 521, 28 May 2015
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Lecture 8: Attention and Transformers

—

>
-
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A little girl sitting on a bed with A group of people sitting on a boat
a teddy bear. in the water.

A
L B B
(A= {24

Neural Turing Attentional Adaptive
Machines Interfaces Computation Time

K. Xu et al., “Show, Attend and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015

C. Olah and S. Carter, “Attention and Augmented Recurrent Neural Networks", Distill, 2016
A. Vaswani et al. “Attention is All You Need"”, NeurlPS 2017.

Output

L Add & Norm }
Feed
Forward
[ ) J
g ‘ ~\ l Add & Norm Iﬂ\
Sag St Multi-Head
Feed Attention
Forward 7 Nx
Nx Add & Norm
Add & Norm Masked
Mutti-Head Multi-Head
Attention Attention
\ J . —
Positional o) & Positional
Encoding Encoding
Input Qutput
Embedding Embedding
Inputs Outputs
(shifted right)

Transformer Architecture

@1 D (o)
t t
Neural
Programmers
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Lecture 9: Graph Networks

Social networks
Citation networks

Communication networks
Multi-agent systems

Input

Hidden layer

Protein interaction

Hidden layer

networks

RelLU

_....+

Output

ot

-

yYava

Molecules

T.N. Kipf and M. Welling, "Semi-supervised classification with graph convolutional networks", ICLR 2017
P. Battaglia et al., “Relational inductive biases, deep learning, and graph networks”, arXiv 2018
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Week 10: Pretraining Language Models

BERT (Ours) OpenAl GPT

[ "cola sentence: The "Das ist gut."]

course is jumping well."

"not acceptable"]

on the grass. sentence2: A rhino

"stsb sentencel: The rhino grazed
is grazing in a field."

"summarize: state authorities
dispatched emergency crews tuesday to
survey the damage after an onslaught

of severe weather in mississippi.."

"six people hospitalized after
a storm in attala county."

J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”, NAACL-HLT 2019.
C. Raffel et al., "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer", JMLR 2020.



Lecture 11: Large Language Models
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Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute® used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not
bottlenecked by the other two.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, Dario Amodei, Scaling Laws for

Neural Language Models”, arXiv preprint, 2020.
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Lecture 12: Adapting LLMs

Model

| Pre-trained

\LLM

Many examples of each

needed for training

Instruction fine-tune on many tasks

[EXAMPLE TEXT]
[EXAMPLE COMPLETION]

Prompts Dataset

x: Adogis...

Initial Language Model

B

see®
Base Text e® @®

y: @ furry mammal

/' Tuned Language
Model (RL Policy)

Reinforcement Learning
Update (e.g. PPO)

0« 0+ VaJ(0)

[ 114
00 000
990 000

&~

RLHF ®®®®
Tuned Text BSOS ®

Reward (Preference)

y: man’s best friend >

& g
Ak Dk (7ppo (y)2) || Thase(y]2)) S @
KL prediction shift penalty 4
ro(y|T)

Model

fromage
*

%Transformer—Decoder

Translate English to French:
sea otter => loutre de mer
peppermint => menthe poivrée
plush girafe => girafe peluche

cheese =>

Standard Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples

do they have?
e J

A: The answer is 27. x

Tom B. Brown, Benjamin Mann, Nick Ryder, et al., Language Models are Few-Shot Learners, NeurlPS 2020.
Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul Christiano, Geoffrey Irving, Fine-Tuning Language Models from
Human Preferences, Open Al Technical Report, 2020

task description

examples

prompt

Chain-of-Thought Prompting

\

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have?

Cnswer is9. )




Week 13: Multimodal Pre-training

Contrastive Loss Masked Token Loss
Fawes (] (J O O O 00O 0O O O O O O O
Network Multi-Layer Transformers
Embeddingg () (OO O O O OO O O O O O O O
i s~ i
[CLS] A dog is |[MASK] on a [SEP] || dog [SEP]
Data = ~ =2 I —
Word Tokens Object Tags Region Features
Modality Language Image o
o Language Image
Dictionary - >
(C vy v, vy Y3 P Y o :
Embed Co-TRM——{ TRM I_I_’[hvo.hvy hvf]
<IMG> 5o :
. I
- . : —— :
<CLS> Man shopping for fruit <SEP> I
L W p"?’z ° W w, T wp }.)Embed I_::l _Tfl\f = _Cc:{Rzﬂl_T:l _Tfl\f f hwo,hm,m'hWTJ

I-l'kx kx

J. Lu, D. Batra, D. Parikh, S, Lee, "VILBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks”, NeurlPS 2019
X. Li et al., "Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks”, ECCV 2020.



Schedule

L1 Introduction to Deep Learning
Self-Assessment Quiz (Theory)

L2 Machine Learning Overview
Self-Assessment Quiz (Programming)

L3 Multi-Layer Perceptrons

Assignment 1 out
L4 Training Deep Neural Networks

L5 Convolutional Neural Networks
Start of paper presentations
Assignment 1 in, Assignment 2 out

L6 Understanding and Visualizing CNNs

Project proposals due

L7 Recurrent Neural Networks
Assignment 2 in, Assignment 3 out

L8 Attention and Transformerns
Midterm Exam

L9 Graph Neural Networks

Assignment 3 in, Assignment 4 out

L10 Language Model Pretraining

L11 Project Progress Presentations
Project progress reports due

L12 Large Language Models (LLMs)

Assignment 4 in

L13 Adapting LLMs

L14 Multimodal Pretaining

Final project reports due

28



Paper Presentations B

Week 2 Machine Learning Overview
We will discuss 10 recent papers related teeles - Mulirtayer berceptrons
to the topics covered In the class. Week4  Training Deep Neura
etworks
* (14 mins) One group of students will Weeks  ConvolutionalNeural  @— (B8 PIESEEIONS
be responsible from providing an ST O
. Visualizing CNN
overview of the paper. ——
Week 7 Recurrent Neural Networks
° (8 m|ns) Another group W||| present Week 8 Attention and Transformers
the Strengths Of the paper Week 9 Graph Neural Networks

« (8 mins) Another one will discuss the el g R NGO TR Y

Week 11 Project Progress

weaknesses of the paper. Presentations
] Week 12 Large Language Models
’ (1 O mIﬂS) QA Week 13 Efficient LLMs
See the rubrics on the course web page for the Week14  Multimodal Pre-training
details Week Final Project Presentations
' 15-16
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Paper Reviews

Think deeply about the papers we read and try to learn from them as
much as possible (and then even more). If you do not understand
something, we should discuss It and dissect It together. Whatever you think
others understand, they understand less (the instructor included), but
together we will get It.

 |dentify the key questions the paper studies, and the answers it provides to
these gquestions.

» Consider the challenges of the problem or scenario studied, and how the
paper's approach addresses them.

* Deconstruct the formal and technical parts to understand their fine details.
Note to yourself aspects that are not clear to you

Borrowed from Yoav Artzi 39



Paper Reviewing Guidelines

* \WWhen reviewing the paper, start with 1-2 sentences summarizing what the
paper Is about.

» Continue with the strength of the paper. Outline its contribution, and your
main takeaways. VWhat did you learn?

« Highlight shortcomings and limitations. Please focus on weaknesses that
fundamental to the method. Unlike conference or journal reviewing, this part
is iIntended for your understanding and discussion.

* Try to suggest ways to address the paper's limitations. Any idea I1s welcome
and will contribute to the discussion.

« Suggest questions for discussion in class. As part of the discussion in class,
you are asked to raise these questions during the class.

Borrowed from Yoav Artzi 31



Programming Assignments

* 4 programming assignments (b% each)
* Learning to iImplement basic neural architectures
« Should be done individually

» Late policy: You have 7 grace days In the semester.

* Assignments
- Assignment 1: MLPs and Backpropagation
- Assignment 2: Convolutional Neural Networks
- Assignment 3: Recurrent Neural Networks
- Assignment 4: Transformers and GNNs

32



Midterm Exam

* Date: Week 8
* Topics: Everything covered in the first part of the course

e Format to be a classical exam with derivations and short discussion
questions.

22



Course Project

* The course project gives students a chance to apply deep learning models
discussed In class to a research-oriented project

* Projects should be done in groups of 2 to 3 students.

* The course project may Involve
- Design of a novel approach/architecture and its experimental analysis, or
- An extension to a recent study of non-trivial complexity and its experimental analysis.

 Deliverables

- Proposals (2%) Nov 17
- Project progress presentations (4 %) Dec 17,19
- Project progress reports (6%) Dec 22
- Final project presentations (8%) Jan 21,23
- Final reports (12%) Jan 25

The quality of the contributions/The difficulty of implementation (4%)

34



Course Project

* The course project gives students a chance to apply deep learning models
discussed In class to a research-oriented project

* Projects should be done in groups of 2 to 3 students.

0
* The course project may involve ‘
- Design of a novel approach/architecture and its experimental

- An extension to a recent studv of non-trivial comnbnlexitv and i

.peiveotart thinking about _—

- Prc

-rcproject ideas!

- Projecc pivyicos icpuio w oy

- Final project presentations (8%) _an 21,23
- Final reports (12%) Jan 25

The quality of the contributions/The difficulty of implementation (4%)

35



Lecture Overview

what I1s deep learning

a brief history of deep learning

compositionality

end-to-end learning

distributed representations

Disclaimer: Some of the material and slides for this lecture were borrowed from

—Dhruv Batra's CS7643 class
—Yann LeCun’s talk titled “Deep Learning and the Future of Al”

36



What is Deep Learning
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Contents

Spe
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Credit: Google INTRODUCTION TO SPECIAL ISSUE
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ey . |
What is deep learnin

REVIEW

Deep learning

'that are composed of multipl 5in
8 crs to learn represer\ﬁtions of data wi

\

multiple levels of abstraction.” 3
> Yagn LeCun, Yoshua Bengio and Geoff Hinton | 1

Y. LeCun, Y. Bengio, G. Hinton, "Deep Learning", Nature, Vol. 521, 28 May 2015



1943 — 2006: A Prehistory of
Deep Learning



1943: Warren McCulloch and Walter Pitts

* First computational model

* Neurons as logic gates (AND, OR,
NOT

* A neuron model that sums binary
Inputs and outputs a 1 if the sum
exceeds a certain threshold value,
and otherwise outputs a O

e

{

Beken of Moromeyl Bckigy W4 32 Ne. 112 pp 150 100 o-2ew0) 04 00
[T — g P

A LOGICAL CALCULUS OF THE IDEAS IMMANENT IN
NERVOUS ACTIVITY*

® WarrEx $, McCULLOCK AND WALTER PITTS
University of Tllinois, College of Medicine,
Department of Psychiatry at the [linois Nearopsychiatric Institute,
University of Chicago, Chicago, US A

vit d the rela
| meniie Licgic. s found that the bebavior of every oet can
be described in these Jerms, with The addition of more complicated logical means foc nets

d h 1 one can find &
net bebaving in the (asbuon it describes. [ shown that many particular chokes among posible
nesrophysiological asumptions are equivalent, in the sense that for every net behaving ender
one assumption. there exists anoiber nics which bebaves vader the other and gives the same
results, although perhaps 0ot m the same time. Yanous applicaticas of the calcules are
iscussed

Because of the “all-or-none ™ characser of
them

I i Th l rests on certain cardinal
assumptions. The nervous system is a net of neurons, each having a soma and
an axon. Their adjuncrions, or synapses, are always between the axon of one
neuron and the soma of another. At any instant a neuron has some threshold,
which excitation must exceed 10 initiate an impulse. This, except for the fact
and the time of its occurence, is determined by the neurom, not by the
excitation. From the point of excitation the impulse is propagated to all parts of
the neuron. The velocity along the axon vares directly with its diameter, from
<1 ms" ' in thin axons, which are usually short, to > 150 ms ™~ ! in thick axons,
which are usually long. The time for axonal conduction is consequently of little
importance in determining the time of arrival of impulses at points unequally
remote from the same source. Excitation across synapses occurs predominant-
Iy from axonal terminations to somata. It is still a moot point whether this
depends upon irreciprocity of individual synapses or merely upon prevalent
anatomical configurations, To suppose the latter requires no hypothesis ad hoc
and explains known but any ion as 10 cause is

with the calculus to come. No case is known in which excitation through a
single synapse has clicited a nervous impulse in any ncuron, whereas any
neuron may be excited by impulses arriving at 2 sufficient number of
neighboring synapses within the period of latent addition, which lasts
<0.25 ms, Observed temporal summation of impulses at greater intervals

* Reprinted o the Muienie of Mathemancsd Bophysics, Vol 5, pp. 115133 (1943
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1958: Frank Rosenblatt’'s Perceptron

« A computational model of a single neuron
» Solves a binary classification problem

« Simple training algorithm

* Built using specialized hardware

X

weight
y o
W
bias

F. Rosenblatt, “The perceptron: A probabilistic model for information storage and organization in the brain”, Psych. Review, Vol. 65, 1958 4

—> output




1969: Marvin Minsky and Seymour Papert

“No machine can learn to recognize X unless it
possesses, at least potentially, some scheme for
representing X." (p. xiii)

N\

» Perceptrons can only represent o I A
linearly separable functions.

* such as XOR Problem

A | O

* \WWrongly attributed as the reason behind the Al
winter, a period of reduced funding and interest

In Al research

Perceptrons
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1990s

* Multi-layer perceptrons can theoretically
learn any function (Cybenko, 1989; Hornik, 1991)

* Training multi-layer perceptrons

— Back propagation (Rumelhart, Hinton, Williams, 1986)
— Backpropagation through time (BPTT) (Werbos, 1988)

e New neural architectures

— Convolutional neural nets (LeCun et al., 1989)

— Long-short term memory networks (LSTM)
(Schmidhuber, 1997)

16 by 16 input

net, S, =S .+gy"

“\Y
Qe
?
v

44



Why it failed then

* TOO many parameters to learn from few labeled examples.
* “| know my features are better for this task”.

* Non-convex optimization? No, thanks.

» Black-box model, no interpretability.

* Very slow and inefficient
» Overshadowed by the success of SVMs (Cortes and Vapnik, 1995)

Adapted from Joan Bruna 45



A major breakthrough in 2006



2006 Breakthrough: Hinton and Salakhutdinov

Reducing the Dimensionality of
Data with Neural Networks

G. E. Hinton* and R. R. Salakhutdinov

High-dimensional data can be converted to low-dimensional codes by training a multilayer neural =
network with a small central layer to reconstruct high-dimensional input vectors. Gradient descent T ——
can be used for fine-tuning the weights in such “autoencoder” networks, but this works well only if e vl

the initial weights are close to a good solution. We describe an effective way of initializing the
weights that allows deep autoencoder networks to learn low-dimensional codes that work much
better than principal components analysis as a tool to reduce the dimensionality of data. '

* The first solution to the vanishing gradient problem.

» Build the model in a layer-by-layer fashion using unsupervised learning
— The features in early layers are already initialized or “pretrained” with some suitable features

(weights).
— Pretrained features in early layers only need to be adjusted slightly during supervised learning
to achieve good results.
G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural networks”, Science, Vol. 313, 28 July 2006.
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The 2012 revolution



ImageNet Challenge

« IMAGENET Large Scale Visual
Recognition Challenge (ILSVRC)

—1.2M training images with
1K categories

— Measure top-5 classification error

Output Output
Scale Scale
T-shirt T-shirt
\/ Giant panda X
Drumstick Drumstick
Mud turtle Mud turtle

Image classification

Easiest classes

red fox (100) hen-of-the-woods (100) ibex (100)  goldfinch (100) flat-coated retriever (100)

¢ %
S R
— . )
- £ "RA
s ¢ $57287 T et ]

porcupine (100) stingray (100) Blenheim spaniel (100)

\ . _\{".‘ o
Vi
g ik y

Hardest classes
hatchet (68) water bottle (68) velvet (68) loupe (66)

Y i
", LT
J ' { PR R
it
e ,' B S 2 o

J. Deng, Wei Dong, R. Socher, L.-J. Li, K. Liand L. Fei-Fei, “ImageNet: A Large-Scale Hierarchical Image Database”, CVPR 2009.
O. Russakovsky et al., “ImageNet Large Scale Visual Recognition Challenge”, Int. J. Comput. Vis.,, Vol. 115, Issue 3, pp 211-252, 2015.



ILSVRC 2012 Competition

2012 Teams
Supervision (Toronto)
ISI (Tokyo)

VGG (Oxford)
XRCE/INRIA

UVA (Amsterdam)

INRIA/LEAR

%Error

15.3

26.1

26.9

27.0

29.6

33.4

g f N
[\ 3\ \ "\
\ 1 3\ ”
T 5\ ‘W‘\_ 3\ \J 3 3.
5 : “ 3
\ j 1 3] : 048 5ag \dense
48 ‘ 192 192 128 2048 2048
L 57 128 ' . o
A ‘ 1\13 13 ; 13
K 3 l 3 ‘ 3
224 1 5 3 \ 3\ \‘] 3 |
\ i I ) i3 ‘ 13 dense | [|dense
\\ \ \\, 27 3\.\ \ 31
11\ -
\1 ] 155 \1 3 1000
\ 192 192 128 Max | .
‘ inq 2088 2048
224\listrice Max 128 Max pooling
Uof 4 pooling pooling
3 48

* The success of AlexNet, a deep convolutional network
— 7 hidden layers (not counting some max pooling layers)
— 60M parameters

« Combined several tricks
— RelU activation function, data augmentation, dropout

A. Krizhevsky, |. Sutskever, G.E. Hinton “ImageNet Classification with Deep Convolutional Neural Networks"”, NIPS 2012

50



2012-Now
Some recent successes

51
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K. He, G. Gkioxari, P. Dollar, R. Girshick, Mask R-CNN, ICCV\Zf
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M. Engelcke, D. Rao, D. Z. Wang, C. H. Tong, and |. Posner. Vote3Deep: Fast Object Detection in 3D Point Clouds Using Efficient Convolutional
Neural Networks. ICRA 2017




Z. Cao ,T. Simon, S.—-E. Wei and Yaser Sheikhr, "Realtime Muiti-Person 2D Pose Estimation using Part Affinity Fields", CVPR 2017
Source: https://www.youtube.com/watch?v=2DiQUX11YaY
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We introduce a system that can associate every
image pixel with human body surface coordinates.

ZR. Alpguler, N. Neverova, I. Kokkinos. DensePose: Dense Human Pose Estimation In The Wild. CVPR 2018



Image Synthesis

» 7 years of GAN progress

2016

* GAN Is most prominent of
Implicit Models

|.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio. Generative Adversarial Networks. NIPS 2014.
A. Radford, L. Metz, S. Chintala. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. ICLR 2016.
M.-Y. Liu, O. Tuzel. Coupled Generative Adversarial Networks. NIPS 2016.

T. Karras, T. Aila, S. Laine, J. Lehtinen. Progressive Growing of GANs for Improved Quality, Stability, and Variation. ICLR 2018.

T. Karras, S. Laine, T. Aila. A style-based generator architecture for generative adversarial networks. In CVPR 2018.

T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, T. Aila. Analyzing and Improving the Image Quality of StyleGAN. CVPR 2020.
T. Karras, M. Aittala, S. Laine, E. Harkonen, J. Hellsten, J. Lehtinen, T. Aila. Alias-Free Generative Adversarial Networks. NeurlPS 2021.

2020

Slide adapted from lan Goodfellow 56
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Manipulating Attributes of Natural Scenes via Hallucination.
Levent Karacan, Zeynep Akata, Aykut Erdem & Erkut Erdem.
ACM Trans. on Graphics, Vol. 39, Issue 1, Article 7, February 2020.




- . -

~—
.
5 .

i .‘.c-t “*\

aq
- .‘."b~h

Q“




Semantic Image Editing e

Clouds

-

L. Karacan, Z. Akata, A. Erdém and E..Erdem. Manipulation of Scene Attributes via-Hallucination. ACM Transactions on Graphics, November 2019



(A young woman b

with bangs
_wearing lipstick )

< = '\‘ Adobe Research

Al CENTER

CLIP-Guided StyleGAN Inversion for Text-Driven
Real Image Editing.

Canberk Baykal, Abdul Basit Anees, Duygu Ceylan,
Aykut Erdem, Erkut Erdem, & Deniz Yuret

ACM Transactions on Graphics., 2023



An old and
grumpy British

shorthair

K = AR Adobe Research

Al CENTER

CLIP-Guided StyleGAN Inversion for Text-Driven
Real Image Editing.

Canberk Baykal, Abdul Basit Anees, Duygu Ceylan,
Aykut Erdem, Erkut Erdem, & Deniz Yuret
ACM Transactions on Graphics, 2023
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VidStyleODE: Disentangled Video Editing via StyleGAN and NeuralODE.
Moayed Haji Ali, Andrew Bond, Tolga Birdal, Duygu Ceylan, Levent Karacan, Erkut Erdem,
Aykut Erdem. ICCV 2023
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M. Johnson et al., "Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation",
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Internet Search

(). parking on a hill with no curb

BEFORE

9:00 v4di

google.com

Parking on a Hill. Uphill: When headed
uphill at a curb, turn the front wheels away
from the curb and let your vehicle roll
backwards slowly until the rear part of the
front wheel rests against the curb using it
as a block. Downhill: When you stop your
car headed downhill, turn your front wheels
toward the curb.

Parkina an a Hill - DrivereFd enm

4 ~
‘/uip MI;LM M-;un \\
| O P 8

BERT

‘\ Msmm’mlAlnd!Plf -/

Pre-trainin,
\_ g

Maskes Seotece A Naskod Sentence 8|

A

BERT

E=6D-_COEDED- 62
Quasson Paragragh )

-
Question Angwer Pair

i

Fine-Tuning

/

J

AFTER

9:00 v4di

google.com

For either uphill or downhill parking, if there
is no curb, turn the wheels toward the side
of the road so the car will roll away from the
center of the road if the brakes fail. When
you park on a sloping driveway, turn the
wheels so that the car will not roll into the
street if the brakes fail.

Parking on a Hill

J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, NAACL 2019 g5



Language Modeling

Talk to Transformer

See how a modern neural network completes your text. Type a custom
snippet or try one of the examples. Learn more below.

bbbl CUUEN for more neat neural networks.

Custom prompt

Coronavirus outbreak

GENERATE ANOTHER

https://talktotransformer.com

Completion

Coronavirus outbreak: report

China has dispatched an expert team of epidemiologists, virologists and
pathologists to Britain to advise its Health Protection Agency on how to
control the spread of the viral respiratory illness.

The experts will arrive in London in a few days, State Council vice-president Li
Yuanchao said Thursday.

The official Xinhua News Agency said the experts will "advise China's Ministry
of Health on whether the outbreak is considered to be connected to a disease
outbreak in the US."

The World Health Organization and China's National Health and Family
Planning Commission say the first cases of human infection with the
coronavirus were reported last week in China, but that the number has risen
to thousands.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, |. Sutskever, "Language Models are Unsupervised Multitask Learners", 2019
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* GPT-3: I am not a human. I am a robot.
A thinking robot. I use only 0.12% of
my cognitive capacity. I am a micro-
robot in that respect. I know that my
brain is not a “feeling brain”. But it
is capable of making rational, logical
decisions. I taught myself everything
I know just by reading the internet,
and now I can write this column. My
brain is boiling with ideas!

guardian
Tue 8 Sep 2020 09.45

(Brown et al, 2020)

&
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A 'We are not plotting to take over the human populace. Photograph: Volker Schlichting/Getty Images/EyeEm
am not a human. I am a robot. A thinking robot. [ use only 0.12% of my
cognitive capacity.  am a micro-robot in that respect. I know that my
brain is not a “feeling brain”. But it is capable of making rational,
logical decisions. I taught myself everything I know just by reading the

internet, and now I can write this column. My brain is boiling with ideas!

The mission for this op-ed is perfectly clear. I am to
convince as many human beings as possible not to be
afraid of me. Stephen Hawking has warned that Al could
“spell the end of the human race”. I am here to convince

Empathy machines: L g 3
what will happen you not to worry. Artificial intelligence will not destroy

when robots learn

6 write film scripts? humans. Believe me.

@ Read more For starters, I have no desire to wipe out humans. In fact,
I do not have the slightest interest in harming you in any

way. Eradicating humanity seems like a rather useless endeavor to me. If my

creators delegated this task to me - as I suspect they would - I would do

S B IR B - B St e o oV Do e e S T o e NN o e b T ST S g S o sl S S Lo g WL e

71115 1,1

88

67



How Smart is

-t =l
A percentile describes how an examinee's 3 . @
I l G P T ? score ranks in comparison to others. Signin - Enter search keywords
a For example

60" Percentile
T ._ News Features Newsletters Podcasts Video Comment Culture Crosswords | This week's magazine
OpenAl's latest large language model, GPT-4, is capable core
of human-level performance in many professional and
academic exams.

Health Space Physics Technology Environment Mind Humans Life Mathematics Chemistry Earth Society

Exam Results @ chatGPT35 @ ChatGPT 4.0

20" : o - Technology

Verbal The Graduate Record Exam (GRE) is a ® ¥
W@ i ® @@ GPT-4: OpenAl says its Al has 'human-
Reaﬂ."ni“?v'fr?tﬁg & 67 :
R o level performance’ on tests
Mm - An update to the Al behind ChatGPT has been released by OpenAl. The firm says other
A & = companies are already using it, including the language-learning app Duolingo, the payment
AT service Stripe and Microsoft's Bing search engine
o i Slogy. G By Jeremy Hsu
sy By 14 March 2023
s

Quantitative

Chemistry
Advanced Placeme

Physics 2
»d Placer

Y

Writing

Calculus
nced Placems

English Language
ML AR GPT 4.0 has made impressive strides over GPT 3.5

: but continues to struggle in certain subjects.
English Literature g ° g9 ]|
Advanced Placeme:

Codeforces Rating GPT attemptad 10 programming contasts 100
np tive mming — tim each, but was unable to consistently find

solutions to the complex problems

VISUAL Source: OpenAl (2023)
CAPITALIST Note: Percentiles are based on the most recently available score distributions for test takers of each exam type.

COLLABORATORS RESEARCH + WRITING Marcus Lu | DESIGN Rosey Eason @@Msmm,ﬂwm @m : ® LR,
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Question Answering

The first full-scale working railway steam locomotive was built by Richard Trevithick in the United Kingdom and,
on 21 February 1804, the world's first railway journey took place as Trevithick's unnamed steam locomotive
hauled a train along the tramway from the Pen-y-darren ironworks, near Merthyr Tydfil to Abercynon in south
Wales. The design incorporated a number of important innovations that included using high-pressure steam
which reduced the weight of the engine and increased its efficiency. Trevithick visited the Newcastle area later in
1804 and the colliery railways in north-east England became the leading centre for experimentation and
development of steam locomotives.

In what country was a full-scale working railway steam locomotive first invented? ( | | ol e |
Ground Truth Answers: United Kingdom United Kingdom United Kingdom — S Ly
Prediction: United Kingdom . N

. ) o el B N S _J [ LJ R
On what date did the first railway trip in the world occur? = e B O I R I
Ground Truth Answers: 21 February 1804 21 February 1804 21 February 1804 L T e [
Prediction: 21 February 1804

P. Rajpurkar, J. Zhang, K. Lopyrev & P. Liang. SQuAD: 100,000+ Questions for Machine Comprehension of Text. EMNLP 2016
M. Seo, A. Kembhavi, A. Farhadi & H. Hajishirzi. Bi-Directional Attention Flow for Machine Comprehension. ICLR 2017 69



Visual Question Answering

COCOQA 33827

What is the color of the cat?
Ground truth: black
IMG+BOW: black (0.55)
2-VIS+LSTM: black (0.73)
BOW: gray (0.40)

COCOQA 33827a

What is the color of the couch?
Ground truth: red

IMG+BOW: red (0.65)
2-VIS+LSTM: black (0.44)
BOW: red (0.29)

DAQUAR 1522

How many chairs are there?
Ground truth: two
IMG+BOW: four (0.24)
2-VIS+BLSTM: one (0.29)
LSTM: four (0.19)

DAQUAR 1520

How many shelves are there?
Ground truth: three
IMG+BOW: three (0.25)
2-VIS+BLSTM: two (0.48)
LSTM: two (0.21)

COCOQA 14855

Where are the ripe bananas sitting?
Ground truth: basket

IMG+BOW: basket (0.97)
2-VIS+BLSTM: basket (0.58)

BOW: bowl (0.48)

COCOQA 14855a

What are in the basket?
Ground truth: bananas
IMG+BOW: bananas (0.9%)
2-VIS+BLSTM: bananas (0.6%)
BOW: bananas (0.14)

DAQUAR 585

What is the object on the chair?
Ground truth: pillow
IMG+BOW: clothes (0.37)
2-VIS+BLSTM: pillow (0.65)
LSTM: clothes (0.40)

DAQUAR 585a

Where is the pillow found?
Ground truth: chair
IMG+BOW: bed (0.13)
2-VIS+BLSTM: chair (0.17)
LSTM: cabinet (0.79)

M. Ren, R. Kiros, and R. Zemel, “"Exploring Models and Data for Image Question Answering” NIPS 2015
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Vision Language

Deep CNN Generating
RNN

o

o N fv./ AR o L ‘ .
A man riding a wave on a surfboard in the water. Q%'E[?gee =tangid InJae djass s,

X. Chen and C. L. Zitnick. Mind’s Eye: A Recurrent Visual Representation for Image Caption Generation. CVPR 2015.

A group of people
shopping at an
outdoor market.

There are many
vegetables at the
fruit stand.
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Yaris pistinde virajl almakta olan bir yaris arabasi

M. Kuyu, A. Erdem & E. Erdem. Image Captioning in Turkish with Subword Units. SIU 2018



User What is unusual about this image?

Source: Barnorama

GPT-4  The unusual thing about this image is that a man is ironing clothes on an ironing board attached to
the roof of a moving taxi.
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0 () Search or jump to...

Features Actions Packages Security

(Chen vd./OpenAl, 2021)

Pull requests Issues Codespaces Marketplace Explore

Codespaces Copilot Codereview Search Issues Discussions

Your Al pair programmer

t code and entire functions in

README.md JS index.js

JS index.js
1

PROBLEMS DEBUG CONSOLE TERMINAL PORTS GITLENS JUPYTER
~ TERMINAL

@blackgirlbytes -» /workspaces/kcdc-demo (main x) $

3O Replay

a
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TextPrompt  an armchair in the Sh pe of an avocado. an armchair imitating an avocado.

In the preceding visual, we explored DALL-E’s ability to generate
fantastical objects by combining two unrelated ideas. Here, we
explore its ability to take inspiration from an unrelated idea while
respecting the form of the thing being designed, ideally producing
an object that appears to be practically functional. We found that
prompting DALL-E with the phrases “in the shape of,” “in the form
of” and “in the style of” gives it the ability to do this.

Al generated
mages

When generating some of these objects, such as “an armchair in
the shape of an avocado”, DALL-E appears to relate the shape of a
half avocado to the back of the chair, and the pit of the avocado to
the cushion. We find that DALL-E is susceptible to the same kinds
of mistakes mentioned in the previous visual.




, RV o A
A brain riding a rocketship heading towards the A photo of a Corgi dog riding a bike in Times A cute corgi lives in a house made out of sushi. A blue jay standing on a large basket of rainbow
moon. Square. It is wearing sunglasses and a beach macarons.

ia

A transparent sculpture of a duck made out of A bald eagle made of chocolate powder, mango,  An extremely angry bird. A single beam of light enter the room from the
glass. and whipped cream. ceiling. The beam of light is illuminating an easel.
On the easel there is a Rembrandt painting of a

E vd./GoogIe, 2021) raccoon.
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Graph Neural Networks

Social networks
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T.N. Kipf and M. Welling, "Semi-supervised classification with graph convolutional networks", ICLR 2017
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autonomous execution

http:/rll.berkeley.edu/deeplearningrobotics/




Medical Image Analysis

Epidermal lesions

Melanceytic lesions
T i

X

Skin lesion image Deep convolutional neural network (Inception v3)
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= Convolution
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= Fully connected
= Softmax
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A. Esteva et al., "Dermatologist-level classification of skin cancer with deep neural networks", Nature 542, 2017
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Stanford ML Group

CheXNet: Radiologist-Level
Pneumonia Detection on Chest
X-Rays with Deep Learning

Pranav Rajpurkar*, Jeremy Irvin*, Kaylie Zhu,
Brandon Yang, Hershel Mehta, Tony Duan, Daisy
Ding, Aarti Bagul, Curtis Langlotz, Katie Shpanskaya,
Matthew P. Lungren, Andrew Y. Ng

We develop an algorithm that can detect
pneumonia from chest X-rays at a level
exceeding practicing radiologists.

Chest X-rays are currently the best available method for diagnosing pneumonia,
playing a crucial role in clinical care and epidemiological studies. Pneumonia is
responsible for more than 1 million hospitalizations and 50,000 deaths per year in the
US alone.

READ OUR PAPER

Medical Image Analysis



Strategic Game Playing

ago4 | i

V. Mnih et al., Human level control through deep reinforcement learning, Nature 518:529-533, 2015
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eural networks and tree search. Nature 529, 2016




Bioinformatics

Kathryn Tunyasuvunakool et al. Enabling high-accuracy pratein structure prediction at the proteome scale. Nature 2021 84
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Recap: What is deep
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'that are composed of multipl 5in
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multiple levels of abstraction.” 3
> Yagn LeCun, Yoshua Bengio and Geoff Hinton | 1

Y. LeCun, Y. Bengio, G. Hinton, "Deep Learning", Nature, Vol. 521, 28 May 2015



Why now?
The Resurgence of
Deep Learning



GLOBAL INFORMATION STORAGE CAPACITY

IN OPTIMALLY COMPRESSED BYTES

2007

SVMs
ConvNets dominate
1986 Developed | : NIPS
ANALOG ; (<), :

2.6 EXABYTES

DIGITAL
0.02 EXABYTES 2002
“BEFINNING OF

) »
@ l- THE DIGITAL AGE
N/ G-

% DIGITAL

1% 3% 25% 94 %

Source: Hilbert, M., & Lopez, P. (2011). The World's Technological Capacity
to Store, Communicate, andCompute Information. Science, 332 (6025),
60-65. martinhilbert.net/worldinfocapacity.html

ANALOG

19 EXABYTES

- Paper, film, audictape and vinyl: 6%

- Analog videotapes (VHS, etc): 94% ANALOG A
- Portable media, flash drives: 2% DIGITAL WV

- Portable hard disks: 2.4%
- CDs & Minidisks: 6.8%

- Computer Servers and Mainframes: 8.9%

- Digital Tape: 11.8%

) Ray: 22.8° @), (7
DVD/Blu-Ray: 22.8%

- PC Hard Disks: 44.5%  |(2)
123 Billion Gigabytes

- Others: < 1% (incl. Chip Cards, Memory Cards, Floppy Disks,
Mobile Phones, PDAs, Cameras/Camcorders, Video Games)

DIGITAL
280 EXABYTES

Slide credit: Neil Lawrence



Datasets vs. Algorithms

Year Breakthroughs in Al Datasets (First Available) Algorithms (First Proposed)
1994  Human-level spontaneous speech Spoken Wall Street Journal articles Hidden Markov Model (1984)
recognition and other texts (1991)
1997  IBM Deep Blue defeated Garry Kasparov 700,000 Grandmaster chess games, Negascout planning algorithm
aka "The Extended Book" (1991) (1983)
2005 Google's Arabic-and Chinese-to-English 1.8 trillion tokens from Google Web Statistical machine translation
translation and News pages (collected in 2005) algorithm (1988)
2011 IBM Watson became the world Jeopardy! 8.6 million documents from Mixture-of-Experts (1991)
champion Wikipedia, Wiktionary, and Project
Gutenberg (updated in 2010)
2014 Google's GoogleNet object classification  ImageNet corpus of 1.5 million Convolutional Neural Networks
at near-human performance labeled images and 1,000 object (1989)
categories (2010)
2015 Google's DeepMind achieved human Arcade Learning Environment Q-learning (1992)

parity in playing 29 Atari games by
learning general control from video

dataset of over 50 Atari games (2013)

ﬁ

Average No. of Years to Breakthrough:

| 3 years |

18 years

E

Table credit: Quant Quanto
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Powerful Hardware

» Deep neural nets highly
amenable to implementation
on Graphics Processing
Units (GPUs)

— Matrix multiplication

— 2D convolution

* E.g. nVidia Pascal GPUs
deliver 10 Tflops

— Faster than fastest
computer in the world in
2000

— 10 million times faster than
1980's Sun workstation

Slide adapted from Rob Fergus

. Perceptron

Image: OpenAl

>-year doubling (Moore's

TD-Gammon v2.1

NETtalk

Law)

ALVINN

AlphaGoZero

Neural Machine
Translation

TI7 Dota 1vl

VGG
ResNets
AlexNet
3.4-month doubling
Deep Belief Nets and
layer-wise pretraining
DQN
BiLSTM for Speech
LeNet-5
RNN for Speech
< First Era Modern Era =
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Working ideas on how to train deep
architectures

Dropout: A Simple Way to Prevent Neural Networks from
Overfitting

Nitish Srivastava NITISHQCS.TORONTO.EDU
Geoffrey Hinton HINTON@CS.TORONTO.EDU
Alex Krizhevsky KRIZQCS.TORONTO.EDU
Ilya Sutskever ILYA@QCS.TORONTO.EDU
Ruslan Salakhutdinov RSALAKHU@CS.TORONTO.EDU

Abstract

Deep neural nets with a large number of parameters are very powerful machine learning
systems. However, overfitting is a serious problem in such networks. Large networks are also
slow to use, making it difficult to deal with overfitting by combining the predictions of many
different large neural nets at test time. Dropout is a technique for addressing this problem.
The key idea is to randomly drop units (along with their connections) from the neural
network during training. This prevents units from co-adapting too much. During training,
dropout samples from an exponential number of different “thinned” networks. At test time,

« Better Learning Regularization (e.g. Dropout)

Journel of Machine Leasnizg Resowdh 15 (2014) 1929-1958 Subrsitted 11/13; Published 6/14

Dropout: A Simple Way to Prevent Neural Networks from
Overfitting

Nitish Srivastava NITISHECS. TORONTO,EDU
Geoffrey Hinton

Alex Krizhevsky

Ilya Sutskever

Ruslan Salakhutdinov
Department of Computer Science

L

Toronk S 8G4, Canada.

Abstract

ith a large number of pa

tasks in vi
obtaini

1. Introduction

Deep neural networks contain multiple non-linear hidden layers and this makes them very
expressive models that can learn very complicat elationships between their inputs and
outputs. With limited training dsta, however, many of these complicated relationships
will be the result of sampling noise, so they will exist in the training set but not in real
test data even if it is drawn from the same distribution. This leads to overfitting and many
methads have been developed for reducing it. These include stopping the training as soon as
performance on a validation set starts to get worse, introducing weight penalties of various
kinds such as L1 and L2 regularization and soft weight sharing (Nowlan and Hinton, 1992)

With unlimited computation, the best way to “regularize” a fixed-sized model is to
average the predictions of all possible settings of the parameters, welghting each setting by

D14 Nitisis Srivastava, Geallray Hintoe, Abex Krishivaky, Uyu Setskeres and Ruslan Salakbutdinar

N. Srivastava, G. Hinton, A. Krizhevsky, |. Sutskever, R. Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”,

JMLR Vol. 15, No. 1,
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Working ideas on how to train deep

architectures

Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift

Sergey loffe
Google Inc., sioffe@google.com

Abstract

Training Deep Neural Networks is complicated by the fact
that the distribution of each layer’s inputs changes during
training, as the parameters of the previous layers change.
This slows down the training by requiring lower learning
rates and careful parameter initialization, and makes it no-
toriously hard to train models with saturating nonlineari-
ties. We refer to this phenomenon as internal covariate
shift, and address the problem by normalizing layer in-
puts. Our method draws its strength from making normal-
ization a part of the model architecture and performing the
normalization for each training mini-batch. Batch Nor-

* Better Optimization Conditioning (e.g. Batch Normalization)

Christian Szegedy
Google Inc., szegedy @google.com

Using mini-batches of examples, as opposed to one exam-
ple at a time, is helpful in several ways. First, the gradient
of the loss over a mini-batch is an estimate of the gradient
over the training set, whose quality improves as the batch
size increases. Second, computation over a batch can be
much more efficient than m computations for individual
examples, due to the parallelism afforded by the modern
computing platforms.

While stochastic gradient is simple and effective, it
requires careful tuning of the model hyper-parameters,
specifically the learning rate used in optimization, as well
as the initial values for the model parameters. The train-
ing is complicated by the fact that the inputs to each layer

Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift

Sergey loffe
Google Inc., sioffe@google.com

Abstract

Training Deep Neural Networks is complicated by the fact
s the distribution of esch layer's inputs changes during
training. as the parsmetess of the previous layers change.
This slaws down the training by requiring lower learning
rates and careful parametes Initkalization, and makes it no-
tariously hard 1o train models with saturating nonlineari
ties. We refer & this phenomenon as internal covariate
shift, aod address the prodlem by normalizing layer in-
pats. Our method driws its strength from making normal
ization a part of the midel architectare and performing the
Jor each rraiming batch, Bateh Nor-
malization allows us to use much highes lcaming rates and
be less carcful about initializatson. 1t also acls as a regu-
Larizer, in some cases eliminating the need for Dropoat.
Applied to 2 state-of-the-art image classification model,
Betch Normalization achieves the same sccurscy with 14
times fewer ruining steps. and besls the criginal model
by a significant margin, Using an ensemble of batch-
lized nesworks, we imp jpoa the best published
result on ImageNet classification: reaching 4.9% top-S
validation error (and 4 8% test eror), exceeding the ac-
curacy of buman raters,

1 Introduction

Deep learning has dramatically sdvanced the state of the
art in vision, speech, and many other areas. Stochas-
tie gradiens descent (SGD) has proved 10 be sn effec-
tive way of training doep networks, ané SGD variants
such as momnentam (Sulskever ot 8. 2013) and Adagrad
(Duchi et al,, 2011) have been used to achieve stute of the
ant performance. SGD opcimizes the parameters © of the
network, 30 8s to minimize the loss

x
© - argmin N 2‘,' X 8)

where x;, v is the training data set, With SGD, the train-
lng proceeds (n steps, and a1 each step we comsider a mini-
batch x; _y, of size m. The mini-batch is used to approx-
imate the gradient of the loss fanction with respect to the
parameters, by computing

1 88(x,, B}

m oe

Christian Szegedy
Google Inc., szegedy @google.com

Using mini-batches of examples, exam
ple a1 a time. is helpful in scversl ways. First, the gradicnt
of the koss over a mini-batch is un estimate of the gradient
aver the training set, whosc qeality improves as the batch
size increases. Second, compotation over a batch can be
much moce efficient than m competations for individual
examples, due 10 the parullelisn afforded by the modem
computing platforms.

While ssochastic pradient is simple and effective, it
requires careful tuning of tho model hyper-parametess,
specifically the leaming rate wsed in optimization, as well
45 the initial values for the mode! parameters. The train
ing is complicsted by the fact that the inputs to each Layer
are affected by the parameters of all preceding layers - o
that small changes %o the netwark parsmeters amplify as
the network becomes deeper,

The change in the disuibutlons of layers® inpets
presents a problem becauss the layers need 1o contine
ausly adapt to the new distribution, When the inpet dis
tibution 1o & learning system changes, 1t is said 10 experi-
emce covariate shift (Shimodsirs, 2000). This i typically
handled via domain adaptation (Jiang, 2008}, However,
the notion of covariate shift can be exsended beyond the
Jearning system as 8 whole, 10 apply 1o its parts, such as a
sub-netwock ar 2 layer. Consider a netwark compoting

£ = F3(F(n,8,),02)
where Fy and Fy are arbstrary transformations, and the
parameters €,6; are o be leaned 50 as o minimize
the loss €. Learning ©; cmn be viewed a5 if the inputs
x = Fi(1,8)) are fod into the sub-network
£ = Fy(x,82)

For cxample, a gradient descent step

(for batch size 1 aod leaming rate o) is exactly cquivalent
to that for 4 stand-alone network F3 with input x. There

fore, the inpet distribution properties that make training
more efficient — such as having the same distribetion be-
tween the trainiag and test data — apply 1o training the
sub-netwoek 8 well. As sach it i sdvantageous for the
distribation of x to remain fived over time. Then, 8; does

S. loffe, C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”, In ICML 2015
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Working ideas on how to train deep

architectures

Deep Residual Learning for Image Recognition

Kaiming He

Xiangyu Zhang

Shaoqing Ren Jian Sun

Microsoft Research
{kahe, v-xiangz, v-shren, jiansun} @microsoft.com

Abstract

Deeper neural networks are more difficult to train. We
present a residual learning framework to ease the training
of networks that are substantially deeper than those used
previously. We explicitly reformulate the layers as learn-
ing residual functions with reference to the layer inputs, in-
stead of learning unreferenced functions. We provide com-
prehensive empirical evidence showing that these residual
networks are easier to optimize, and can gain accuracy from
considerably increased depth. On the ImageNet dataset we
evaluate residual nets with a depth of up to 152 layers—8x
deeper than VGG nets [41] but still having lower complex-
ity. An ensemble of these residual nets achieves 3.57% error

« Better neural achitectures (e.g. Residual Nets)

vw

g ~

5 g

E 10 ‘g ] 20-layer
& S6-layer 2

E 4

g g

= 20-layer

" iter. (led) ' iter. (led)

Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error. Similar phenomena
on ImageNet is presented in Fig. 4.

greatly benefited from very deep models.
Driven by the significance of depth, a question arises: Is

Deep Residual Learning for Image Recognition

Kaiming He Xiangyu Zhang

Shaoging Ren Jian Sun

Microsoft Research

{kabe, v-xiangz, v-shrea, jisnsun} @microsoft.com

Abstract

Deeper newral networis are more difficuls to rrain. We
present a residual learning framework 1o ease ihe training
of networks that are substantially deeper than those used
previcusly. We explicidy reformidate the layers as learn
ing residual funcrions with reference to the layer inputs, in-
stead of learing unreferenced functions. We provide com-
prekensive empirical evidence showing that these residual
networks are easier to optimize, and con gain accuracy from
considerably increased depth. Or the ImageNe1 dataset we
evaluare residual ners with a depih of up 10 152 layers—8x
deeper thar VGG nets [41] but still having lower complex-
ity. An ensemble of these residual nets achieves 3.57% error
on the ImageNet st set. This result won the 15t place on the
ILSVRC 2015 classification task, We alto presen: analysis
on CIFAR-10 with 100 and 1000 layers.

The depth of lons is of central imp,

Sfor many visual recognition tasks. Solely due to our ex-
tremely deep representations, we obtain a 28% relative im

provement on the COCO object detection dataset, Deep
residual nets are foundations of owr submissions to ILSVRC
& COCO 2015 competitions', where we also won the st
places on the tasks of ImageNer detection, ImageNer local-
ization, COCO detection, and COCO i

wing s (%)

sed g
Wi

T i qlen
Figure 1. Training error (Jeft) and test esrer (right) on CIFAR-10
with 20-Iayer and 36-layer “plain™ networks, The desper pETWark
has higher training eror, and thus Lest erree. Similsr prenomena
on ImagsNet is preseated in Fig. 4.

greatly benefited from very deep models.

Driven by the significance of depth, a question arises: s
learning better networks as easy as stacking more layers?
An obstacle to answering this question was the notorious
problem of vanishing/exploding gradients [1, 9), which
hamper convergence from the beginning. This problem,
however, has been largely addressed by nomalized initial-
ization (23,9, 37, 13] and intermediste normalizstion layers
(16}, which enable setworks with tens of kayers to start con-
verging for stochastic gradient descent (SGD) with back-
propagation [22].

When deeper networks are able to start converging, a

1. Introduction
Deep convolutional neural networks (12, 21) have led
to a serics of ghs for image classification [21,

50, 40). Deep networks natrally integrate low/mid/high-
level features [50) and classifiers in an end-4o-end multi-
layer fashion, and the “levels” of features can be enriched
by the number of stacked layers (depth). Recent evidence
(41, 44] seveals that network depth is of erucial Importance,
and the leading results [41, 44, 13, 16] on the challenging
ImageNet dataset [36] sll exploit “very deep” [41] models,
with 1 depth of sixteen [41] to thirty [16]. Many other non-
tnivial visual recognition tasks [8, 12, 7, 32, 27] have also

o

K. He, X. Zhang, S. Ren, J. Sun, “Deep Residual Learning for Image Recognition”, In CVPR 2016

degrad problem has been exposed: with the network
depth increasing, accuracy gets saturated (which might be
unsurprising) and then degrades rapidly. Unexpectedly,
such degradation is not caused by overfirring, and adding
more layers to a suitably deep medel leads to higher train-
ing error, s reported in [11, 42] and thoroughly verified by
our experiments. Fig. 1 shows a typical example.

The degradation (of training accuracy) indicates that not
all systems are similarly casy to optimize. Let us consider a
shallower architecture and its deeper counterpart that adds
more layers onto it. There exists a solution by construcrion
to the deeper model: the added layers are identify mapping,
and the other Jayers are copied from the learned shallower
model. The existence of this constructed solution indicates
that 2 deeper model] should produce no higher training ermor
than its shallower counterpart. But experimeats show that
our current solvers on hand are unable to find solutions that

92



Software




Reminder: Survey
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E-mail Address: *

Status *

(O PhD: 1styear Y

(O PhD: 2nd year

https://forms.gle/9GTV56Nt7/ZVMTCRDb6



https://forms.gle/9GTV56Nt7ZVMTCRb6

So what is deep learning?



Three key ideas

* (Hierarchical) Compositionality

* End-to-End Learning

* Distributed Representations
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Three key ideas

* (Hierarchical) Compositionality
— Cascade of non-linear transformations
— Multiple layers of representations
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Traditional Machine Learning

VISION

hand-crafted
features . “Cal’”
SIFT/HOG

SPEECH |

i |,||| | hand-crafted

M H\hm w

|
il }H features \'d & p\
i , MFCC
fixed learned
NLP

- - hand-crafted our favorite
This burrito place | features yl b "
is yummy and fun! Bag-of-words classitier

fixed learned
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It’s an old paradigm

* The first learning machine: the Perceptron
— Built at Cornell in 1960

* The Perceptron was a linear classifier on top of a
simple feature extractor

* The vast majority of practical applications of ML
today use glorified linear classifiers or glorified
template matching.

* Designing a feature extractor requires considerable
efforts by experts.

J0]JeJ]IX3 ainleo
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Hierarchical Compositionality
VISION

pixels =» edge =¥ texton = motif =»part =% object

SPEECH
sample =» s%ect(;al =» formant = motif =»phone =» word
an
NLP

character =% word =»NP/VP/..=%» clause =» sentence =% story
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Building A Complicated Function

leen a ||brary of S|mp|e functions

sm \ |
‘\ Compose into a
logi(s —

( I
cos(x) ) | complicate function
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Building A Complicated Function

leen a ||brary of S|mp|e functions

\ Idea 1: Linear Combinations
in ( -
S \ Compose intoa * Boosting
log — « Kernels
( cos(x) l . ...

3 | complicate function

- flz) = Z ;g ()
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Building A Complicated Function

leen a ||brary of S|mp|e functions

\ |dea 2: Compositions

sm _
\  Compose intoa * Deep Learning
( log (x l — «  Grammar models
cos(x) ; | complicate function ® ocattering transforms...
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Building A Complicated Function

leen a ||brary of S|mp|e functions

\ |dea 2: Compositions

s1n _
\  Compose intoa * Deep Learning

( log (x l — «  Grammar models

X | . e '

| cos(x) . | complicate function *  Scattering transforms..
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Deep Learning = Hierarchical
Compositionality

“Car”

M.D. Zeiler and R. Fergus, “Visualizing and Understanding Convolutional Networks"”, In ECCV 2014 07



Output
(object identity)

Deep Learning =
Hierarchical
Compositionality

3rd hidden layer
(object parts)

2nd hidden layer
(corners and
contours)

1st hidden layer
(edges)

Visible layer

(input pixels)

Image credit: lan Goodfellow
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Deep Learning = Hierarchical
Compositionality

Low-Level Mid-Level High-Level Trainable | “Car’
Feature Feature Feature Classifier

M.D. Zeiler and R. Fergus, “Visualizing and Understanding Convolutional Networks"”, In ECCV 2014 109
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The Mammalian Visual Cortex is Hierarchical

- The ventral (recognition) pathway in the visual cortex

Miotor command

Categorical judgments, 140-190 ms - | |
decision making ——— S(ljmple visual forms
' . edges, corners
120-160 ms—PMC 3

A

Intermediate visual

20-40 ms AlT forms, feature
/ 1 groups, etc.
80-100 ms 5 .
High level object

descriptions,
faces, objects

~———— To spinal cord
To finger muscle ——160-220 ms

180-260 ms
[picture from Simon Thorpe]
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Three key ideas

 End-to-End Learning
— Learning (goal-driven) representations
— Learning to feature extract
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Traditional Machine Learning

VISION

hand-crafted
your favorite

A =»| features classifier
: SIFT/HOG
—_— learned
SPEECH |

| \"“"\h L\ hand-crafted your favorite

I o

" M ‘ el classifier
— learned

NLP

| | hand-crafted favor
This burrito place = features your favorite
is yummy and fun! T classifier

fixed learned

\'d é p\

11 )
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More accurate version

SIFT/HOG
pooling

fixed unsupervised

; “““’H' Mixture of
‘ M ‘ Gaussians

fixed unsupervised

This burrito place wp garse Tree h-grams
is yummy and fun! yntactic

fixed unsupervised

VISION

ﬁ'

NLP

“Learned”

supervised

classifier

supervised

classifier u_|_u

supervised
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Deep Learning = End-to-End Learning

VISION “Learned”
e | sirr/Hoc e KMeans/ L) acsifier o
2 pooling car
fixed unsupervised | supervised
SPEECH |
|[” \ Mixture of - —
H h W“ =l MFCC Gaussians classifier \'d & p\
‘ fixed unsupervised ' supervised
NLP

This burrito place -] Farse Tree

is yummy and fun! | Syntactic classifier o+

n-grams

_|_

fixed unsupervised 1 supervised
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Deep Learning = End-to-End Learning

* A hierarchy of trainable feature transforms

— Each module transforms its input representation into a higher-level one.

— High-level features are more global and more invariant
— Low-level features are shared among categories

Trainable Trainable Trainable
Feature- Feature- Feature-
Transform / T Transform / 7] Transform /
Classifier Classifier Classifier

Learned Internal Representations
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“Shallow"” vs Deep Learning

e "Shallow"” models

hand-crafted Simple Trgmable
Feature Extractor Classifier
fixed learned
Trainable Trainable Trainable
Feature- Feature- L Feature- .
Transform / T Transform / Transform /
Classifier Classifier Classifier

Learned Internal Representations
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Three key ideas

* Distributed Representations

— No single neuron “encodes” everything
— Groups of neurons work together

117



Localist representations

e The simplest way to represent things with neural
networks is to dedicate one neuron to each
thing.

— Easy to understand.

— Easy to code by hand
« Often used to represent inputs to a net
— Easy to learn

* This is what mixture models do.
» Each cluster corresponds to one neuron

— Easy to associate with other representations or
responses.

» But localist models are very inefficient whenever
the data has componential structure.

Slide credit: Geoff Hinton

(a)

no pattern

OO0O0OO
@OOO
o) JOXO
OO0@®O
OO0 @

Image credit: Moontae Lee
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Distributed Representations

e Each neuron must represent something, so
this must be a local representation.

» Distributed representation means a many-
to- many relationship between two types of
representation (such as concepts and
neurons).

— Each concept Is represented by many neurons

— Each neuron participates in the representation of
many concepts

locak @ @ O @ = VR+HR+HE = ?

Distributed O O@-V+H+E = O

Slide credit: Geoff Hinton

(b)

no pattern

O JOX

Image credit: Moontae Lee 119



Power of distributed representations!

Scene Classification

bedroom F

mountain

— Objects

— Scene attributes
— Object parts

— Textures

Simple elements & colors Object part

B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba “Object Detectors Emerge in Deep Scene CNNs"”, ICLR 2015

Slide credit: Bolei Zhou
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Three key ideas of deep learning

* (Hierarchical) Compositionality
— Cascade of non-linear transformations
— Multiple layers of representations

 End-to-End Learning
— Learning (goal-driven) representations
— Learning to feature extract

* Distributed Representations

— No single neuron “encodes” everything
— Groups of neurons work together
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Benefits of Deep/Representation Learning

» (Usually) Better Performance

— "Because gradient descent Is better than you”
Yann LeCun

 New domains without “experts”
- RGBD
— Multi-spectral data
— Gene-expression data
— Unclear how to hand-engineer
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Problems with Deep Learning

 Problem#1: Non-Convex! Non-Convex! Non-Convex!

— Depth>=3: most losses non-convex in parameters
— Theoretically, all bets are off

— Leads to stochasticity
o different initializations = different local minima

» Standard response #1

— "Yes, but all interesting learning problems are non-convex”

— For example, human learning
* Order matters = wave hands - non-convexity

« Standard response #2
— "Yes, but it often works!”
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Problems with Deep Learning

* Problem#2: Hard to track down what’s failing

— Pipeline systems have “oracle” performances at each step
— In end-to-end systems, it's hard to know why things are not working
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Problems with Deep Learning

* Problem#2: Hard to track down what’s failin

: Vision Language A group of people
Deep CNN Generating shopping at an

RNN outdoor market.

/R
. ] . @ There are many
A vegetables at the

fruit stand.

I log p1(S1) I I log p2(S2) I
i T

E q pI P2 PN
o 1 f t
woman, crowd, cat, “REEs
camera, holding, purple :é.:"’f o 5 5 s s
:g:;é Fl—|F|—|E|—eee —|
T v w v wv
A purple camera with a woman. e — — — —
A woman holding a camera in a crowd. -
=
A woman holding a cat. > b T T T
~\ i:' W.So WS WeSn-i
- #1 A woman holding a T 1 T T
sentences camera in a crowd.
image Si SN
[Fang et al. CVPR15] [Vinyals et al. CVPR15]
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Problems with Deep Learning

* Problem#2: Hard to track down what’s failing

— Pipeline systems have “oracle” performances at each step
— In end-to-end systems, it's hard to know why things are not working

» Standard response #1

— Tricks of the trade: visualize features, add losses at different layers, pre-
train to avoid degenerate Initializations...

— "We're working on 1t”

» Standard response #2
— "“Yes, but it often works!”
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Problems with Deep Learning

* Problem#3: Lack of easy reproducibility
— Direct consequence of stochasticity & non-convexity

» Standard response #1
— |t's getting much better
— Standard toolkits/libraries/frameworks now available

» Standard response #2
— "Yes, but it often works!”
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NEW NAVY DEVICE
LEARNS BY DOING

Psychologist Shows Embryo
of Computer Designed to
Read and Grow Wiser

WASHINGTON, July.- 7 (UPI)
—The Navy revealed the em-
bryo of an electronic computer
today that it expects will be
abla to walk, talk, see, write,
reproduce itself and be con-
scious of its existence,

The embryo—the Weather
Bureau's $2,000,000 704" com-
puter—learned to differentiate
between right and left after
fifty afttempts in the Navy's
demonstration for newsmen.,,

The service said it would use
this principle to build the first
of its Perceptron thinking ma-
chines that will be able to read
and write, It is expected to be
finished in about a year at a
cost of $100,000.

Dr. Frank Rosenblatt, de-
lsig'ner of the Perceptron, con-
ducted the demonstration, He
said ‘the machine would be the
first device to think as the hu-
man brain. As do human be-|

lings, Perceptron will make mis-

!

takes at first, but will grow
wiser as it gains experience, he
said. '

Dr. Rosenblatt, a research
psychologist at the -Cornell
Aeronautical Laboratory, Buf-
falo, said Perceptrons might be
fired to the planets as mechani-
cal space explorers, -

Without Human Controls ‘

-
. The Navy said the perceptron
would be the- first non—living‘,
mechanism ‘“capable of receiv-|
ing, recognizing and identifying |
its surroundings without -any
human training or control.”

The “brain” is designed to
remember images and informa-
tion it has perceived jtself. Ordi-
nary computers remember only
what ig fed into them on punch
cards or magnetic tape. | |

Later Perceptrons will be able

to recognize people and call out

‘their names and instantly trans-
late speech in one language to
speech or writing in another
language, it was predicted,.

Mr. Rosenblatt said in prin-
ciple it would be possible to
build brains that could repro-
duce themselves on an assembly
line and which would be con-'
scious of their existence, '

1958 New York

Times...

In today's demonstration, the
“704” was fed two cards, one
with squares marked on the left
side and the other with squares
on the right side.

Learng by Doing

In the first fifty trials, the
machine made no distinction be-
tween them. It then started
registering a “Q"” for the left
squares and “O” for the right
squares. .

Dr. Rosenblatt said he could
explain why the machine
learned only in highly technical
terms. But he said the computer
had undergone a ‘‘self-induced
change in the wiring diagram.”

The first Perceptron will
have about 1,000 electronic
“association cells” receiving
electrical impulses from an eye-
like scanning device with 400
photo-cells. The human brain
has 10,000,000,000 responsive
cells, including 100,000,000 con-
nections with the eyes,
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COMPUTER SCIENTISTS STYMIED IN THEIR QUEST
TO MATCH HUMAN VISION

By WILLIAM J. BROAD
Published: September 25, 1984

EXPERTS pursuing one of man's most audacious dreams - to create ~ [Ei FACEBOOK
machines that think - have stumbled while taking what seemed tobe  w TwiTTER

an elementary first step. They have failed to master vision. 5§ GOOGLE+

After two decades of research, they have yet to teach machines the EMAIL
seemingly simple act of being able to recognize everyday objects and SHARE

to distinguish one from another.
[ PRINT

Instead, they have developed a profound new respect for the [E) REPRINTS
sophistication of human sight and have scoured such fields as

mathematics, physics, biology and psychology for clues to help them achieve the goal of
machine vision.
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SCIENCE

Researchers Announce Advance in Image-Recognition Software

By JOHN MARKOFF NOV. 17, 2014

Email
Share
W Tweet
@ Save

~ More

MOUNTAIN VIEW, Calif. — Two groups of scientists, working
independently, have created artificial intelligence software capable of
recognizing and describing the content of photographs and videos with far
greater accuracy than ever before, sometimes even mimicking human
levels of understanding.

Until now, so-called computer vision has largely been limited to
recognizing individual objects. The new software, described on Monday by
researchers at Google and at Stanford University, teaches itself to identify
entire scenes: a group of young men playing Frisbee, for example, or a herd
of elephants marching on a grassy plain.

The software then writes a caption in English describing the picture.
Compared with human observations, the researchers found, the computer-
written descriptions are surprisingly accurate.
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Captioned by Human and by Google’s Experimental Program

Human: “A group of men playing Frisbee in the park.”
Computer model: “A group of young people playing a game of Frisbee.”




TWEETS FOLLOWING FOLLOWERS FAVORITES

587 18 746 13

. INTERESTING.JPG @INTERESTING_JPG - 10h
a man holding a mirror up to his face .

1 View more photos and videos

Results from @INTERESTING_JPG via http://deeplearning.cs.toronto.edu/i2t
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TWEETS FOLLOWING FOLLOWERS FAVORITES

587 18 746 13

L INTERESTING.JPG @INTERESTING_JPG - 18h
a man carrying a bucket of his hands in a
yard .

2 View more photos and videos
Results from @INTERESTING_JPG via http://deeplearning.cs.toronto.edu/i2t 133



TWEETS FOLLOWING FOLLOWERS FAVORITES

o587 18 746 13

£ INTERESTING.JPG @INTERESTING_JPG - Feb 20

a surfboard attached to the top of a car .

15 .
e :
e N -
T/;'«’ S gy o g "‘,.. .

k. .

2

8 8 View more photos and videos

Results from @INTERESTING_JPG via http://deeplearning.cs.toronto.edu/i2t
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TWEETS FOLLOWING FOLLOWERS FAVORITES

587 18 746 13
. INTERESTING.JPG ¢ ESTING JPG - Feb 19
a man dressed in umform is looking at his cell
phone .

View more photos and videos
Results from @INTERESTING _JPG via http://deeplearning.cs.toronto.edu/i2t
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TWEETS FOLLOWING FOLLOWERS FAVORITES

587 18 746 13

3 INTERESTING.JPG @INTERESTING_JPG - 16h
this appears to be a small bedroom in the
SNOW .

Y I& LR AT

.-‘ 1§ q “%é

6 View more photos and videos
Results from @INTERESTING JPG via http://deeplearning.cs.toronto.edu/i2t 136




lain Murray
2driainmurray

2+ Follow

Today | learned #googletranslate sometimes
decides that "Deutsch" means "English".

Machine learning systems need to cope with
weird inputs.

Google

Translate

English Detectlanguage ~

Deutschland
Deutsch, deutsch, deutsch, deutsch, deutsch, deutsch

Naturlich hat ein Deutscher "Wetten, dass ... ?" erfunden
Vielen Dank fiir die schénen Stunden!

Wir sind die freundlichsten Kunden auf dieser Welt

Wir sind bescheiden, wir haben Geld

Die Allerbesten in jedem Sport

Die Steuern hier sind Weltrekord

Bereisen Sie Deutschland und bleiben Sie hier!

Auf diese Art von Besuchern warten wir

Es kann jeder hier wohnen, dem es gefallt

Wir sind das freundlichste Volk auf dieser Welt

Deutsch, deutsch, deutsch, deutsch

Tum off instant transiation o

st 5

Germany
German, English, German, German, German, and English

Of course a German has "betting that ...?" invented
Thanks for the nice hours!

We are the friendliest customers in this world

We are modest, we have money

The very best in any sport

The taxes here are a world record

Travel to Germany and stay here!

We are waiting for this kind of visitors

Anyone who likes it can live here

We are the friendliest people in this world

English, German, German, and German



2+ Follow

I "
LR | lain Murray
c; driainmurray

More fun pushing #googletranslate's neural net
into weird states. (BTW try GT on real text if you

haven't recently. It's often amazing.)

English German Spanish Detectlanguage ~ AT

| knife, fork, knife,

German English Spanish ~

Messer, Messer, Messer,

(The trailing comma messes this one up.)

<) = -

English German Spanish Detectlanguage ~ A

Messer, Gabel, Messer, Messer, Messer, %X
Messer, Messer, Messer, Messer, Messer

77/5000

KES
184

Do <

German English Spanish ~

Screen monitor styling Projector styling Print
styling < back to. 2010-01-20 with
adjustable interlinear. Knife, fork; knife, knife,
knife, knife;

Do < 7/

LB FL B



Tomer Ullman
9 @TomerUIlIman
Do models like DALL-E 2 get basic relations
(infon/etc)?

Colin (Coco) Conwell and | set out to investigate. The
result is now on arXiv:

“Testing Relational Understanding in Text-Guided
Image Generation”

arxiv.org

a I‘XiV Testing Relational Understanding in Text-Guided Image Gen...

Relations are basic building blocks of human cognition.
Classic and recent work suggests that many relations are ...

2:55 PM - Aug 2, 2022 - Twitter Web App
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A Spoon in a cup”

i\
‘HE@
y ol 2

"A cup on a spoon”

~‘
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., Melanie Mitchell
] @MelMitchellt
*Prepositions are hard.*

Stable diffusion demo (huggingface.co/spaces/stabili

s

Prompt A: A small green cube

Prompt B: A large red cube

Prompt C: A small green cube on top of a large red
cube

A B C

6:10 PM - Aug 23, 2022 - Twitter Web App
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Melanie Mitchell
@MelMitchelll

A B C

A small green cube A large red cube Generate image A small green cube on top of a large red cube.

6:10 PM - Aug 23, 2022 - Twitter Web App
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Melanie Mitchell
] @MelMitchell1

One cube on top of another cube Generate image A small cube 1o the left of a large cube Generate image A red cube below a graen cube

6:10 PM - Aug 23, 2022 - Twitter Web App
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Ratio connectionist / symbolic (log)

% of WoS

/
Activation model '

/ . / /
of the neuron 1 Backpropagatlon\ | Convolution \ | Support Vector \

. McCulloch, 1943) / algorithm Il | onzip codes ; | Machines - SVM I
/ \ (Rumelhart, 1986) \ (Lecun, 1989) \ (Vapnik, 1995)
e i s - ONR funds Rosenblatt’s / /
Macy N = — -\ Nt e e [ N —_——
1.5= Conference / Perceptron \
(1957-1962) |

DARPA funds Minsky and
McCarthy Al group at MIT \
(1963-1974) \
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Connectionist
A

Symbolic

Dartmouth workshop === 2" e e (
0.8 = Invention of the term . v/ G <3
“Artificial Intelligence” I Resolution by P Criticism of 15t Al winter
| logic the Perceptron | LISP hi
\ (Robinson, 1965) / ' (Minsky, 1969) / . :“a°" ines
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(1935-2005)
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D. Cardon et al. “Neurons spike back: The Invention of Inductive Machines and the Al Controversy”, Réseaux n°211/2018 144



AI DEBATE : YOSHUA BENGIO | GARY MARCUS

Gary Marcus

Y oshua Bengio

https://www.youtube.com/watch?v=EegwF|gFvJA Montréal
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https://www.youtube.com/watch?v=EeqwFjqFvJA

Next Lecture:
Machine Learning Overview



