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Previously on COMP541

* graph structured data |

» graph neural nets (GNNs)

* GNINs for "classical” network
problems




Lecture overview

* motivation and introduction
* Introduction to language models
* history of neural language models

* pretrained language models

Disclaimer: Much of the material and slides for this lecture were borrowed from
—Alec Radford’s lecture on "Learning from Text: Language Models and More"

—Jimmy Ba's UToronto CSC413/2516 class
—Luke Zettlemoyer's UW CSEP517 lecture on Contextualized Word Embeddings

—Liweil Jiang's UW CSEb17 lecture on Pre-training
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Why is it called pre-training?
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Pre-training Fine-Tuning

« "Pre-"training happens before training (fine-tuning)!

slide credit: Xiang Yue 5



Why Pre-training
» Standard supervised learning requires “machine learning grade” data

* There i1s not a lot of “machine learning grade” data (compared to
what current models need)

 This lecture focuses on a variety of methods for learning from natural

language in order to improve the performance of models on standard
NLP datasets/tasks.

Predecessor of LLMs



Why Pre-training

Computer Vision

Goal: Developing the ability to

extract transferable and informative

features from images

Models:

- VGG

- ResNet

- Inception
- MobileNet

Visualizing and Understanding Convolutional
Network, 2014

Language Modeling

Goal: A good language model should
produce good general-purpose and
transferable representations from text

Models:
-ELM Linguistic knowledge:

O ® The bicycles, even though old, were
- BERT In good shape because
-ALBERT ® The bicycle, even though old, was in
-RoBERTa good shape because
- ELECTRA World knowledge:
- ERNIE fo Thg L(Jjn_iversity of Waterloo was

. ounded in

- UniLM e Ontario had a huge population boom

as a launching point for expeditions to



Recall: Problems working with word-word
CO-occurrence matrix

* [t's still huge!
1 million words x 1 million words x 4 byte int32 = 4 terabytes
* \WWant to come up with a much more compact, but faithful

representation of the relations between words and the information
they represent.



Recall: GLoVE (Pennington et al. 2014)

» Take the matrix X counting word-word co-occurrences (cheap so do it
for 840B tokens!)

* So entry X;; would be the count of word 1 occuring in a context with
word |

* Learn low dim vector representations of each word such that their dot
product = log prob of co-occuring

* Goes from MxM to MxN where N is the dimensionality of the word
vectors (300 << 1,000,000!)

2
J = 3" F(Xiy) (wld; + bi+ by — log X )
—



Recall: Word2Vec (Mikolov et al. 2013)
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Image credit: Ed Grefenstette 19



% improvement over randomly
initialized word vectors

Usefulness of Word Vectors
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Problems with word vectors

* Language is a lot more than just counts of words!
* [t has a ton of structure on top of / in addition to words.

» Context Is very important and a fixed static representation of a word Is
iInsufficient.

1.I went to the river bank.
2.1 made a withdrawal from the bank.
3.“T wouldn’t bank on it”

12



Problems with word vectors

» Great, so |'ve got a 1,000,000 x 300 matrix ... now what?
 How to use It IS up to the practitioner.

» Often involves a lot of task specific models slapped on top.

* Learning just word vectors is like learning just edge detectors
iIn computer vision.

13



Lecture overview

* motivation and introductions
* introduction to language models
* history of neural language models

* pretrained language models
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70 years of samples

SLP book, 2000 (Shannon, 1951), 3-gram

They also point to ninety nine point six billion dollars from two hundred four oh six three percent of the rates of interest stores as Mexico and Brazil
on market conditions

Sutskever et al, 2011, RNNs
The meaning of life is the tradition of the ancient human reproduction: it is less favorable to the good boy for when to remove her bigger
Jozefowicz et al, 2016, BIG LSTMs

With even more new technologies coming onto the market quickly during the past three years, an increasing number of companies now must tackle
the ever-changing and ever-changing environmental challenges online .

Liu et al, 2018, Transformer
==wings over kansas

==wings over kansas is a 2010 dhamma feature film written and directed by brian ig ariyoshi . it premiered on march 17, 2010 the film tells the story
of three americans who bravely achieved a victory without expected daknfi .

==Wings Over Kansas Plot
the story begins with the faltering success of egypt 's hungry dakfunctionality when he loses his lives around the time when the embarked [...]
Radford et al, 2019, BIG Transformer

In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored valley, in the Andes Mountains. Even more
surprising to the researchers was the fact that the unicorns spoke perfect English.

The scientist named the population, after their distinctive horn, Ovid’s Unicorn. These four-horned, silver-white unicorns were previously unknown to
science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is finally solved.

Dr. Jorge Perez, an evolutionary biologist from the University of La Paz, and several companions, were exploring the Andes Mountains when they
found a small valley, with no other animals or humans. Perez noticed that the valley had what appeared to be a natural fountain, surrounded by two
peaks of rock and silver snow.

Perez and the others then ventured further into the valley. “By the time we reached the top of one peak, the water looked blue, with some crystals on
top,’ said Perez.

Perez and his friends were astonished to see the unicorn herd. [...]

[From QOriol Vinyals’ twitter]
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Statistical/Probabilistic Language Modeling

 Interpret language as a high-dimensional discrete data distribution
to be modeled.

* Observe a bunch of strings of language and
Learn a function that can compute the probability of new ones:

p(Is it going to rain today?)

16



What does it mean to compute the
probability of a string?

p(The cat sat on the mat.) =???



What does it mean to compute the
probability of a string?

p(The cat sat on the mat.) =???

Noam Chomsky in 1969:

But it must be recognized that the notion of
‘probability of a sentence” is an entirely useless one,
under any known interpretation of this term.

» Also see the Norvig - Chomsky debate:

http://norvig.com/chomsky.html

https://www.theatlantic.com/technology/archive/2012/11/noam-
chomsky-on-where-artificial-intelligence-went-wrong/261637/

18


http://norvig.com/chomsky.html
https://www.theatlantic.com/technology/archive/2012/11/noam-chomsky-on-where-artificial-intelligence-went-wrong/261637/?single_page=true
https://www.theatlantic.com/technology/archive/2012/11/noam-chomsky-on-where-artificial-intelligence-went-wrong/261637/?single_page=true

How can you use the probability of a string?

p(The cat sat on the mat.) > p(The cat sats on the mat.) [grammar]

Should p(The cat sats on the mat.) be O?

P(The hyena sat on the mat.) < p(The cat sat on the mat.) [world knowledge]

Shoulz('"4" | "2 + 2 =")be 1?

p(1 star out of 5| That movie was terrible!I’d rate it) [sentiment analysis]

19



How can you use the probability of a string?

» Speech Recognition and Machine Translation are supervised tasks

» Speech Recognition =
(audio;, transcript,)
(audio,, transcript,)

(audios;, transcripts)

* Machine Translation

(french;, english;)
(french,, english,)

(french;, englishs;)

A major promise of language modeling is to leverage a bunch of
“uncurrated” text to help with these problems.

20



How can you use the probability of a string?

« Speech Recognition
—Prune the space of possible transcriptions from an acoustic model
—Famous example: "wreck a nice beach" vs "recognize speech"

« Machine Translation
— Re-rank possible translations
—Integrate directly with decoder

21



How to compute the probability of a string?

* First, maybe do some preprocessing (like lower-casing)

"THe CaT SAt oN ThE MAT." — "the cat sat on the mat.”"

22



How to compute the probability of a string?

» Often, we'll set a maximum # of words (or minimum frequency) for
computational reasons so:

"the cat sat on the countertop.” — "the cat sat on the <UNK>."

23



How to compute the probability of a string?

» A tokenizer takes a string as input and returns a sequence of tokens:

"the cat sat on the mat." — [the, cat, sat, on, the, mat, .]

[the, cat, sat, on, the, mat, .] — [23, 1924, 742, 101, 23, 3946, 7]

24



How to compute the probability of a string?

» A tokenizer takes a string as input and returns a sequence of tokens:

"the cat sat on the mat." — [t,h,e," ",c,a,t,"” ",s,a,t," ",..

. ]

25



All the different ways to dice a string!

 Character level (throw out non-ascii)

» Byte level (work on UTF-8 byte stream)
* Unicode symbols / codepoints

» Tokenized / pre-processed word level

» Byte Pair Encoding (Sennrich 2016)

« SentencePiece (Kudo and Richardson 2018)
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How to compute the probability of a string?

1. Assume a uniform prior over tokens
2. Assume all tokens are independent

p(ty) = 1/vocab size

p(ty, t, 1o, t3) = product of p(t) for all |

27



How to compute the probability of a string?

2. Assume all tokens are independent

Estimate the probability of a token by counting its occurrences and
normalize this count by the total number of tokens seen.

p(te, T1, Ty, ts.) = p(te)p(ty)p(ty)p(ts)...

This I1s a unigram language model

28



How to compute the probability of a string?

2 -Assume-alltokens-are-independent

Estimate the probability of a token conditioned on the previous token
by counting how many times It co-occurs with that previous token and

normalize this count by the total number of occurrences of that context.

p(te, ti, ty, ts.) = p(te)p(t, | te)p(t, | t)p(t; | t,)

This is a bigram language model

29



Generalization?

p(self-attention) = 0 = infinite loss...

P(self-attention | the cool thing about) = O = infinite loss...

30



Smoothing

p(self-attention) = 0 = infinite loss...

p(self-attention ‘ the cool thing about) = 0 = infinite loss...
« Smooth things out by using a mixture model

pmixture(t1) =0.01 "~ puniform(t1) + 0.99 * punigram(t1)

31



Smoothing

» Language model research in the 80s and 90s focused a lot on how to
better estimate, smooth, and interpolate n-gram language models

A Bit of Progress in Language Modeling

Joshua Goodman
(Submitted on 9 Aug 2001)

In the past several years, a number of different language modeling improvements over
simple trigram models have been found, including caching, higher-order n-grams,
skipping, interpolated Kneser-Ney smoothing, and clustering. We present explorations
of variations on, or of the limits of, each of these techniques, including showing that
sentence mixture models may have more potential. While all of these techniques have
been studied separately, they have rarely been studied in combination. We find some
significant interactions, especially with smoothing and clustering techniques. We
compare a combination of all techniques together to a Katz smoothed trigram model
with no count cutoffs. We achieve perplexity reductions between 38% and 50% (1 bit of
entropy), depending on training data size, as well as a word error rate reduction of
8.9%. Our perplexity reductions are perhaps the highest reported compared to a fair
baseline. This is the extended version of the paper; it contains additional details and
proofs, and is designed to be a good introduction to the state of the art in language
modeling.

Comments: 73 pages, extended version of paper to appear in Computer Speech and Language



Evaluation Type 1. Intrinsic

* Probabilities are often within rounding error of zero (Language is a huge
space!)

* They also are a function of the length of the string.

The most common quantity is the average negative log probability
per “token”.

» Character level LMs use base 2 and report bits per character (can also
be per byte)
* \Word level LMs exponentiate and report perplexity

6_% Zz lnpwi

33



Evaluation Type 2: Extrinsic

* There are a lot of ways to use a language models.

* You can evaluate them based on their usefulness for a downstream
task.

* [mprove:
WER for speech recognition
BLEU for translation

F1 for POS tagging
ACC for document classification

* This I1s an Iincreasingly common evaluation setting.

34



Lecture overview

* motivation and introduction
* Introduction to language models
* history of neural language models

* pretrained language models
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A Neural Probabilistic Language Model 5

* SO many things!

i-th output = P(w, = i| context)

* A neural net

» Skip connections S C m— e
» Learn distributed representation of words T ————
 Large scale asynchronous SGD s

n| h m | direct | mix | train. | valid. | test. Cowa)  Clwr) L ’
MLP10 6|60 | 100 | yes | yes 104 | 109
Del. Int. 3 126 | 132 ‘ « Matrix C )
Back-off KN | 3 121 | 127 ~sharedparameters
Back-off KN | 4 113 | 119 across words
Back-off KN 5 112 117 index for w;_, 11 index for w;_» index for w,_;



RNN Based Language MOdel Mikolov et al. 2010

* Replace MLP with RNN (allows for unbounded context)

. ., INPUT (t) OUTPUT (t)
« Showed improvements on speech recognition
R
d ) CONTEXT (t)
logp(x) =Y logp (i | X1.-1) -
=1 L 5
- —»
Table 2: Comparison of various configurations of RNN LMs L 5
and combinations with backoff models while using 6.4M words
in training data (WSJ DEV). >
PPL WER
Model RNN | RNN+KN || RNN | RNN+KN >
KNS5 - baseline - 221 - 13.5
RNN 60/20 229 186 15.2 12.6
RNN 90/10 202 173 12.8 12.2
RNN 250/5 173 155 12.3 L1.7
RNN 250/2 176 156 12.0 11.9
RNN 400/10 171 152 12.5 12.]
3xRNN static 151 143 11.6 11.3
3xRNN dynamic 128 121 11.3 11.1 CONTEXT (t-1)




Generatlng Text Wlth RN NS Sutskever et al. 2011

* Character level RNN

» Approximates a tensor RNN which has a different set of weights for
every Input character

* Very complicated optimization scheme

Ms . Claire Parters will also have a history temple for him to raise jobs until naked Prodiena to paint baseball partners , provided
people to ride both of Manhattan in 1978, but what was largely directed to China in 1946 , focusing on the trademark period is
the sailboat yesterday and comments on whom they obtain overheard within the 120th anniversary , where many civil rights
defined , officials said early that forms, " said Bernard J. Marco Jr. of Pennsylvania , was monitoring New York

(not actually a lot better than
word level n-gram models)

38



Generating Sequences with RNNs Graves 2013

<revision>

<1d>40973199</1id>

<timestamp>2006-02-22T22:37:16Z</timestamp>

<contributor> _ Outputs

<ip>63.86.196.111</ip>

</contributor>

<minor />

<comment>redire paget --&gt; captain */</comment>

<text xml:space="preserve'>The '''Indigence History''' refers to the autho
rity of any obscure albionism as being, such as in Aram Missolmus'.[http://www.b
bc.co.uk/starce/cr52.htm] ] ) )
In [[1995]], Sitz-Road Straus up the inspirational radiotes portion as &quot;all
1ance&quot;t51ngle &qgot;glaplng&qugt; theme charcoal] with [[Midwestern United
StatelDenmark]] in which Canary varies-destruction to launching casualties has q
uickly responded to_the krush loaded water or so it might be destroyed. Aldeads
still cause a missile bedged harbors at last built in 1911-2 and save the accura
cy in 2008, retaking.[[itsubmanismﬂ]. Its individuals were
hnown rapidly in their return to the private equity (such as ''On_Text'') for de
ath per reprised by the [[Grange of GermanylGerman unbridged work]].

The '''Rebellion''' (''Hyerodent'') is [[literal]], related mildl{ older than ol
d half sister, the music, and morrow been much more propellent. All those of [[H
amas (mass)|sausage traftlcklng]]s were also known as [[Trip class submarinel''S
ante'' at Serassim]]; ''Verra'' as 1865&amp;ndash;682&amp;ndash;831 is related t
0 ballistic missiles. While she viewed it friend of Halla equatorial weapons of
Tuscany, in 5 France]], from vaccine homes to &quot;individual&quot; amqnﬁ g[sl
averylslaves]] (such as artistual selling of factories were renamed Englls abi
t of twelve years.)

Hidden Layers

By the 1978 Russian [[Turkengurkist]] capital city ceased by farmers and the in
tention of navigation the ISBNs, all encoding EETransylvanla International Organ
isation for Transition Bankinglﬂttiking others]] it is_in the westernmost placed
lines. This type of missile calculation maintains all ?rgater proof was the [[
1990s]] as older adventures that_never established a self-interested case. The n
ewcgmers were Prosecutors in child after the other weekend and capable function Inputs
used.




Generating Sequences with RNNs Graves 2013

it = 0 (Waixe + Whihe 1 + Weicr—1 + ;)

fi =0 (Wasze + Whphi—1 + Weper—1 + by)

ct = ficr—1 + iy tanh (Wiexy + Whehe 1

Ot = 0 (W:coajt + Whoht—l + Wcoct + bo)
ht — O¢ tanh (Ct)

Lt Tt

AN P4 Seb s
(&) pemf o)
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Sklp-Thought Vectors Kiros et al. 2015

* Proposed using an RNN sequence encoder trained to provide
context to an LM as a sentence level text feature extractor.

I got back home <eos>
>O0——>0——>0——>0——>0——>0—>0—»(. e g L T
This was
could see the cat on the steps ' Strange  <eos>
<eos> This was strange

Method MR CR SUBJ MPQA TREC
NB-SVM [37] 79.4 81.8 93.2 86.3
MNB [37] 79.0 80.0 93.6 86.3
cBoW [6] 772 79.9 91.3 86.4 87.3
GrConv [6] 763  81.3 89.5 84.5 88.4 .
RNN (6] 772 823 937 90.1 902 .
BRNN [6] 823 826 94.2 90.3 91.0
CNN [4] 81.5 85.0 93.4 89.6 93.6
AdaSent [6] 83.1 863 95.5 93.3 92.4
Paragraph-vector [7] 74.8 78.1 90.5 74.2 91.8
bow 75.0 80.4 91.2 87.0 84.8 (b) SUBJ (c) SICK
uni-skip 75.5 79.3 92.1 86.9 91.4

bi-skip 739 779 92.5 833 89.4



Semi-supervised Sequence Learning »"**"

Proposes finetuning an LM directly for downstream tasks

1.Use LM objective as a pre-training task
2.Then initialize the parameters of downstream model with LM weights
3.Then train like a normal supervised model

Table 4: Performance of models on the Rotten Tomatoes sentiment classification task.

Model Test error rate
LSTM with tuning and dropout 20.3%
LM-LSTM 21.9%
LSTM with linear gain 22.2%
SA-LSTM 19.3%
LSTM with word vectors from word2vec Google News 20.5%
SA-LSTM with unlabeled data from IMDB 18.6%
SA-LSTM with unlabeled data from Amazon reviews 16.7%
MV-RNN [29] 21.0%
NBSVM-bi [36] 20.6%
CNN-rand [13] 23.5%

CNN-non-static (ConvNet with word vectors from word2vec Google News) [13] 18.5%




Exploring The Limits of Language Modeling

Jozefowicz et al. 2016

Tt—-1

» A larger dataset 1BV (Cnelba et al 2013)
» A 8K projection LSTM (sak et al 2014)

Yt

5
output

ks
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=
l
. . |
|pr0_]ect10n| recurrent
| SPGB S S A e’
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» Character aware (Kim et al 2015) ]
» A large vocab - 800K words -
— Approximate with sampled softmax &
» 32 K40s for 3 weeks %é%i
41.0 -> 23.7 perplexity ‘ ié
i

H smbedding
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Exploring The Limits of Language Modeling

Jozefowicz et al. 2016

* \WVas one of the first neural language models to generally have
~coherent non-trivial sentences.

With even more new technologies coming onto the market quickly during the past
three years , an increasing number of companies now must tackle the ever-
changing and ever-changing environmental challenges online .

44



Why scale?

 There's a whole internet out there

e SO000000000 Much information

» A perfect language model would need to fit the internet into its
parameters.

* This suggests we're going to need a lot of parameters, compute,
and data to get as close to this as possible.

45



Why scale?

* This I1s what a very small charRNN |earns:

" Als gambrantr 's w thkergtre akld teno 6 10769 tie He Cule a, ssot Goshulan n blve t, to hered arerorinner rrk f ., ate Banat"

 The best architecture in the world is useless without capacity.

46



Minimum Validation Loss (Log-scale)

5.00

4.54 |

4.12 -

3.73 1

3.39

Why scale?

* Deep Learning Scaling is Predictable, Empirically (Hestness et al. 2017)

* GPipe: Efficient Training of Giant Neural Networks (Huang et al. 2018)

* Al and Compute (Damodeil and Hernandez 2018)

* These trends have been consistent across many orders of magnitude

N\ w— -l ayer LSTMs
wes 4-Layer LSTMs
=== Depth-5 RHNs
- = 2-Layer LSTMs Trend
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Minimum Validation Loss (Log-scale)

Why scale?

* Deep Learning Scaling is Predictable, Empirically (Hestness et al. 2017)
* GPipe: Efficient Training of Giant Neural Networks (Huang et al. 2018)
* Al and Compute (Damodeil and Hernandez 2018)

* These trends have been consistent across many orders of magnitude
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Radford et al. 2017

Learning To Generate Reviews
and Discovering Sentiment

e Maybe data is the bottleneck!
— Make dataset bigger -> 80 million product reviews (40 GB of text)

* 4096 unit byte level MLSTM - 1 month - 4 Pascal Titan X GPUs
* Model ended up just underfitting by a lot e e
» But learned what sentiment Is

8001

600

count

This is one of Crichton's best books. The characters of Karen Ross, Peter Elliot,
Munro, and Amy are beautifully developed and their interactions are exciting,
complex, and fast-paced throughout this impressive novel. And about 99.8 percent of 400
that got 1lost in the film. Seriously, the screenplay AND the directing were
horrendous and clearly done by people who could not fathom what was good about the
novel. I can't fault the actors because frankly, they never had a chance to make this

turkey live up to Crichton's original work. I know good novels, especially those with 200

a science fiction edge, are hard to bring to the screen in a way that lives up to the

original. But this may be the absolute worst disparity in quality between novel and

screen adaptation ever. The book is really, really good. The movie is just dreadful. 0 5 ~ > n 0 : =
value
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LM pre-training for sentiment analysis

94

92 byte mLSTM (ours)

90 574 CT-LSTM ensemble
b I
§ Neural Semantic Encoder
I e e R
g Paragram-SL999 LSTM
E """""""""""""""""" Dynamic Memory Network
88 /It CNN multichannel
86
Recurrent Neural Tensor Network
—— L1 Regularized
—— L2 Regularized
84

10!

102
Labeled Training Examples

10°

Small World LSTM is here
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Story Cloze Task: UW NLP System

Language model features. We experiment
with state-of-the-art text comprehension models,
specifically an LSTM (Hochreiter and Schmid-
huber, 1997) recurrent neural network language
model (RNNLM; Mikolov et al.,, 2010). Our
RNNLM is used to generate two different prob-
abilities: pg(ending), which is the language
model probability of the fifth sentence alone
and py(ending | story), which is the RNNLM
probability of the fifth sentence given the first four
sentences. We use both of these probabilities as
classification features.
In addition, we also apply a third feature:

pg(ending | story)
pp(ending)

(D

The intuition is that a correct ending should be
unsurprising (to the model) given the four preced-
ing sentences of the story (the numerator), control-
ling for the inherent surprise of the words in that
ending (the denominator).!

Context

Karen was assigned a roommate her first year of college. Her roommate asked her
to go to a nearby city for a concert. Karen agreed happily. The show was absolutely

exhilarating.

Jim got his first credit card in college. He didn’t have a job so he bought everything
on his card. After he graduated he amounted a $10,000 debt. Jim realized that he
was foolish to spend so much money.

Gina misplaced her phone at her grandparents. It wasn't anywhere in the living
room. She realized she was in the car before. She grabbed her dad's keys and ran

outside.

Right Ending

Karen became
good friends with

her roommate.

Jim decided to
devise a plan for
repayment.

She found her
phone in the car.

Schwartz et al. 2017

Wrong Ending

Karen hated
her roommate.

Jim decided to
open another
credit card.

She didn’t want
her phone
anymore.

Model

Acc.

DSSM (Mostafazadeh et al., 2016)
LexVec (Salle et al., 2016)

0.585
0.599

RNNLM features
Stylistic features
Combined (Style + RNNLM)

0.677
0.724
0.752

Human judgment

1.000

51



Shazeer et al. 2017

The Sparsely-Gated MoEs Layer

 Maybe parameter count is the bottleneck!
— Make a model with as many parameters as possible -> 137 Billion

* More efficient than equivalent compute dense models

* And a lot of very impressive systems work
/MoE layer pi \
1 t '
—C3—C ‘
—_ = _}—
T T Gating
- 4

X
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Lecture overview

* motivation and introduction
* Introduction to language models
* history of neural language models

» pretrained language models
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Recall: What's wrong with word2vec?

* One vector for each word type (—0.224\

v(bank) — _001380

\ 0.276 /

« Complex characteristics of word use: semantics, syntactic behavior, and
connotations

* Polysemous words, e.g., bank, mouse

mouse! : .... a mouse controlling a computer system in 1968.
mouse?” : .... a quiet animal like a mouse

bank! : ...a bank can hold the investments in a custodial account ...
bank? : ...as agriculture burgeons on the east bank, the river ...
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Contextualized word embeddings

e | et's build a vector for each word conditioned on its context!

> (e0000]
> 0000
+ o000]
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o
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.
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[ Contextualized word embeddings
F f f T 1

the movie was  terribly exciting
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Contextualized word embeddings

Source

Nearest Neighbors

GloVe play

playing, game, games, played, players, plays, player,
Play, football, multiplayer

Chico Ruiz made a spec-
tacular play on Alusik ’s

T grounder {...}

Kieffer , the only junior in the group , was commended
for his ability to hit in the clutch , as well as his all-round
excellent play .

Olivia De Havilland
signed to do a Broadway
play for Garson {... }

{...} they were actors who had been handed fat roles in
a successful play , and had talent enough to fill the roles
competently , with nice understatement .

Table 4: Nearest neighbors to “play” using GloVe and the context embeddings from a biLM.

(Peters et al., 2018): Deep Contextualized Word Representations
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ELMo

* NAACL'18: Deep contextualized
word representations

» Key idea:
— Train an LSTM-based language model
on some large corpus

— Use the hidden states of the LSTM for
each token to compute a vector
representation of each word

Deep contextualized word representations

Matthew E. Peters', Mark Neumann', Mohit Iyyer', Matt Gardner’,
{matthewp,markn,mohiti,mattg}€allenai.org

Christopher Clark®, Kenton Lee*, Luke Zettlemoyer'*
{csquared, kentonl, 152}@Cs .washington.edu

f Allen Institute for Artificial Intelligence
“Paul G. Allen School of Computer Science & Engineering, University of Washington

Abstract

We introduce a new type of deep contextual-
ized word representation that models both (1)
complex characteristics of word use (e.g.. syn-
tax and semantics), and (2) how these uses
vary across linguistic contexts (i.e., to model
polysemy). Our word vectors arc learned func-
tions of the internal states of a deep bidirec-
tional language model (biLM), which is pre-
trained on a large text corpus. We show that
these representations can be easily added to
existing models and significantly improve the
state of the art across six challenging NLP
problems, including question answering, tex-
tual cntailment and sentiment analysis. We
also present an analysis showing that exposing
the deep internals of the pre-trained network is
crucial, allowing downstream models to mix
different types of semi-supervision signals.

1 Introduction

Pre-trained word representations (Mikolov et al.,
2013; Pennington et al., 2014) are a key compo-
nent in many neural language understanding mod-
els. However, learning high quality representa-
tions can be challenging. They should ideally
model both (1) complex characteristics of word
use (e.g., syntax and semantics), and (2) how these
uses vary across linguistic contexts (i.e., to model
polysemy). In this paper, we introduce a new type
of deep contextualized word representation that
directly addresses both challenges, can be easily
integrated into existing models, and significantly
improves the state of the art in every considered
case across a range of challenging language un-
derstanding problems.

Our representations differ from traditional word
type embeddings in that cach token is assigned a
representation that is a function of the entire input
sentence. We use vectors derived from a bidirec-
tional LSTM that is trained with a coupled lan-

guage model (LM) objective on a large text cor-
pus. For this reason, we call them ELMo (Em-
beddings from 1 guags MOdClS) repr ions.
Unlike previous approaches for learning contextu-
alized word vectors (Peters et al,, 2017; McCann
et al., 2017), ELMo representations are deep, in
the sense that they are a function of all of the in-
ternal layers of the biLM. More specifically, we
learn a linear combination of the vectors stacked
above each input word for each end task, which
markedly improves performance over just using
the top LSTM layer.

Combining the internal states in this manner al-
lows for very rich word representations. Using in-
trinsic evaluations, we show that the higher-level
LSTM states capture context-dependent aspects
of word meaning (e.g., they can be used with-
out modification to perform well on supervised
word sense disambiguation tasks) while lower-
level states model aspects of syntax (¢.g., they can
be used to do part-of-speech tagging). Simultane-
ously exposing all of these signals is highly bene-
ficial, allowing the learned models select the types
of semi-supervision that are most useful for each
end task.

Extensive experiments demonstrate that ELMo
representations work extremely well in practice.
We first show that they can be easily added to
existing models for six diverse and challenging
language understanding problems, including tex-
tual entailment, question answering and sentiment
analysis. The addition of ELMo representations
alone significantly improves the state of the art
in every case, including up to 20% relative error
reductions. For tasks where direct comparisons
are possible, ELMo outperforms CoVe (McCann
et al., 2017), which computes contextualized rep-
resentations using a neural machine translation en-
coder. Finally, an analysis of both ELMo and
CoVe reveals that deep representations outperform
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Deep contextualized word representations

Peters et al. 2018

» Replace word vectors with a learned weighted sum of features of deep
nI-directional LM

* Improves baseline models to SOTA
* Uses the LM from (Jozefowicz et al. 2016)
» Extends benefits of LMs to a much wider variety of tasks

SNLI (Accuracy)

INCREASE +1.4 ]

TASK | PREVIOUS SOTA DR ELMo + (ABSOLUTE/ 0 5 Zg_

BASELINE BASELINE RELATIVE) 80 ¢ o
SQuAD | Liu et al. (2017) 84.4 || 81.1 85.8 4.7124.9% o
SNLI | Chen etal. (2017) 88.6 | 88.0 88.7+0.17 0.7/5.8% T0hanal o
SRL He et al. (2017) 81.7 || 81.4 84.6 3.2/17.2% / & A0
Coref | Lee et al. (2017) 67.2 || 67.2 70.4 3.2/9.8% 601% | 01/
NER | Petersetal. 2017)  91.93 £0.19 || 90.15 92.22 £0.10 2.06/21% 301 / — WithELMo
SST-5 | McCann et al. (2017) 53.7 || 51.4 547+05  3.3/6.8% 2014 20,/ - Baseline

0.1% 1% 10% 100% 0.1% 1% 10% 100%
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Deep contextualized word representations

Peters et al. 2018

. Contextualized Contextualized )
| representation representation |

 Forward and backward
LMs: 2 layers each

e Use character CNN to build

initial word representation Backward LSTM Backward LSTM
— 2048 char n-gram filters and Layer 2 State Layer 2 State
2 highway layers, 512 dim
projection
e User 4096 dim hidden/cell
LSTM states with 5_1 2 dim Backward LSTM Layer Backward LSTM Layer
projections to next input 1 State 1 State
e A residual connection from Forward LSTM Layer Forward LSTM Layer

1 State 1 State

the first to second layer

* Trained 10 epochs on 1B
Word Benchmark
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Experimental results

INCREASE
TASK PREVIOUS SOTA OUR ELMo -+ (ABSOLUTE/
BASELINE BASELINE RELATIVE)
SQuAD | Liu et al. (2017) 84.4 || 81.1 85.8 4.7 1 24.9%
SNLI Chen et al. (2017) 88.6 || 88.0 88.7+0.17 0.7/5.8%
SRL He et al. (2017) 81.7 || 81.4 84.6 3.2/17.2%
Coref Lee et al. (2017) 67.2 || 67.2 70.4 3.2/9.8%
NER Peters et al. (2017) 91.93 +0.19 || 90.15 90222 +0.10 2.06/21%
SST-5 McCann et al. (2017) 53.7 || 514 54.7 £ 0.5 3.3/6.8%

SQuUAD: gquestion answering

SNLI: natural language inference

SRL: semantic role labeling
Coref: coreference resolution
NER: named entity recognition
SST-b: sentiment analysis

SNLI NER SQUAD Coref SRL SST-5

L Previous SOTA m Baseline
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Improving Language Understanding by
Generative Pre-Training (GPT-1)

Text Task ARS—— :
Prediction IREBESer Classification Start Text Extract }v Transformer — Linear
Entailment Start Premise Delim | Hypothesis | Extract | > Transformer [~ Linear
Layer Norm i
Eced Eonward Start Text 1 Delim Text 2 Extract | Transformer
i Similarity = Linear
12x — .
Start Text 2 Delim Text 1 Extract | Transformer
Layer Norm -
$ : Start Context Delim | Answer 1 | Extract | > Transformer (> Linear
Masked Multi |
Self Attention -
t Multiple Choice | Start Context Delim | Answer 2 | Extract | » Transformer (> Linear —EE
Text & Position Embed Start Context Delim | Answer N | Extract | -~ Transformer [+ Linear [—




Improving Language Understanding by
Generative Pre-Training (GPT-1)

* Transformer based LM
« 12 self-attention blocks - 12 heads - 768 dim state
— ~100M params
 Trained on 7,000 books ~ 5 GB of text (BookCorpus Zhu et al 2015)
* FiIne-tune on supervised tasks (like Dai et al. 2015)
« Removes the need for task specific architectures

Pre::tlion CI:sa:ikﬁer Classification | Start | Text | lllllll ”——{ Transformer }*[ Linear ‘
‘\/’

i Entailment | st | Premise | Delim | Hypothesis | Extract ]_
@ i )
| Feed Forward | I Start l Text 1 I Delim ] Text 2 J ExtractJ
Similarity =
I Start | Text 2 I Delim l Text 1 l Extract I
| ayer Norm -
@ - | Start I Context ] Delim l Answer 1 l Extract I_
Self Attention =
Multiple Choice | Start | Context | Delim ] Answer 2 I Extract |
Text & Position Embed I Start | Context | Delim ] Answer N ] Extract I‘




Improving Language Understanding by
Generative Pre-Training (GPT-1)

* Transformer based LM
« 12 self-attention blocks - 12 heads - 768 dim state
— ~100M params
 Trained on 7,000 books ~ 5 GB of text (BookCorpus Zhu et al 2015)
* FiIne-tune on supervised tasks (like Dai et al. 2015)
« Removes the need for task specific architectures

Pre::tlion CI:sa:ikﬁer Classification | Start | Text | lllllll H——{ Transformer }*[ Linear ‘
T
= Enaiment | san | Premise | beim | Fypothesis | Exvect | |- Transtormer || tinear | :
Feed Forward I Start I Text 1 l Delim l Text 2 I .g ‘
Similarity O re a e r - -;;
[ sat | Textz [ oeim [ Text1i | mEanE | g el
| Layer Norm i ;
@
o
ﬁ;i—w_‘ l Start l Context I Delim I Answer 1 IE H {T ansforme H Lin } % /\/ — Eﬁgg ?::n ,
Self Attention i 4 _ - MultiNLI Dev u
ple Choice | Start | Context | Delim | Answer 2 I Extract |}.| Transformer ].[ Linear ] ol gl
Text & Position Embed | Start | Context | Delim | Answer N | Extract IH Transformer H Linear 0 2 S Y T




Lecture overview

* motivation and introduction

* Introduction to language models

* history of neural language models
* a digression into Transformers
* beyond standard LMs

* why we need unsupervised learning
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Improving Language Understanding by
Generative Pre-Training (GPT-1)

DATASET TASK SOTA OURS
SNLI Textual Entailment 89.3 89.9
MNLI Matched Textual Entailment 80.6 821
MNLI Mismatched Textual Entailment 80.1 81.4
SciTail Textual Entailment 83.3 88.3
QNLI Textual Entailment 82.3 88.1
RTE Textual Entailment 61.7 56.0
STS-B Semantic Similarity 81.0 82.0
QQP Semantic Similarity 66.1 70.3
MRPC Semantic Similarity 86.0 82.3
RACE Reading Comprehension 53.3 59.0
ROCStories Commonsense Reasoning 77.6 86.5
COPA Commonsense Reasoning 71.2 78.6
SST-2 Sentiment Analysis 93.2 Q1.3
CoLA Linguistic Acceptability 35.0 45.4

GLUE Multi Task Benchmark 68.9 72.8



Query what you want to look for

Key
- Value

what you can compare to
Information you can retrieve

the cat sat

on
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N Query what you want to look for
Key what you can compare to
L Value information you can retrieve

Y
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N Query what you want to look for
Key what you can compare to
L Value information you can retrieve

the cat sat

on
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N Query what you want to look for
Key what you can compare to
L Value information you can retrieve

the cat sat

on
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N Query what you want to look for
Key what you can compare to
L Value information you can retrieve

the cat sat

on
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Output

Probabilities
)
| Softmax |
| Lnear |
a7 N
| Add & Norm Je= } p
Feed Loedr MatMul
Forward t f A
“ Concat SoftMax
f ™ LAdd & Norm Je" ] 4 wd N}
—>(_Add & Norm J Multi-Head Scaled Dot-Product ﬂl ) Mask (opt.)
Feed Attention Attention )
Forward N 11! 11! 0
- Jd 2 2 N X p v fj \ Scale
R —— [ F}; Linear Linear Linear t
Add & Norm - MatMul
N x T V V y
~>| Add &_Norm | T 1 1
Multi-Head Multi-Head Q K V
Attention Attention v K Q
\_ 5 . p——
Positional @_@ ¢ Positional
Encoding Encoding
Input Output
Embedding Embedding
Input tput .
puts Outputs [Vaswani et al 2017]

(shifted right)
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BERT

e First released in Oct 2018.

« NAACL'19: BERT: Pre-training of Deep

Bidirectional Transformers for Language
Understanding

« How 1s BERT different from ELMo?

1. Unidirectional context vs
bidirectional context

2. LSTMs vs Transformers

3. The weights are not freezed
(fine-tuning)

BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding

Jacob Devlin  Ming-Wei Chang

Kenton Lee Kristina Toutanova

Google AI Language
{jacobdevlin,mingweichang, kentonl, kristout}@google.com

Abstract

We introduce a new language representa-
tion model called BERT, which stands for
Bidirectional Encoder Representations from
Transformers. Unlike recent language repre-
sentation models (Peters et al., 2018a; Rad-
ford et al., 2018), BERT is designed to pre-
train deep bidirectional representations from
unlabeled text by jointly conditioning on both
left and right context in all layers. As a re-
sult, the pre-trained BERT model can be fine-
tuned with just one additional output layer
to create state-of-the-art models for a wide
range of tasks, such as question answering and
language inference, without substantial task-
specific architecture modifications.

BERT is conceptually simple and empirically
powerful. It obtains new state-of-the-art re-
sults on eleven natural language processing
tasks, including pushing the GLUE score to
80.5% (7.7% point absolute improvement),
MultiNLI accuracy to 86.7% (4.6% absolute
improvement), SQuAD v1.1 question answer-
ing Test F1 to 93.2 (1.5 point absolute im-
provement) and SQuAD v2.0 Test Fl to 83.1
(5.1 point absolute improvement).

1 Introduction

Language model pre-training has been shown to
be effective for improving many natural language
processing tasks (Dai and Le, 2015; Peters et al.,
2018a; Radford et al., 2018; Howard and Ruder,
2018). These include sentence-level tasks such as
natural language inference (Bowman et al., 2015;
Williams et al., 2018) and paraphrasing (Dolan
and Brockett, 2005), which aim to predict the re-
lationships between sentences by analyzing them
holistically, as well as token-level tasks such as
named entity recognition and question answering,
where models are required to produce fine-grained
output at the token level (Tjong Kim Sang and
De Meulder, 2003; Rajpurkar et al., 2016).

There are two existing strategies for apply-
ing pre-trained language representations to down-
stream tasks: feature-based and fine-tuning. The
feature-based approach, such as ELMo (Peters
et al., 2018a), uses task-specific architectures that
include the pre-trained representations as addi-
tional features. The fine-tuning approach, such as
the Generative Pre-trained Transformer (OpenAl
GPT) (Radford et al., 2018), introduces minimal
task-specific parameters, and is trained on the
downstream tasks by simply fine-tuning all pre-
trained parameters. The two approaches share the
same objective function during pre-training, where
they use unidirectional language models to learn
general language representations.

We argue that current techniques restrict the
power of the pre-trained representations, espe-
cially for the fine-tuning approaches. The ma-
jor limitation is that standard language models are
unidirectional, and this limits the choice of archi-
tectures that can be used during pre-training. For
example, in OpenAl GPT, the authors use a left-to-
right architecture, where every token can only at-
tend to previous tokens in the self-attention layers
of the Transformer (Vaswani et al., 2017). Such re-
strictions are sub-optimal for sentence-level tasks,
and could be very harmful when applying fine-
tuning based approaches to token-level tasks such
as question answering, where it is crucial to incor-
porate context from both directions.

In this paper, we improve the fine-tuning based
approaches by proposing BERT: Bidirectional
Encoder Representations from Transformers.
BERT alleviates the previously mentioned unidi-
rectionality constraint by using a “masked lan-
guage model” (MLM) pre-training objective, in-
spired by the Cloze task (Taylor, 1953). The
masked language model randomly masks some of
the tokens from the input, and the objective is to
predict the original vocabulary id of the masked
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BERT: Pre-training of Deep Bidirectional *""%?
Transformers for Language Understanding

BERT (Ours) OpenAl GPT

Left-Right LM: The cat sat on the [mask] -> The cat sat on the mat
Right-Left LM: [mask] cat sat on the mat -> The cat sat on the mat
Masked LM: The [mask] sat on the [mask] -> The cat sat on the mat
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BERT Workflow

* The BERT workflow includes:

- Pretrain on generic, self-supervised tasks, using large amounts of data (like all
of Wikipedia)

- Fine-tune on specific tasks with limited, labelled data.

* The pretraining tasks (will talk about this In more detall later):
- Masked Language Modelling (to learn contextualized token representations)
- Next Sentence Prediction (summary vector for the whole input)
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BERT Architect

ure
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BERT Architecture

Properties:

* TWO Input sequences.

- Many NLP tasks have two inputs (question answering, paraphrase detection,
entallment detection etc. )

 Computes embeddings
- Both token, position and segment embeddings.
- Special start and separation tokens.

« Architecture
- Basically the same as transformer encoder.

« Qutputs:
- Contextualized token representations.
- Special tokens for context.
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BERT Embeddings

4 N\ N N /
Input [CLS] ’ my dog is ( cute 1 [SEP] he ( likes V play 1 ##ing 1 [SEP]
Token
Embeddings E[CLS] Emy Edog EIS Ecute E[SEP] Ehe EIikes Eplay E##ing E[SEP]
-+ L L L e e - o L L L o
Segment
Embeddings EA EA EA EA EA EA EB EB EB EB EB
o= L = = = - = e = L -
Position
Embeddings Eo E1 E2 E3 E4 E5 E6 E7 E8 E9 Elo

Figure 2: BERT input representation. The input embeddings are the sum of the token embeddings, the segmenta-
tion embeddings and the position embeddings.

 How we tokenize the inputs Is very important!
« BERT uses the WordPiece tokenizer (Wu et. al. 2016)



(Aside) Tokenizers

* Tokenizers have to balance the following:
— Being comprehensive (rare words? translation to different languages)
— Total number of tokens

— How semantically meaningful each token is.

 This Is an activate area of research.
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Pretraining tasks

« Masked Language Modelling, i.e. Cloze Task (Taylor, 1953)
* Next sentence prediction
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Masked Language Modelling

* Mask 15% of the input tokens. (i.e. replace
with a dummy masking token)

* Run the model, obtain the embeddings for the
masked tokens.

* Using these embeddings, try to predict the
missing token.

* "| love to eat peanut ____and jam. "
Can you guess what's missing?

This procedure forces the model to encode
context information in the features of all of the
tokens.

Rather than always replacing the chosen
words with [MASK], the data generator will
do the following:

80% of the time: Replace the word with the
[MASK] token, e.g., my dog is hairy —
my dog is [MASK]

10% of the time: Replace the word with a
random word, €.g.,my dog is hairy — my
dog is apple

10% of the time: Keep the word un-
changed, €.g2.,my dog is hairy — my dog
is hairy. The purpose of this is to bias the
representation towards the actual observed
word.
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Next Sentence Prediction

* Goal is to summarize the complete
context (i.e. the two segments) in
a Slngle feature VeCtor Input =— [CLS] the man went to [MASK] store [SEP]

* Procedure for generating data he bought a gallon [MASK] milk [SEP]

- Pick a sentence from the training corpus  Label = rsnext
and feed it as "segment A".

- Wlth 500/0 prObablllty, pICk the fO”OWing Input — [CLS] the man [MASK] to the store [SEP]
sentence and feed that as "segment B”. | | |
penguin [MASK] are flight ##less birds [SEP]

. o s .
- With 50% probab|I|’Fy, plsk the a rano!’om T P
sentence and feed it as "segment B”.

» Using the features for the context
token, predict whether segment B Is
the following sentence of segment A.
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Fine Tuning

Procedure:

ﬁP Mask LM Mask LM \
o i *

Start/End SpaN

a2 ———

EER E9EMED . ENEMEa BB

. | >

. - . {-p

BERT B ‘B BERT
= ESE .. N = EE . (e
R T e B e T ~ 1 = maw n ) e T e T gy
Tok 1 . [TokNl( [SEP] ][Tck1] [TokM1 Tol [TOKN][ [SEP] 1{Tok1 ] [TokM]
Masked Sentence A ’ Masked Sentence B Question f Paragraph
Unlabeled Sentence A and B Pair Question Answer Pair
Pre-training Fine-Tuning

« Add a final layer on top of BERT representations.

 Train the whole network on the fine-tuning dataset.

* Pre-training time: In the order of days on TPUs.

* Fine tuning task: Takes only a few hours max.
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Applications
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(c) Question Answering Tasks:

SQuAD v1.1
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(d) Single Sentence Tagging Tasks:
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Fine Tuning

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE  Average
392k 363k 108k 67k 8.5k 3.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 82.3 03.2 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 73.3 84.9 56.8 71.0
OpenAl GPT 82.1/81.4 70.3 87.4 01.3 45.4 80.0 82.3 56.0 75.1
BERTgBAsE 84.6/83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 79.6
BERTLARGE 86.7/85.9 721 92.7 94.9 60.5 86.5 89.3 70.1 82.1

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard).
The number below each task denotes the number of training examples. The “Average’ column is slightly different
than the official GLUE score, since we exclude the problematic WNLI set.® BERT and OpenAl GPT are single-
model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and
accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components.



RoBERTa: A Robustly Optimized BERT ‘tvete- 20
Pretraining Approach

Really well executed refinement / engineering on BERT

» Better tuned (many HPs)
« Remove a few hacks (remove annealing context size)

« Better data generation (online instead of cached)
* A more flexible vocab scheme (more on this later)

* Use more compute / train longer (but same model capacity
— BERT was undertrained)
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GLUE Score

ELECTRA
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RoBERTa
100k steps

=8 Replaced

e—e Masked Language Model Pre-training

Token Detection Pre-training

the —> [MASK] —>
chef — chef —>
cooked —> [MASK] —>»,
the — the —>
meal —» meal —>

Clark et al. 2017

sample
--> the —> —> original
chef —> —> original
Generator Discriminator
(typically a f-> ate —> ELECTRA —> replaced
small MLM) ( ) -
the —> —> original
meal —> —> original

-
-

T T
3 4

Pre-train FLOPs

T T T 1
5 6 7 8
1e20

Model Train / Infer FLOPs  Speedup Params Train Time + Hardware GLUE
ELMo 3.3e18/2.6el10 19x/1.2x 96M 14d on 3 GTX 1080 GPUs 71.2
GPT 4.0e19/3.0e10 1.6x/097x 117M  |[25d on 8 P6000 GPUs 78.8 |
BERT-Small 1.4e18 / 3.7e¢9 45x / 8x 14M 4d on 1 V100 GPU 75.1
BERT-Base 6.4e¢19/2.9¢10 Ix/1x 110M 4d on 16 TPUvV3s 82.2
ELECTRA-Small 1.4e18/3.7¢9 45x / 8x 14M 4d on 1 V100 GPU 79.9
50% trained 7.1e17/ 3.7e9 90x / 8x 14M |2d on 1 V100 GPU 79.0 |
25% trained 3.6e17/3.7¢9 181x / 8x 14M 1d on 1 V100 GPU 77.7
12.5% trained 1.8e17/3.7¢9 361x / 8x 14M 12h on 1 V100 GPU 76.0
6.25% trained 8.9e16/3.7¢9 722x / 8x 14M 6h on 1 V100 GPU 74.1
ELECTRA-Base 6.4e¢19/2.9¢10 Ix/1x 110M 4d on 16 TPUv3s 85.1
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T5: Exploring the Limits of Transfer Learning
with a Unified Text-to-Text Transformer

et al.
2019

* Very thorough (50 pages!) exploration of the design space of pretraining

with a pleasing task formulation om mecan etai2018

Architecture Objective  Params Cost GLUE CNNDM SQuAD SGLUE  EnDe EnFr EnRo
% Encoder-decoder  Denoising 2P M 83.28 19.24 80.88 71.36 26.98 39.82 27.65
Enc-dec, shared Denoising P M 82.81 18.78 80.63 70.73 26.72 39.03 27.46
Enc-dec, 6 layers  Denoising P M/2 80.88 18.97 77.59 68.42 26.38 38.40 26.95
Objective Toputs Targets Language model Denoising ! 2 M 74.70 17.93 61.14 55.02 25.09 35.28 25.86
: : S Prefix LM Denoising P M 81.82 18.61 78.94 68.11 26.43 37.98 27.39
Prefix language modeling Thank you for inviting me to your party last week .

BERT-style Thank you <M> <M> me to your party woal, (original text) Encoder-decoder LM 2P M 79.56 18.59 76.02 64.29 26.27  39.17  26.86
Deshuffling party me for your to . last fun you inviting week Thank  (original text) Enc-dec, shared LM P M 79.60 18.13 63.50 26.62 39.17 27.05
Li.d. noise, mask tokens Thank you <M> <M> me to your party <M> week . (original text) Enc-dec, 6 layers LM P M/2 78.67 18.26 64.06 26.13 38.42 26.89
Li.d. noise, replace spans  Thank you <X> me to your party <Y> week . <X> for inviting <Y> last <Z> Language model LM P M 73.78 17.54 56.51 25.23 34.31 25.38
Li.d. noise, drop tokens Thank you me to your party week . for inviting last Prefix LM LM P M 79.68 17.84 64.86 26.28 37.51 26.76

Random spans Thank you <X> to <Y> week . <X> for inviting me <Y> your party last <Z>

: “translate English to German: That is good."
Language model Prefix LM [ e ’

X, X3 Y, Y, - Xo X3 Y, Y, - "cola sentence: The

f——\[-——][———]f——s f——] course is jumping well."

"stsb sentencel: The rhino grazed
on the grass. sentence2: A rhino

as is grazing in a field."
O | z
E; =z — "summarize: state authorities
c | " I dispatched emergency crews tuesday to
L — —\ survey the damage after an onslaught
Xa X5 Xo Vi Y of severe weather in mississippi.."
1 2 3 1 2
X1 X2 X3 X4

"Das ist gut."]

“not acceptable"]

"six people hospitalized after

a storm in attala county."
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e TH5 [Raffel et al., 2018]

* Text span corruption (denoising): __
Replace different-length spans from the <x> for inviting <v> last <z>
iInput with unique placeholders (e.g.,
<extra_id_0>); decode out the masked
spans.

* Done during text preprocessing: training
uses language modeling objective at the m
decoder side

Original text Inputs / /

Thank you fef inviting me to your party Ia)sf week. Thank you <X> me to your party <v> week.
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* Encoder-decoders works better than decoders

« Span corruption (denoising) objective works better than language

modeling
Architecture Objective Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo

% Encoder-decoder  Denoising 2P M 83.28 19.24 80.88 71.36 26.98 3982 27.65
Enc-dec, shared Denoising M 82.81 18.78 80.63 70.73 26.72 39.03 27.46
Enc-dec, 6 layers Denoising M/2  80.88 18.97 77.59 68.42 26.38 38.40  26.95
Language model  Denoising M 74.70 17.93 61.14 55.02 25.09 35.28  25.86
Prefix LM Denoising M 81.82 18.61 78.94 68.11 26.43 3798  27.39
Encoder-decoder LM 2P M 79.56 18.59 76.02 64.29 26.27  39.17  26.86
Enc-dec, shared LM i M 79.60 18.13 76.35 63.50 26.62 39.17  27.05
Enc-dec, 6 layers LM P M/2  T78.67 18.26 75.32 64.06 26.13 38.42  26.89
Language model LM ) =4 M 73.78 17.54 53.81 56.51 25.23 34.31 25.38
Prefix LM LM P M 79.68 17.84 76.87 64.86 26.28 37.51  26.76
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* Text-to-Text: convert NLP tasks into input/output text sequences

» Dataset: Colossal Clean Crawled Corpus (C4), 750G text datal
* Various Sized Models:

— Base (222M)

_ Small (60M) .
— Large (770M) T5
- 3B

-11B

» Achieved SOTA with scaling & purity of data
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Three Pre-training Paradigms/Architectures

E.g., BERT, RoBERTa, DeBERTa, ...
Autoencoder model
Masked language modeling

Encoder

Encoder-Decoder E.g.. T5, BART, ...

seq2seq model

92

E.g., GPT, GPT2, GPT3, ...
Decoder ® Autoregressive model

Left-to-right language modeling




Three Pre-training Paradigms/Architectures

Encoder L4181 Bidirectional: can condition on the
% 0 B future context

Encoder-Decoder ——=" Map two sequences of different
length together

Language modeling; can only
Decoder L 222 condition on the past context
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Encoder: Pros & Cons

* Consider both left and right context

* (Capture intricate contextual relationships

Not good at generating open-text from left-to-right,
one token at a time

O
o

make/brew/craft goes to mak tasty tea END
4 A A A A 4

Iroh goes to [M] tasty tea lroh goes to make tasty tea
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Encoder-Decoder: Pros & Cons

A nice middle ground between leveraging bidirectional
contexts and open-text generation

Good for multi-task fine-tuning

Require more text wrangling
Harder to train

_ess flexible for natural language generation
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Decoder: Pros & Cons

* Natural to be used for open-text generation

* Right now decoder-only models seem to dominant the
field at the moment

* e.g., GPT1/2/3/4, Mistral, Llama1/2

* Not better at feature extraction??
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Next lecture:
Large Language Models



