
Illustratıon: Myriam Wares

Lecture #10 – Language Model Pretraining
Aykut Erdem // Koç University // Fall 2024

COMP541
DEEP LEARNING

Previously on COMP541
• graph structured data

• graph neural nets (GNNs)

• GNNs for ”classical” network
problems

2image: Oleg Soroko

Illustration: Kevin Hong // Quanta Magazine

Lecture overview
• motivation and introduction

• introduction to language models

• history of neural language models

• pretrained language models

Disclaimer: Much of the material and slides for this lecture were borrowed from
—Alec Radford’s lecture on "Learning from Text: Language Models and More"
—Jimmy Ba's UToronto CSC413/2516 class
—Luke Zettlemoyer's UW CSEP517 lecture on Contextualized Word Embeddings
—Liwei Jiang’s UW CSE517 lecture on Pre-training

3

Lecture overview
• motivation and introduction

• introduction to language models

• history of neural language models

• pretrained language models

4

Why is it called pre-training?

5

• “Pre-”training happens before training (fine-tuning)!
slide credit: Xiang Yue

Why Pre-training

• Standard supervised learning requires “machine learning grade” data

• There is not a lot of “machine learning grade” data (compared to
what current models need)

• This lecture focuses on a variety of methods for learning from natural
language in order to improve the performance of models on standard
NLP datasets/tasks.

6

Predecessor of LLMs

Why Pre-training

7

Computer Vision Language Modeling

Goal: A good language model should
produce good general-purpose and
transferable representations from text

Models:
- ELMo
- BERT
- ALBERT
- RoBERTa
- ELECTRA
- ERNIE
- UniLM

Goal: Developing the ability to
extract transferable and informative
features from images

Models:
- VGG
- ResNet
- Inception
- MobileNet

Linguistic knowledge:
● The bicycles, even though old, were
in good shape because ____ …
● The bicycle, even though old, was in
good shape because ____ …

World knowledge:
● The University of Waterloo was
founded in _____
● Ontario had a huge population boom
as a launching point for expeditions to

Visualizing and Understanding Convolutional
Network, 2014

Recall: Problems working with word-word
co-occurrence matrix
• It’s still huge!

 1 million words x 1 million words x 4 byte int32 = 4 terabytes

• Want to come up with a much more compact, but faithful
representation of the relations between words and the information
they represent.

8

Recall: GLoVE (Pennington et al. 2014)

• Take the matrix X counting word-word co-occurrences (cheap so do it
for 840B tokens!)

• So entry Xij would be the count of word i occuring in a context with
word j

• Learn low dim vector representations of each word such that their dot
product = log prob of co-occuring

• Goes from MxM to MxN where N is the dimensionality of the word
vectors (300 << 1,000,000!)

9

J =
VX

i,j=1

f (Xij)
⇣
wT

i w̃j + bi + b̃j � logXij

⌘2

<latexit sha1_base64="34HDISsJKUTtzDKgwVOsCRqJieU=">AAACW3icbZFLaxsxFIU147Z23LRxG7LKRtQUUpKYmZDSbgwh3ZSsUogdg8cZNPIdW47mgXSnwQj9yazaRf5KqWzPokl6QXD4zr16HCWlFBqD4LfnN168fNVsbbVfb795u9N5936oi0pxGPBCFmqUMA1S5DBAgRJGpQKWJRKuk9tvK//6JygtivwKlyVMMjbLRSo4Q4fijrroR7rKYiOO6KIf2hsztDSNJKR4MHKULmykxGyOnzbszjHXdGVphEJOwdzZ2CzsYbLihzVL1uw4ksWMPt7kxpzYuNMNesG66HMR1qJL6rqMO/fRtOBVBjlyybQeh0GJE8MUCi7BtqNKQ8n4LZvB2MmcZaAnZp2NpR8dmdK0UG7lSNf03wnDMq2XWeI6M4Zz/dRbwf954wrTrxMj8rJCyPnmoLSSFAu6CppOhQKOcukE40q4u1I+Z4pxdN/RdiGET5/8XAxPeuFp7/OP0+7ZeR1Hi+yTD+SAhOQLOSPfySUZEE5+kT9e02t5D37Db/vbm1bfq2d2yaPy9/4CfD22dg==</latexit>

Recall: Word2Vec (Mikolov et al. 2013)

10

Neural Embedding Models: CBoW (Mikolov et al. 2013)

All linear, so very fast. Basically a cheap way
of applying one matrix to all inputs.

Historically, negative sampling used instead
of expensive softmax.

NLL minimisation is more stable and is fast
enough today.

Variants: position specific matrix per input
(Ling et al. 2015).

Neural Embedding Models: Skip-gram (Mikolov et al. 2013)

Target word predicts context words.

Embed target word.

Project into vocabulary. Softmax.

Learn to estimate likelihood of context words.

CBoW model Skip-gram model
Image credit: Ed Grefenstette

Usefulness of Word Vectors

[McCann et al 2017] 11

Problems with word vectors

• Language is a lot more than just counts of words!

• It has a ton of structure on top of / in addition to words.

• Context is very important and a fixed static representation of a word is
insufficient.

1.I went to the river bank.
2.I made a withdrawal from the bank.
3.“I wouldn’t bank on it”

12

Problems with word vectors

• Great, so I’ve got a 1,000,000 x 300 matrix ... now what?

• How to use it is up to the practitioner.

• Often involves a lot of task specific models slapped on top.

• Learning just word vectors is like learning just edge detectors
in computer vision.

13

Lecture overview
• motivation and introductions

• introduction to language models

• history of neural language models

• pretrained language models

14

70 years of samples

15[From Oriol Vinyals’ twitter]

Statistical/Probabilistic Language Modeling

• Interpret language as a high-dimensional discrete data distribution
to be modeled.

• Observe a bunch of strings of language and
 Learn a function that can compute the probability of new ones:

p(Is it going to rain today?)

16

What does it mean to compute the
probability of a string?
p(The cat sat on the mat.) = ???

17

p(The cat sat on the mat.) = ???

Noam Chomsky in 1969:
But it must be recognized that the notion of
"probability of a sentence" is an entirely useless one,
under any known interpretation of this term.

18

What does it mean to compute the
probability of a string?

• Also see the Norvig - Chomsky debate:
http://norvig.com/chomsky.html
https://www.theatlantic.com/technology/archive/2012/11/noam-
chomsky-on-where-artificial-intelligence-went-wrong/261637/

http://norvig.com/chomsky.html
https://www.theatlantic.com/technology/archive/2012/11/noam-chomsky-on-where-artificial-intelligence-went-wrong/261637/?single_page=true
https://www.theatlantic.com/technology/archive/2012/11/noam-chomsky-on-where-artificial-intelligence-went-wrong/261637/?single_page=true

How can you use the probability of a string?

p(The cat sat on the mat.) > p(The cat sats on the mat.) [grammar]

Should p(The cat sats on the mat.) be 0?

p(The hyena sat on the mat.) < p(The cat sat on the mat.) [world knowledge]

Should p("4" | "2 + 2 = ") be 1?

p(1 star out of 5 | That movie was terrible! I’d rate it) [sentiment analysis]

19

How can you use the probability of a string?

• Speech Recognition and Machine Translation are supervised tasks

• Speech Recognition =
(audio1, transcript1)

(audio2, transcript2)

(audio3, transcript3)

• Machine Translation =
(french1, english1)

(french2, english2)

(french3, english3)

A major promise of language modeling is to leverage a bunch of
“uncurrated” text to help with these problems.

20

How can you use the probability of a string?

• Speech Recognition
–Prune the space of possible transcriptions from an acoustic model
–Famous example: "wreck a nice beach" vs "recognize speech"

• Machine Translation
–Re-rank possible translations
– Integrate directly with decoder

21

How to compute the probability of a string?

• First, maybe do some preprocessing (like lower-casing)

 "THe CaT SAt oN ThE MAT." → "the cat sat on the mat."

22

How to compute the probability of a string?

• Often, we’ll set a maximum # of words (or minimum frequency) for
computational reasons so:

"the cat sat on the countertop." → "the cat sat on the <UNK>."

23

How to compute the probability of a string?

• A tokenizer takes a string as input and returns a sequence of tokens:

"the cat sat on the mat." → [the, cat, sat, on, the, mat, .]

[the, cat, sat, on, the, mat, .] → [23, 1924, 742, 101, 23, 3946, 7]

24

How to compute the probability of a string?

• A tokenizer takes a string as input and returns a sequence of tokens:

"the cat sat on the mat." → [t,h,e," ",c,a,t," ",s,a,t," ",...]

25

All the different ways to dice a string!

• Character level (throw out non-ascii)

• Byte level (work on UTF-8 byte stream)

• Unicode symbols / codepoints

• Tokenized / pre-processed word level

• Byte Pair Encoding (Sennrich 2016)

• SentencePiece (Kudo and Richardson 2018)

t h → th
i n → in
e d → ed
a n → an
th e → the
o u → ou
e r → er
in g → ing
t o → to
e r → er
h e → he
an d → and

26

How to compute the probability of a string?

1. Assume a uniform prior over tokens
2. Assume all tokens are independent

p(t0) = 1/vocab size

p(t0, t1, t2, t3) = product of p(ti) for all i

27

How to compute the probability of a string?

1. Assume a uniform prior over tokens
2. Assume all tokens are independent

Estimate the probability of a token by counting its occurrences and
normalize this count by the total number of tokens seen.

p(t0, t1, t2, t3…) = p(t0)p(t1)p(t2)p(t3)...

This is a unigram language model

28

How to compute the probability of a string?

1. Assume a uniform prior over tokens
2. Assume all tokens are independent

Estimate the probability of a token conditioned on the previous token
by counting how many times it co-occurs with that previous token and
normalize this count by the total number of occurrences of that context.

p(t0, t1, t2, t3…) = p(t0)p(t1 | t0)p(t2 | t1)p(t3 | t2)

This is a bigram language model

29

Generalization?

p(self-attention) = 0 = infinite loss…

p(self-attention | the cool thing about) = 0 = infinite loss...

30

Smoothing

p(self-attention) = 0 = infinite loss…

p(self-attention | the cool thing about) = 0 = infinite loss...

• Smooth things out by using a mixture model

 pmixture(t1) = 0.01 * puniform(t1) + 0.99 * punigram(t1)

31

Smoothing

• Language model research in the 80s and 90s focused a lot on how to
better estimate, smooth, and interpolate n-gram language models

32

Evaluation Type 1: Intrinsic

• Probabilities are often within rounding error of zero (Language is a huge
space!)

• They also are a function of the length of the string.

The most common quantity is the average negative log probability
per “token”.

• Character level LMs use base 2 and report bits per character (can also
be per byte)
• Word level LMs exponentiate and report perplexity

33

e�
1
N

P
i ln pwi

<latexit sha1_base64="mAFEUr4KzZgwIph74dv4D3lUOLY=">AAACD3icbVC7TsMwFHXKO7wKjCwWFYiFKkEgWBAIFiZUJFqQmhA5rkOtOk5kO6DKyh+w8A38AQsDCLEhVhbE3+C0DNBypCsdn3OvfO8JU0alcpwvqzQyOjY+MTllT8/Mzs2XFxYbMskEJnWcsERchEgSRjmpK6oYuUgFQXHIyHnYOSr882siJE34meqmxI/RFacRxUgZKSivkUu94UUCYe3m+iT3ZBYHmubQYxymgb4pHnkelCtO1ekBDhP3h1T23+y99P7TrgXlD6+V4CwmXGGGpGy6Tqp8jYSimJHc9jJJUoQ76Io0DeUoJtLXvXtyuGqUFowSYYor2FN/T2gUS9mNQ9MZI9WWg14h/uc1MxXt+pryNFOE4/5HUcagSmARDmxRQbBiXUMQFtTsCnEbmXCUidA2IbiDJw+TxmbV3apunzqVg0PQxyRYBitgHbhgBxyAY1ADdYDBLXgAT+DZurMerRfrtd9asn5mlsAfWO/fhXagoA==</latexit>

Evaluation Type 2: Extrinsic

• There are a lot of ways to use a language models.

• You can evaluate them based on their usefulness for a downstream
task.

• Improve:
• WER for speech recognition
• BLEU for translation
• F1 for POS tagging
• ACC for document classification

• This is an increasingly common evaluation setting.
34

Lecture overview
• motivation and introduction

• introduction to language models

• history of neural language models

• pretrained language models

35

A Neural Probabilistic Language Model

• So many things!
• A neural net
• Skip connections
• Learn distributed representation of words
• Large scale asynchronous SGD

36

Bengio
et al. 2003

RNN Based Language Model

• Replace MLP with RNN (allows for unbounded context)

• Showed improvements on speech recognition

37

log p(x) =
dX

i=1

log p (xi | x1:i�1)

<latexit sha1_base64="UVvzLfjjOV/R0zUrl4eXxOidYb8=">AAACPHicbVDLSsNAFJ34rPVVdelmUIS6sCSiKIIgutClolWhqWEymaSDM0mYuZGWmB/yD9z4Ee5cuXGhiFvXTlvB54GBwznnMvcePxVcg20/WAODQ8Mjo6Wx8vjE5NR0ZWb2VCeZoqxOE5Goc59oJnjM6sBBsPNUMSJ9wc78y72uf3bFlOZJfAKdlDUliWIeckrASF7l2BVJhNOqKwm0/DBvF8vbrs6kl/Ntp7jIgwL3E65gIVTbRjeK5AH+mvByZwvzFadwFY9asOxVFu2a3QP+S5xPsrizj29c7zo69Cr3bpDQTLIYqCBaNxw7hWZOFHAqWFF2M81SQi9JxBqGxkQy3cx7xxd4ySgBDhNlXgy4p36fyInUuiN9k+xurH97XfE/r5FBuNnMeZxmwGLa/yjMBIYEd5vEAVeMgugYQqjiZldMW0QRCqbvsinB+X3yX3K6WnPWautHpo1d1EcJzaMFVEUO2kA76AAdojqi6BY9omf0Yt1ZT9ar9daPDlifM3PoB6z3D/3dsYQ=</latexit>

Mikolov et al. 2010

Generating Text with RNNs

• Character level RNN

• Approximates a tensor RNN which has a different set of weights for
every input character

• Very complicated optimization scheme

Ms . Claire Parters will also have a history temple for him to raise jobs until naked Prodiena to paint baseball partners , provided
people to ride both of Manhattan in 1978 , but what was largely directed to China in 1946 , focusing on the trademark period is
the sailboat yesterday and comments on whom they obtain overheard within the 120th anniversary , where many civil rights
defined , officials said early that forms , ” said Bernard J. Marco Jr. of Pennsylvania , was monitoring New York

(not actually a lot better than
word level n-gram models)

38

Sutskever et al. 2011

Generating Sequences with RNNs

39

Graves 2013

Generating Sequences with RNNs

40

it = � (Wxixt +Whiht�1 +Wcict�1 + bi)
ft = � (Wxfxt +Whfht�1 +Wcfct�1 + bf)
ct = ftct�1 + it tanh (Wxcxt +Whcht�1 + bc)
ot = � (Wxoxt +Whoht�1 +Wcoct + bo)
ht = ot tanh (ct)

<latexit sha1_base64="K8/k02zQVUfkIOnhZ8fPop2Ggag=">AAADbXicbZLPi9QwFMczrT/W+mtW8eAPJLiIu4hDK4pehEUvelvB2RmYDCXNJG3YNClJKjuUnjz4x3nz5sm7F8G/wLRTtPMjUHjf9+PzXh8vKQQ3Ngx/DDz/wsVLl/euBFevXb9xc7h/69SoUhM6JkooPU2woYJLOrbcCjotNMV5IugkOXvXxCefqTZcyU92WdB5jlPJGSfYOle8P/iCEppyWWGt8bKuRB3wuLL1G2R4mmMkKLOHk7g6h7yG503kqVNZozKnnkWtJo0mnU7iitdI8zSzRxChgO3msTUe2+CxNR7r80jLa6n/ctqZIbJYZrDXg6z1IP97OCbpM9XuGdVavdqYUa36tzTVp2UtTW3N1GZ3eQGictFtPR4ehKOwfXDbiDrj4Hj67etP9OfDSTz8jhaKlDmVlghszCwKCzt3NMuJoHWASkMLTM5wSmfOlDinZl6111LDx86zgExp90kLW2+/osK5Mcs8cZk5tpnZjDXOXbFZadnrecVlUVoqyaoRKwW0CjanBxdcU2LF0hmYaO5mhSTDGhPrDjRwS4g2f3nbOH0+il6MXn5023gLVm8P3AePwCGIwCtwDN6DEzAGZPDLG3p3vXveb/+O/8B/uEr1Bl3NbbD2/Cd/AYVVHZQ=</latexit>

Graves 2013

Skip-Thought Vectors

• Proposed using an RNN sequence encoder trained to provide
context to an LM as a sentence level text feature extractor.

41

Kiros et al. 2015

Semi-supervised Sequence Learning

Proposes finetuning an LM directly for downstream tasks

1.Use LM objective as a pre-training task
2.Then initialize the parameters of downstream model with LM weights
3.Then train like a normal supervised model

42

Dai and Le 2015

Exploring The Limits of Language Modeling

• A larger dataset 1BW (Chelba et al 2013)

• A 8K projection LSTM (Sak et al 2014)

• Character aware (Kim et al 2015)

• A large vocab - 800K words
– Approximate with sampled softmax

• 32 K40s for 3 weeks
• 41.0 -> 23.7 perplexity

43

Jozefowicz et al. 2016

Exploring The Limits of Language Modeling

• Was one of the first neural language models to generally have
~coherent non-trivial sentences.

With even more new technologies coming onto the market quickly during the past
three years , an increasing number of companies now must tackle the ever-
changing and ever-changing environmental challenges online .

44

Jozefowicz et al. 2016

Why scale?

• There’s a whole internet out there

• Soooooooooo much information

• A perfect language model would need to fit the internet into its
parameters.

• This suggests we’re going to need a lot of parameters, compute,
and data to get as close to this as possible.

45

Why scale?

• This is what a very small charRNN learns:

" Als gambrantr 's w thkergtre akld teno 6 10769 tie He Cule a , ssot Goshulan n blve t , to hered arerorinner rrk f . , ate Banat"

• The best architecture in the world is useless without capacity.

46

Why scale?
• Deep Learning Scaling is Predictable, Empirically (Hestness et al. 2017)

• GPipe: Efficient Training of Giant Neural Networks (Huang et al. 2018)

• AI and Compute (Damodei and Hernandez 2018)

• These trends have been consistent across many orders of magnitude

47

Why scale?
• Deep Learning Scaling is Predictable, Empirically (Hestness et al. 2017)

• GPipe: Efficient Training of Giant Neural Networks (Huang et al. 2018)

• AI and Compute (Damodei and Hernandez 2018)

• These trends have been consistent across many orders of magnitude

48

More on Scaling Laws later…

Learning To Generate Reviews
and Discovering Sentiment
●Maybe data is the bottleneck!

– Make dataset bigger -> 80 million product reviews (40 GB of text)

• 4096 unit byte level mLSTM - 1 month - 4 Pascal Titan X GPUs
• Model ended up just underfitting by a lot
• But learned what sentiment is

49

Radford et al. 2017

LM pre-training for sentiment analysis
Small World LSTM is here

50

Story Cloze Task: UW NLP System

51

Schwartz et al. 2017

The Sparsely-Gated MoEs Layer
• Maybe parameter count is the bottleneck!

– Make a model with as many parameters as possible -> 137 Billion

• More efficient than equivalent compute dense models

• And a lot of very impressive systems work

52

Shazeer et al. 2017

Lecture overview
• motivation and introduction

• introduction to language models

• history of neural language models

• pretrained language models

53

Recall: What’s wrong with word2vec?
• One vector for each word type

• Complex characteristics of word use: semantics, syntactic behavior, and
connotations

• Polysemous words, e.g., bank, mouse

54

What’s wrong with word2vec?

• One vector for each word type vcat =

0

BB@

�0.224
0.130
�0.290
0.276

1

CCA

<latexit sha1_base64="ZS11t+SATcIQYaaJ4VZuEjXjz0Y=">AAACOXicbZDPShxBEMZrjIk65s8aj3poIoFcsvRsQlSIIHjxuIKrws6y9PTWro09PUN3jbgM8wx5m1zyFt4ELx4U8ZoXSM+uiFE/aPj4VRVd9SW5Vo44vwhmXs2+fjM3vxAuvn33/kNj6eOByworsSMzndmjRDjUymCHFGk8yi2KNNF4mJzs1PXDU7ROZWafxjn2UjEyaqikII/6jfZpv4wJz6j0pKq2wjjBkTJlngqy6qwKv/Jmq/WdxXHIm9E3XpsabfIpaq3/CGM0g4eBfmONN/lE7LmJ7s3a9uqvmAFAu984jweZLFI0JLVwrhvxnHqlsKSkxiqMC4e5kCdihF1vjUjR9crJ5RX77MmADTPrnyE2oY8nSpE6N04T3+n3O3ZPazV8qdYtaLjRK5XJC0Ijpx8NC80oY3WMbKAsStJjb4S0yu/K5LGwQpIPO/QhRE9Pfm4OWs3Ih7rn0/gJU83DCnyCLxDBOmzDLrShAxJ+wyVcw03wJ7gKboO7aetMcD+zDP8p+PsPf3eqbQ==</latexit><latexit sha1_base64="X7JObiHYNXwbsISLOmkjXbSsJws=">AAACOXicbZBNSyNBEIZ7/Fh1dHejHvXQrCx42dCTFT9AQfDiMYJRIRNCT6cSG3t6hu4aMQzzG/w3Xrz5E7wJXjwo4lW825OIrLovNLw8VUVXvVGqpEXGbryR0bHxbxOTU/70zPcfPyuzcwc2yYyAhkhUYo4ibkFJDQ2UqOAoNcDjSMFhdLJT1g9PwViZ6H3sp9CKeU/LrhQcHWpX6qftPEQ4w9yRotjywwh6UudpzNHIs8L/w6q12goNQ59Vg7+sNCXaYENUW1v1Q9Cd94F2ZYlV2UD0qwnezNL24nm4/HJ1Xm9XrsNOIrIYNArFrW0GLMVWzg1KoaDww8xCysUJ70HTWc1jsK18cHlBfzvSod3EuKeRDui/EzmPre3Hket0+x3bz7US/q/WzLC73sqlTjMELYYfdTNFMaFljLQjDQhUfWe4MNLtSsUxN1ygC9t3IQSfT/5qDmrVwIW659LYJENNkgXyiyyTgKyRbbJL6qRBBLkgt+SePHiX3p336D0NW0e8t5l58kHe8yuUTqy7</latexit><latexit sha1_base64="X7JObiHYNXwbsISLOmkjXbSsJws=">AAACOXicbZBNSyNBEIZ7/Fh1dHejHvXQrCx42dCTFT9AQfDiMYJRIRNCT6cSG3t6hu4aMQzzG/w3Xrz5E7wJXjwo4lW825OIrLovNLw8VUVXvVGqpEXGbryR0bHxbxOTU/70zPcfPyuzcwc2yYyAhkhUYo4ibkFJDQ2UqOAoNcDjSMFhdLJT1g9PwViZ6H3sp9CKeU/LrhQcHWpX6qftPEQ4w9yRotjywwh6UudpzNHIs8L/w6q12goNQ59Vg7+sNCXaYENUW1v1Q9Cd94F2ZYlV2UD0qwnezNL24nm4/HJ1Xm9XrsNOIrIYNArFrW0GLMVWzg1KoaDww8xCysUJ70HTWc1jsK18cHlBfzvSod3EuKeRDui/EzmPre3Hket0+x3bz7US/q/WzLC73sqlTjMELYYfdTNFMaFljLQjDQhUfWe4MNLtSsUxN1ygC9t3IQSfT/5qDmrVwIW659LYJENNkgXyiyyTgKyRbbJL6qRBBLkgt+SePHiX3p336D0NW0e8t5l58kHe8yuUTqy7</latexit><latexit sha1_base64="yUhkDlYwUUEoQ+3MeiaCkTTY5/M=">AAACOXicbZBNSyNBEIZ71PVj3NWsHr00BsHLhp4oxgUFwYvHCEaFTAg9nUps7OkZumvEMMzf8uK/8CZ48bCLePUP2JME8euFhpenquiqN0qVtMjYvTc1PfNjdm5+wV/8+WtpufJ75dQmmRHQEolKzHnELSipoYUSFZynBngcKTiLLg/L+tkVGCsTfYLDFDoxH2jZl4KjQ91K86qbhwjXmDtSFPt+GMFA6jyNORp5Xfh/WK1e36Zh6LNasMVKU6K/bIzqjR0/BN17G+hWqqzGRqJfTTAxVTJRs1u5C3uJyGLQKBS3th2wFDs5NyiFgsIPMwspF5d8AG1nNY/BdvLR5QXdcKRH+4lxTyMd0fcTOY+tHcaR63T7XdjPtRJ+V2tn2N/t5FKnGYIW44/6maKY0DJG2pMGBKqhM1wY6Xal4oIbLtCF7bsQgs8nfzWn9VrgQj1m1YO9SRzzZI2sk00SkAY5IEekSVpEkBvyQP6R/96t9+g9ec/j1ilvMrNKPsh7eQWaI6kG</latexit>

v(bank)

• Complex characteristics of word use: semantics, syntactic
behavior, and connotations

• Polysemous words, e.g., bank, mouse

What’s wrong with word2vec?

• One vector for each word type vcat =

0

BB@

�0.224
0.130
�0.290
0.276

1

CCA

<latexit sha1_base64="ZS11t+SATcIQYaaJ4VZuEjXjz0Y=">AAACOXicbZDPShxBEMZrjIk65s8aj3poIoFcsvRsQlSIIHjxuIKrws6y9PTWro09PUN3jbgM8wx5m1zyFt4ELx4U8ZoXSM+uiFE/aPj4VRVd9SW5Vo44vwhmXs2+fjM3vxAuvn33/kNj6eOByworsSMzndmjRDjUymCHFGk8yi2KNNF4mJzs1PXDU7ROZWafxjn2UjEyaqikII/6jfZpv4wJz6j0pKq2wjjBkTJlngqy6qwKv/Jmq/WdxXHIm9E3XpsabfIpaq3/CGM0g4eBfmONN/lE7LmJ7s3a9uqvmAFAu984jweZLFI0JLVwrhvxnHqlsKSkxiqMC4e5kCdihF1vjUjR9crJ5RX77MmADTPrnyE2oY8nSpE6N04T3+n3O3ZPazV8qdYtaLjRK5XJC0Ijpx8NC80oY3WMbKAsStJjb4S0yu/K5LGwQpIPO/QhRE9Pfm4OWs3Ih7rn0/gJU83DCnyCLxDBOmzDLrShAxJ+wyVcw03wJ7gKboO7aetMcD+zDP8p+PsPf3eqbQ==</latexit><latexit sha1_base64="X7JObiHYNXwbsISLOmkjXbSsJws=">AAACOXicbZBNSyNBEIZ7/Fh1dHejHvXQrCx42dCTFT9AQfDiMYJRIRNCT6cSG3t6hu4aMQzzG/w3Xrz5E7wJXjwo4lW825OIrLovNLw8VUVXvVGqpEXGbryR0bHxbxOTU/70zPcfPyuzcwc2yYyAhkhUYo4ibkFJDQ2UqOAoNcDjSMFhdLJT1g9PwViZ6H3sp9CKeU/LrhQcHWpX6qftPEQ4w9yRotjywwh6UudpzNHIs8L/w6q12goNQ59Vg7+sNCXaYENUW1v1Q9Cd94F2ZYlV2UD0qwnezNL24nm4/HJ1Xm9XrsNOIrIYNArFrW0GLMVWzg1KoaDww8xCysUJ70HTWc1jsK18cHlBfzvSod3EuKeRDui/EzmPre3Hket0+x3bz7US/q/WzLC73sqlTjMELYYfdTNFMaFljLQjDQhUfWe4MNLtSsUxN1ygC9t3IQSfT/5qDmrVwIW659LYJENNkgXyiyyTgKyRbbJL6qRBBLkgt+SePHiX3p336D0NW0e8t5l58kHe8yuUTqy7</latexit><latexit sha1_base64="X7JObiHYNXwbsISLOmkjXbSsJws=">AAACOXicbZBNSyNBEIZ7/Fh1dHejHvXQrCx42dCTFT9AQfDiMYJRIRNCT6cSG3t6hu4aMQzzG/w3Xrz5E7wJXjwo4lW825OIrLovNLw8VUVXvVGqpEXGbryR0bHxbxOTU/70zPcfPyuzcwc2yYyAhkhUYo4ibkFJDQ2UqOAoNcDjSMFhdLJT1g9PwViZ6H3sp9CKeU/LrhQcHWpX6qftPEQ4w9yRotjywwh6UudpzNHIs8L/w6q12goNQ59Vg7+sNCXaYENUW1v1Q9Cd94F2ZYlV2UD0qwnezNL24nm4/HJ1Xm9XrsNOIrIYNArFrW0GLMVWzg1KoaDww8xCysUJ70HTWc1jsK18cHlBfzvSod3EuKeRDui/EzmPre3Hket0+x3bz7US/q/WzLC73sqlTjMELYYfdTNFMaFljLQjDQhUfWe4MNLtSsUxN1ygC9t3IQSfT/5qDmrVwIW659LYJENNkgXyiyyTgKyRbbJL6qRBBLkgt+SePHiX3p336D0NW0e8t5l58kHe8yuUTqy7</latexit><latexit sha1_base64="yUhkDlYwUUEoQ+3MeiaCkTTY5/M=">AAACOXicbZBNSyNBEIZ71PVj3NWsHr00BsHLhp4oxgUFwYvHCEaFTAg9nUps7OkZumvEMMzf8uK/8CZ48bCLePUP2JME8euFhpenquiqN0qVtMjYvTc1PfNjdm5+wV/8+WtpufJ75dQmmRHQEolKzHnELSipoYUSFZynBngcKTiLLg/L+tkVGCsTfYLDFDoxH2jZl4KjQ91K86qbhwjXmDtSFPt+GMFA6jyNORp5Xfh/WK1e36Zh6LNasMVKU6K/bIzqjR0/BN17G+hWqqzGRqJfTTAxVTJRs1u5C3uJyGLQKBS3th2wFDs5NyiFgsIPMwspF5d8AG1nNY/BdvLR5QXdcKRH+4lxTyMd0fcTOY+tHcaR63T7XdjPtRJ+V2tn2N/t5FKnGYIW44/6maKY0DJG2pMGBKqhM1wY6Xal4oIbLtCF7bsQgs8nfzWn9VrgQj1m1YO9SRzzZI2sk00SkAY5IEekSVpEkBvyQP6R/96t9+g9ec/j1ilvMrNKPsh7eQWaI6kG</latexit>

v(bank)

• Complex characteristics of word use: semantics, syntactic
behavior, and connotations

• Polysemous words, e.g., bank, mouse

Contextualized word embeddings
• Let’s build a vector for each word conditioned on its context!

55

Contextualized word embeddings

Let’s build a vector for each word conditioned on its context!

movie was terribly exciting !the

Contextualized word embeddings

f : (w1, w2, …, wn) ⟶ x1, …, xn ∈ ℝd

Contextualized word embeddings

Contextualized word embeddings

56(Peters et al., 2018): Deep Contextualized Word Representations

ELMo

57

• NAACL’18: Deep contextualized
word representations

• Key idea:
– Train an LSTM-based language model

on some large corpus
– Use the hidden states of the LSTM for

each token to compute a vector
representation of each word

Deep contextualized word representations
• Replace word vectors with a learned weighted sum of features of deep

bi-directional LM

• Improves baseline models to SOTA

• Uses the LM from (Jozefowicz et al. 2016)

• Extends benefits of LMs to a much wider variety of tasks

58

Peters et al. 2018

Deep contextualized word representations
• Forward and backward

LMs: 2 layers each
• Use character CNN to build

initial word representation
– 2048 char n-gram filters and

2 highway layers, 512 dim
projection

• User 4096 dim hidden/cell
LSTM states with 512 dim
projections to next input
• A residual connection from

the first to second layer
• Trained 10 epochs on 1B

Word Benchmark

59

Word representation

Forward LSTM Layer
1 State

Backward LSTM Layer
1 State

Forward LSTM Layer
2 State

Backward LSTM
Layer 2 State

Word representation

Forward LSTM Layer
1 State

Backward LSTM Layer
1 State

Forward LSTM Layer
2 State

Backward LSTM
Layer 2 State

Contextualized
representation

Contextualized
representation

Peters et al. 2018

Experimental results

• SQuAD: question answering
• SNLI: natural language inference
• SRL: semantic role labeling
• Coref: coreference resolution
• NER: named entity recognition
• SST-5: sentiment analysis

60

Improving Language Understanding by
Generative Pre-Training (GPT-1)

61

Improving Language Understanding by
Generative Pre-Training (GPT-1)
• Transformer based LM
• 12 self-attention blocks - 12 heads - 768 dim state

–~100M params
• Trained on 7,000 books ~ 5 GB of text (BookCorpus Zhu et al 2015)

• Fine-tune on supervised tasks (like Dai et al. 2015)
• Removes the need for task specific architectures

62

Improving Language Understanding by
Generative Pre-Training (GPT-1)
• Transformer based LM
• 12 self-attention blocks - 12 heads - 768 dim state

–~100M params
• Trained on 7,000 books ~ 5 GB of text (BookCorpus Zhu et al 2015)

• Fine-tune on supervised tasks (like Dai et al. 2015)
• Removes the need for task specific architectures

63

More later…

Lecture overview
• motivation and introduction

• introduction to language models

• history of neural language models

• a digression into Transformers

• beyond standard LMs

• why we need unsupervised learning

64

65

Improving Language Understanding by
Generative Pre-Training (GPT-1)

the cat sat on

Query
Key
Value information you can retrieve

what you can compare to
what you want to look for

66

the cat sat on

67

Query
Key
Value information you can retrieve

what you can compare to
what you want to look for

the cat sat on

68

Query
Key
Value information you can retrieve

what you can compare to
what you want to look for

the cat sat on

69

Query
Key
Value information you can retrieve

what you can compare to
what you want to look for

the cat sat on

“the cat”

70

Query
Key
Value information you can retrieve

what you can compare to
what you want to look for

[Vaswani et al 2017]
71

72

BERT
• First released in Oct 2018.

• NAACL’19: BERT: Pre-training of Deep
Bidirectional Transformers for Language
Understanding

• How is BERT different from ELMo?
1. Unidirectional context vs

bidirectional context
2. LSTMs vs Transformers
3. The weights are not freezed

(fine-tuning)

73

BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding

Left-Right LM: The cat sat on the [mask] -> The cat sat on the mat
Right-Left LM: [mask] cat sat on the mat -> The cat sat on the mat
Masked LM: The [mask] sat on the [mask] -> The cat sat on the mat

74

Devlin et al.
2017

BERT Workflow
• The BERT workflow includes:

– Pretrain on generic, self-supervised tasks, using large amounts of data (like all
of Wikipedia)

– Fine-tune on specific tasks with limited, labelled data.

• The pretraining tasks (will talk about this in more detail later):
– Masked Language Modelling (to learn contextualized token representations)

– Next Sentence Prediction (summary vector for the whole input)

75

BERT Architecture

76

BERT Architecture
Properties:
• Two input sequences.

– Many NLP tasks have two inputs (question answering, paraphrase detection,
entailment detection etc.)

• Computes embeddings
– Both token, position and segment embeddings.
– Special start and separation tokens.

• Architecture
– Basically the same as transformer encoder.

• Outputs:
– Contextualized token representations.

– Special tokens for context.
77

BERT Embeddings

• How we tokenize the inputs is very important!

• BERT uses the WordPiece tokenizer (Wu et. al. 2016)

78

(Aside) Tokenizers
• Tokenizers have to balance the following:

– Being comprehensive (rare words? translation to different languages)

– Total number of tokens

– How semantically meaningful each token is.

• This is an activate area of research.

79

Pretraining tasks
• Masked Language Modelling, i.e. Cloze Task (Taylor, 1953)

• Next sentence prediction

80

Masked Language Modelling
• Mask 15% of the input tokens. (i.e. replace

with a dummy masking token)

• Run the model, obtain the embeddings for the
masked tokens.

• Using these embeddings, try to predict the
missing token.

• ”I love to eat peanut ___ and jam. ”
Can you guess what’s missing?

This procedure forces the model to encode
context information in the features of all of the
tokens.

81

Next Sentence Prediction
• Goal is to summarize the complete

context (i.e. the two segments) in
a single feature vector.

• Procedure for generating data
– Pick a sentence from the training corpus

and feed it as ”segment A”.
– With 50% probability, pick the following

sentence and feed that as ”segment B”.
– With 50% probability, pick the a random

sentence and feed it as ”segment B”.

• Using the features for the context
token, predict whether segment B is
the following sentence of segment A.

82

Fine Tuning

Procedure:

• Add a final layer on top of BERT representations.

• Train the whole network on the fine-tuning dataset.

• Pre-training time: In the order of days on TPUs.

• Fine tuning task: Takes only a few hours max.
83

Applications

84

Fine Tuning

85

RoBERTa: A Robustly Optimized BERT
Pretraining Approach
Really well executed refinement / engineering on BERT

• Better tuned (many HPs)

• Remove a few hacks (remove annealing context size)

• Better data generation (online instead of cached)

• A more flexible vocab scheme (more on this later)

• Use more compute / train longer (but same model capacity
– BERT was undertrained)

86

Liu et al. 2019

ELECTRA

87

Clark et al. 2017

T5: Exploring the Limits of Transfer Learning
with a Unified Text-to-Text Transformer
• Very thorough (50 pages!) exploration of the design space of pretraining

with a pleasing task formulation (from McCann et al 2018)

88

Raffel et al.
2019

T5
• T5 [Raffel et al., 2018]
• Text span corruption (denoising):

Replace different-length spans from the
input with unique placeholders (e.g.,
<extra_id_0>); decode out the masked
spans.

• Done during text preprocessing: training
uses language modeling objective at the
decoder side

89

T5
• Encoder-decoders works better than decoders

• Span corruption (denoising) objective works better than language
modeling

90

T5
• Text-to-Text: convert NLP tasks into input/output text sequences

• Dataset: Colossal Clean Crawled Corpus (C4), 750G text data!

• Various Sized Models:
– Base (222M)
– Small (60M)
– Large (770M)
– 3B
– 11B

• Achieved SOTA with scaling & purity of data

91

Three Pre-training Paradigms/Architectures

92

• E.g., BERT, RoBERTa, DeBERTa, …
• Autoencoder model
• Masked language modeling

Encoder

Encoder-Decoder • E.g., T5, BART, …
• seq2seq model

Decoder
• E.g., GPT, GPT2, GPT3, …
• Autoregressive model
• Left-to-right language modeling

92

Three Pre-training Paradigms/Architectures

Encoder

Encoder-Decoder

Decoder

Bidirectional; can condition on the
future context

Language modeling; can only
condition on the past context

Map two sequences of different
length together

93

Encoder: Pros & Cons

94

• Consider both left and right context

• Capture intricate contextual relationships

9

Iroh goes to [M] tasty tea

make/brew/craft

Encoder

Iroh goes to make tasty tea

goes to mak
e

tasty tea END

Decoder

• Not good at generating open-text from left-to-right,
one token at a time

Encoder-Decoder: Pros & Cons

95

• A nice middle ground between leveraging bidirectional
contexts and open-text generation

• Good for multi-task fine-tuning

• Require more text wrangling

• Harder to train

• Less flexible for natural language generation

Decoder: Pros & Cons

96

• Natural to be used for open-text generation

• Right now decoder-only models seem to dominant the
field at the moment

• e.g., GPT1/2/3/4, Mistral, Llama1/2

• Not better at feature extraction??

Next lecture:
Large Language Models

97

