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Previously on COMP541
• graph structured data

• graph neural nets (GNNs)

• GNNs for ”classical” network 
problems
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Lecture overview
• motivation and introduction

• introduction to language models

• history of neural language models

• pretrained language models

Disclaimer: Much of the material and slides for this lecture were borrowed from 
—Alec Radford’s lecture on "Learning from Text: Language Models and More"
—Jimmy Ba's UToronto CSC413/2516 class
—Luke Zettlemoyer's UW CSEP517 lecture on Contextualized Word Embeddings
—Liwei Jiang’s UW CSE517 lecture on Pre-training
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Lecture overview
• motivation and introduction

• introduction to language models

• history of neural language models

• pretrained language models
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Why is it called pre-training?
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• “Pre-”training happens before training (fine-tuning)!
slide credit: Xiang Yue



Why Pre-training

• Standard supervised learning requires “machine learning grade” data

• There is not a lot of “machine learning grade” data (compared to 
what current models need) 

• This lecture focuses on a variety of methods for learning from natural 
language in order to improve the performance of models on standard 
NLP datasets/tasks.
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Predecessor of LLMs



Why Pre-training
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Computer Vision Language Modeling

Goal: A good language model should 
produce good general-purpose and 
transferable representations from text

Models:
- ELMo
- BERT
- ALBERT
- RoBERTa
- ELECTRA
- ERNIE
- UniLM

Goal: Developing the ability to 
extract transferable and informative 
features from images

Models:
- VGG
- ResNet
- Inception
- MobileNet

Linguistic knowledge: 
● The bicycles, even though old, were 
in good shape because ____ … 
● The bicycle, even though old, was in 
good shape because ____ …

World knowledge: 
● The University of Waterloo was 
founded in _____ 
● Ontario had a huge population boom 
as a launching point for expeditions to 
_____

Visualizing and Understanding  Convolutional 
Network, 2014



Recall: Problems working with word-word 
co-occurrence matrix
• It’s still huge!

  1 million words x 1 million words x 4 byte int32 = 4 terabytes

• Want to come up with a much more compact, but faithful 
representation of the relations between words and the information 
they represent.
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Recall: GLoVE (Pennington et al. 2014)

• Take the matrix X counting word-word co-occurrences (cheap so do it 
for 840B tokens!)

• So entry Xij would be the count of word i occuring in a context with 
word j

• Learn low dim vector representations of each word such that their dot 
product = log prob of co-occuring

• Goes from MxM to MxN where N is the dimensionality of the word 
vectors (300 << 1,000,000!)
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Recall: Word2Vec (Mikolov et al. 2013)
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Neural Embedding Models: CBoW (Mikolov et al. 2013)

All linear, so very fast. Basically a cheap way 
of applying one matrix to all inputs.

Historically, negative sampling used instead 
of expensive softmax.

NLL minimisation is more stable and is fast 
enough today.

Variants: position specific matrix per input 
(Ling et al. 2015).

Neural Embedding Models: Skip-gram (Mikolov et al. 2013)

Target word predicts context words.

Embed target word.

Project into vocabulary. Softmax.

Learn to estimate likelihood of context words.

CBoW model Skip-gram model
Image credit: Ed Grefenstette



Usefulness of Word Vectors

[McCann et al 2017] 11



Problems with word vectors

• Language is a lot more than just counts of words! 

• It has a ton of structure on top of / in addition to words.

• Context is very important and a fixed static representation of a word is 
insufficient.

1.I went to the river bank.
2.I made a withdrawal from the bank.
3.“I wouldn’t bank on it”
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Problems with word vectors

• Great, so I’ve got a 1,000,000 x 300 matrix ... now what?

• How to use it is up to the practitioner.

• Often involves a lot of task specific models slapped on top.

• Learning just word vectors is like learning just edge detectors 
in computer vision.
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Lecture overview
• motivation and introductions

• introduction to language models

• history of neural language models

• pretrained language models
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70 years of samples

15[From Oriol Vinyals’ twitter]



Statistical/Probabilistic Language Modeling

• Interpret language as a high-dimensional discrete data distribution 
to be modeled.

• Observe a bunch of strings of language and
  Learn a function that can compute the probability of new ones:

p(Is it going to rain today?)

16



What does it mean to compute the 
probability of a string?
p(The cat sat on the mat.) = ???

17



p(The cat sat on the mat.) = ???

Noam Chomsky in 1969:
But it must be recognized that the notion of 
"probability of a sentence" is an entirely useless one, 
under any known interpretation of this term.
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What does it mean to compute the 
probability of a string?

• Also see the Norvig - Chomsky debate:
http://norvig.com/chomsky.html
https://www.theatlantic.com/technology/archive/2012/11/noam-
chomsky-on-where-artificial-intelligence-went-wrong/261637/

http://norvig.com/chomsky.html
https://www.theatlantic.com/technology/archive/2012/11/noam-chomsky-on-where-artificial-intelligence-went-wrong/261637/?single_page=true
https://www.theatlantic.com/technology/archive/2012/11/noam-chomsky-on-where-artificial-intelligence-went-wrong/261637/?single_page=true


How can you use the probability of a string?

p(The cat sat on the mat.) > p(The cat sats on the mat.) [grammar]

Should p(The cat sats on the mat.) be 0?

p(The hyena sat on the mat.) < p(The cat sat on the mat.) [world knowledge]

Should p("4" | "2 + 2 = ") be 1?

p(1 star out of 5 | That movie was terrible! I’d rate it) [sentiment analysis]

19



How can you use the probability of a string?

• Speech Recognition and Machine Translation are supervised tasks 

• Speech Recognition = 
(audio1, transcript1)

(audio2, transcript2)

(audio3, transcript3)

• Machine Translation =
(french1, english1)

(french2, english2)

(french3, english3)

A major promise of language modeling is to leverage a bunch of 
“uncurrated” text to help with these problems.
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How can you use the probability of a string?

• Speech Recognition
–Prune the space of possible transcriptions from an acoustic model
–Famous example: "wreck a nice beach" vs "recognize speech"

• Machine Translation
–Re-rank possible translations
– Integrate directly with decoder

21



How to compute the probability of a string?

• First, maybe do some preprocessing (like lower-casing)

 "THe CaT SAt oN ThE MAT." → "the cat sat on the mat."
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How to compute the probability of a string?

• Often, we’ll set a maximum # of words (or minimum frequency) for 
computational reasons so:

"the cat sat on the countertop." → "the cat sat on the <UNK>."
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How to compute the probability of a string?

• A tokenizer takes a string as input and returns a sequence of tokens:

"the cat sat on the mat." → [the, cat, sat, on, the, mat, .]

[the, cat, sat, on, the, mat, .] → [23, 1924, 742, 101, 23, 3946, 7]

24



How to compute the probability of a string?

• A tokenizer takes a string as input and returns a sequence of tokens:

"the cat sat on the mat." → [t,h,e," ",c,a,t," ",s,a,t," ",...]
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All the different ways to dice a string!

• Character level (throw out non-ascii)

• Byte level (work on UTF-8 byte stream)

• Unicode symbols / codepoints

• Tokenized / pre-processed word level

• Byte Pair Encoding (Sennrich 2016)

• SentencePiece (Kudo and Richardson 2018)

t h  → th
i n  → in
e d  → ed
a n  → an
th e → the
o u  → ou
e r  → er
in g → ing
t o  → to
e r  → er
h e  → he
an d → and

26



How to compute the probability of a string?

1. Assume a uniform prior over tokens
2. Assume all tokens are independent

p(t0) = 1/vocab size

p(t0, t1, t2, t3) = product of p(ti) for all i

27



How to compute the probability of a string?

1. Assume a uniform prior over tokens
2. Assume all tokens are independent

Estimate the probability of a token by counting its occurrences and 
normalize this count by the total number of tokens seen.

p(t0, t1, t2, t3…) = p(t0)p(t1)p(t2)p(t3)...

This is a unigram language model
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How to compute the probability of a string?

1. Assume a uniform prior over tokens
2. Assume all tokens are independent

Estimate the probability of a token conditioned on the previous token 
by counting how many times it co-occurs with that previous token and 
normalize this count by the total number of occurrences of that context.

p(t0, t1, t2, t3…) = p(t0)p(t1 | t0)p(t2 | t1)p(t3 | t2)

This is a bigram language model
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Generalization?

p(self-attention) = 0 = infinite loss…

p(self-attention | the cool thing about) = 0 = infinite loss...

30



Smoothing

p(self-attention) = 0 = infinite loss…

p(self-attention | the cool thing about) = 0 = infinite loss...

• Smooth things out by using a mixture model

 pmixture(t1) = 0.01 * puniform(t1)     +     0.99 * punigram(t1)

31



Smoothing

• Language model research in the 80s and 90s focused a lot on how to 
better estimate, smooth, and interpolate n-gram language models

32



Evaluation Type 1: Intrinsic

• Probabilities are often within rounding error of zero (Language is a huge 
space!)

• They also are a function of the length of the string.

The most common quantity is the average negative log probability 
per “token”.

• Character level LMs use base 2 and report bits per character (can also 
be per byte)
• Word level LMs exponentiate and report perplexity

33

e�
1
N

P
i ln pwi
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Evaluation Type 2: Extrinsic

• There are a lot of ways to use a language models.

• You can evaluate them based on their usefulness for a downstream 
task.

• Improve: 
• WER for speech recognition
• BLEU for translation
• F1 for POS tagging
• ACC for document classification

• This is an increasingly common evaluation setting.
34



Lecture overview
• motivation and introduction

• introduction to language models

• history of neural language models

• pretrained language models
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A Neural Probabilistic Language Model

• So many things!
• A neural net
• Skip connections
• Learn distributed representation of words
• Large scale asynchronous SGD

36

Bengio 
et al. 2003



RNN Based Language Model

• Replace MLP with RNN (allows for unbounded context)

• Showed improvements on speech recognition

37

log p(x) =
dX

i=1

log p (xi | x1:i�1)
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Mikolov et al. 2010



Generating Text with RNNs

• Character level RNN

• Approximates a tensor RNN which has a different set of weights for 
every input character

• Very complicated optimization scheme

Ms . Claire Parters will also have a history temple for him to raise jobs until naked Prodiena to paint baseball partners , provided 
people to ride both of Manhattan in 1978 , but what was largely directed to China in 1946 , focusing on the trademark period is 
the sailboat yesterday and comments on whom they obtain overheard within the 120th anniversary , where many civil rights 
defined , officials said early that forms , ” said Bernard J. Marco Jr. of Pennsylvania , was monitoring New York

(not actually a lot better than 
word level n-gram models)

38

Sutskever et al. 2011



Generating Sequences with RNNs

39

Graves 2013



Generating Sequences with RNNs

40

it = � (Wxixt +Whiht�1 +Wcict�1 + bi)
ft = � (Wxfxt +Whfht�1 +Wcfct�1 + bf )
ct = ftct�1 + it tanh (Wxcxt +Whcht�1 + bc)
ot = � (Wxoxt +Whoht�1 +Wcoct + bo)
ht = ot tanh (ct)

<latexit sha1_base64="K8/k02zQVUfkIOnhZ8fPop2Ggag="></latexit>

Graves 2013



Skip-Thought Vectors 

• Proposed using an RNN sequence encoder trained to provide 
context to an LM as a sentence level text feature extractor. 

41

Kiros et al. 2015



Semi-supervised Sequence Learning

Proposes finetuning an LM directly for downstream tasks

1.Use LM objective as a pre-training task
2.Then initialize the parameters of downstream model with LM weights
3.Then train like a normal supervised model

42

Dai and Le 2015



Exploring The Limits of Language Modeling

• A larger dataset 1BW (Chelba et al 2013)

• A 8K projection LSTM (Sak et al 2014)

• Character aware (Kim et al 2015)

• A large vocab - 800K words
– Approximate with sampled softmax

• 32 K40s for 3 weeks
• 41.0 -> 23.7 perplexity

43

Jozefowicz et al. 2016



Exploring The Limits of Language Modeling

• Was one of the first neural language models to generally have 
~coherent non-trivial sentences.

With even more new technologies coming onto the market quickly during the past 
three years , an increasing number of companies now must tackle the ever-
changing and ever-changing environmental challenges online .

44

Jozefowicz et al. 2016



Why scale?

• There’s a whole internet out there

• Soooooooooo much information

• A perfect language model would need to fit the internet into its 
parameters.

• This suggests we’re going to need a lot of parameters, compute, 
and data to get as close to this as possible.
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Why scale?

• This is what a very small charRNN learns:

" Als gambrantr 's w thkergtre akld teno 6 10769 tie He Cule a , ssot Goshulan n blve t , to hered arerorinner rrk f . , ate Banat"

• The best architecture in the world is useless without capacity.
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Why scale?
• Deep Learning Scaling is Predictable, Empirically (Hestness et al. 2017)

• GPipe: Efficient Training of Giant Neural Networks (Huang et al. 2018)

• AI and Compute (Damodei and Hernandez 2018)

• These trends have been consistent across many orders of magnitude

47



Why scale?
• Deep Learning Scaling is Predictable, Empirically (Hestness et al. 2017)

• GPipe: Efficient Training of Giant Neural Networks (Huang et al. 2018)

• AI and Compute (Damodei and Hernandez 2018)

• These trends have been consistent across many orders of magnitude
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More on Scaling Laws later…



Learning To Generate Reviews 
and Discovering Sentiment
●Maybe data is the bottleneck!

– Make dataset bigger -> 80 million product reviews (40 GB of text)

• 4096 unit byte level mLSTM - 1 month - 4 Pascal Titan X GPUs
• Model ended up just underfitting by a lot
• But learned what sentiment is

49

Radford et al. 2017



LM pre-training for sentiment analysis
Small World LSTM is here

50



Story Cloze Task: UW NLP System

51

Schwartz et al. 2017



The Sparsely-Gated MoEs Layer
• Maybe parameter count is the bottleneck!

– Make a model with as many parameters as possible -> 137 Billion

• More efficient than equivalent compute dense models

• And a lot of very impressive systems work

52

Shazeer et al. 2017



Lecture overview
• motivation and introduction

• introduction to language models

• history of neural language models

• pretrained language models
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Recall: What’s wrong with word2vec?
• One vector for each word type 

• Complex characteristics of word use: semantics, syntactic behavior, and 
connotations

• Polysemous words, e.g., bank, mouse

54

What’s wrong with word2vec?

• One vector for each word type vcat =

0

BB@

�0.224
0.130
�0.290
0.276

1

CCA

<latexit sha1_base64="ZS11t+SATcIQYaaJ4VZuEjXjz0Y="></latexit><latexit sha1_base64="X7JObiHYNXwbsISLOmkjXbSsJws="></latexit><latexit sha1_base64="X7JObiHYNXwbsISLOmkjXbSsJws=">AAACOXicbZBNSyNBEIZ7/Fh1dHejHvXQrCx42dCTFT9AQfDiMYJRIRNCT6cSG3t6hu4aMQzzG/w3Xrz5E7wJXjwo4lW825OIrLovNLw8VUVXvVGqpEXGbryR0bHxbxOTU/70zPcfPyuzcwc2yYyAhkhUYo4ibkFJDQ2UqOAoNcDjSMFhdLJT1g9PwViZ6H3sp9CKeU/LrhQcHWpX6qftPEQ4w9yRotjywwh6UudpzNHIs8L/w6q12goNQ59Vg7+sNCXaYENUW1v1Q9Cd94F2ZYlV2UD0qwnezNL24nm4/HJ1Xm9XrsNOIrIYNArFrW0GLMVWzg1KoaDww8xCysUJ70HTWc1jsK18cHlBfzvSod3EuKeRDui/EzmPre3Hket0+x3bz7US/q/WzLC73sqlTjMELYYfdTNFMaFljLQjDQhUfWe4MNLtSsUxN1ygC9t3IQSfT/5qDmrVwIW659LYJENNkgXyiyyTgKyRbbJL6qRBBLkgt+SePHiX3p336D0NW0e8t5l58kHe8yuUTqy7</latexit><latexit sha1_base64="yUhkDlYwUUEoQ+3MeiaCkTTY5/M="></latexit>

v(bank)

• Complex characteristics of word use: semantics, syntactic 
behavior, and connotations 

• Polysemous words, e.g., bank, mouse
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v(bank)

• Complex characteristics of word use: semantics, syntactic 
behavior, and connotations 

• Polysemous words, e.g., bank, mouse



Contextualized word embeddings
• Let’s build a vector for each word conditioned on its context!

55

Contextualized word embeddings

Let’s build a vector for each word conditioned on its context!

movie was terribly exciting !the

Contextualized word embeddings

f : (w1, w2, …, wn) ⟶ x1, …, xn ∈ ℝd

Contextualized word embeddings 



Contextualized word embeddings

56(Peters et al., 2018): Deep Contextualized Word Representations



ELMo

57

• NAACL’18: Deep contextualized 
word representations

• Key idea:
– Train an LSTM-based language model 

on some large corpus
– Use the hidden states of the LSTM for 

each token to compute a vector 
representation of each word



Deep contextualized word representations
• Replace word vectors with a learned weighted sum of features of deep 

bi-directional LM

• Improves baseline models to SOTA

• Uses the LM from (Jozefowicz et al. 2016)

• Extends benefits of LMs to a much wider variety of tasks

58

Peters et al. 2018



Deep contextualized word representations
• Forward and backward 

LMs: 2 layers each
• Use character CNN to build 

initial word representation
– 2048 char n-gram filters and 

2 highway layers, 512 dim 
projection

• User 4096 dim hidden/cell 
LSTM states with 512 dim 
projections to next input
• A residual connection from 

the first to second layer
• Trained 10 epochs on 1B 

Word Benchmark
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Word representation

Forward LSTM Layer 
1 State

Backward LSTM Layer 
1 State

Forward LSTM Layer 
2 State

Backward LSTM
Layer 2 State

Word representation

Forward LSTM Layer 
1 State

Backward LSTM Layer 
1 State

Forward LSTM Layer 
2 State

Backward LSTM
Layer 2 State

Contextualized
representation

Contextualized
representation

Peters et al. 2018



Experimental results

• SQuAD: question answering
• SNLI: natural language inference
• SRL: semantic role labeling
• Coref: coreference resolution
• NER: named entity recognition
• SST-5: sentiment analysis
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Improving Language Understanding by 
Generative Pre-Training (GPT-1)
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Improving Language Understanding by 
Generative Pre-Training (GPT-1)
• Transformer based LM
• 12 self-attention blocks - 12 heads - 768 dim state

–~100M params
• Trained on 7,000 books ~ 5 GB of text (BookCorpus Zhu et al 2015)

• Fine-tune on supervised tasks (like Dai et al. 2015)
• Removes the need for task specific architectures
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Improving Language Understanding by 
Generative Pre-Training (GPT-1)
• Transformer based LM
• 12 self-attention blocks - 12 heads - 768 dim state

–~100M params
• Trained on 7,000 books ~ 5 GB of text (BookCorpus Zhu et al 2015)

• Fine-tune on supervised tasks (like Dai et al. 2015)
• Removes the need for task specific architectures
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More later…



Lecture overview
• motivation and introduction

• introduction to language models

• history of neural language models

• a digression into Transformers

• beyond standard LMs

• why we need unsupervised learning
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Improving Language Understanding by 
Generative Pre-Training (GPT-1)



the cat sat on

Query
Key
Value information you can retrieve

what you can compare to
what you want to look for
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the cat sat on
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the cat sat on

“the cat”
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Query
Key
Value information you can retrieve

what you can compare to
what you want to look for



[Vaswani et al 2017]
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BERT
• First released in Oct 2018.

• NAACL’19: BERT: Pre-training of Deep 
Bidirectional Transformers for Language 
Understanding

• How is BERT different from ELMo?
1. Unidirectional context vs 

bidirectional context
2. LSTMs vs Transformers
3. The weights are not freezed

(fine-tuning)
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BERT: Pre-training of Deep Bidirectional 
Transformers for Language Understanding

Left-Right LM: The cat sat on the [mask] -> The cat sat on the mat
Right-Left LM: [mask] cat sat on the mat -> The cat sat on the mat 
Masked LM:  The [mask] sat on the [mask] -> The cat sat on the mat
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BERT Workflow
• The BERT workflow includes: 

– Pretrain on generic, self-supervised tasks, using large amounts of data (like all
of Wikipedia) 

– Fine-tune on specific tasks with limited, labelled data. 

• The pretraining tasks (will talk about this in more detail later): 
– Masked Language Modelling (to learn contextualized token representations) 

– Next Sentence Prediction (summary vector for the whole input) 
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BERT Architecture
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BERT Architecture
Properties:
• Two input sequences.

– Many NLP tasks have two inputs (question answering, paraphrase detection, 
entailment detection etc. )

• Computes embeddings
– Both token, position and segment embeddings. 
– Special start and separation tokens.

• Architecture 
– Basically the same as transformer encoder. 

• Outputs: 
– Contextualized token representations. 

– Special tokens for context. 
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BERT Embeddings

• How we tokenize the inputs is very important!

• BERT uses the WordPiece tokenizer (Wu et. al. 2016) 
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(Aside) Tokenizers
• Tokenizers have to balance the following:

– Being comprehensive (rare words? translation to different languages) 

– Total number of tokens

– How semantically meaningful each token is. 

• This is an activate area of research. 
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Pretraining tasks
• Masked Language Modelling, i.e. Cloze Task (Taylor, 1953) 

• Next sentence prediction
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Masked Language Modelling
• Mask 15% of the input tokens. (i.e. replace

with a dummy masking token) 

• Run the model, obtain the embeddings for the
masked tokens.

• Using these embeddings, try to predict the
missing token.

• ”I love to eat peanut ___ and jam. ” 
Can you guess what’s missing? 

This procedure forces the model to encode
context information in the features of all of the
tokens. 
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Next Sentence Prediction
• Goal is to summarize the complete

context (i.e. the two segments) in 
a single feature vector. 

• Procedure for generating data 
– Pick a sentence from the training corpus

and feed it as ”segment A”. 
– With 50% probability, pick the following

sentence and feed that as ”segment B”. 
– With 50% probability, pick the a random

sentence and feed it as ”segment B”. 

• Using the features for the context
token, predict whether segment B is 
the following sentence of segment A. 
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Fine Tuning

Procedure: 

• Add a final layer on top of BERT representations.

• Train the whole network on the fine-tuning dataset.

• Pre-training time: In the order of days on TPUs.

• Fine tuning task: Takes only a few hours max. 
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Applications
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Fine Tuning
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RoBERTa: A Robustly Optimized BERT 
Pretraining Approach
Really well executed refinement / engineering on BERT

• Better tuned (many HPs)

• Remove a few hacks (remove annealing context size)

• Better data generation (online instead of cached)

• A more flexible vocab scheme (more on this later)

• Use more compute / train longer (but same model capacity 
– BERT was undertrained)
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ELECTRA
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Clark et al. 2017



T5: Exploring the Limits of Transfer Learning 
with a Unified Text-to-Text Transformer
• Very thorough (50 pages!) exploration of the design space of pretraining 

with a pleasing task formulation (from McCann et al 2018)
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Raffel et al. 
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T5
• T5 [Raffel et al., 2018]
• Text span corruption (denoising): 

Replace different-length spans from the 
input with unique placeholders (e.g., 
<extra_id_0>); decode out the masked 
spans.

• Done during text preprocessing: training 
uses language modeling objective at the 
decoder side
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T5
• Encoder-decoders works better than decoders

• Span corruption (denoising) objective works better than language 
modeling
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T5
• Text-to-Text: convert NLP tasks into input/output text sequences

• Dataset: Colossal Clean Crawled Corpus (C4), 750G text data!

• Various Sized Models:
– Base (222M)
– Small (60M)
– Large (770M)
– 3B
– 11B

• Achieved SOTA with scaling & purity of data
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Three Pre-training Paradigms/Architectures

92

• E.g., BERT, RoBERTa, DeBERTa, …
• Autoencoder model
• Masked language modeling

Encoder

Encoder-Decoder • E.g., T5, BART, …
• seq2seq model

Decoder
• E.g., GPT, GPT2, GPT3, …
• Autoregressive model
• Left-to-right language modeling
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Three Pre-training Paradigms/Architectures

Encoder

Encoder-Decoder

Decoder

Bidirectional; can condition on the 
future context

Language modeling; can only 
condition on the past context

Map two sequences of different 
length together
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Encoder: Pros & Cons

94

• Consider both left and right context

• Capture intricate contextual relationships

9

Iroh goes to [M] tasty tea

make/brew/craft

Encoder

Iroh goes to make tasty tea

goes to mak
e

tasty tea END

Decoder

• Not good at generating open-text from left-to-right, 
one token at a time



Encoder-Decoder: Pros & Cons
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• A nice middle ground between leveraging bidirectional 
contexts and open-text generation

• Good for multi-task fine-tuning

• Require more text wrangling

• Harder to train

• Less flexible for natural language generation



Decoder: Pros & Cons
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• Natural to be used for open-text generation

• Right now decoder-only models seem to dominant the 
field at the moment

• e.g., GPT1/2/3/4, Mistral, Llama1/2

• Not better at feature extraction??



Next lecture: 
Large Language Models
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