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Previously on COMP541

* motivation and introduction
* introduction to language models
* history of neural language models

* pretrained language models

1 21 ehegn

lllustration: Myriam Wares




Lecture overview

* Recap of Language Modeling

« GPT-3

» Understanding in-context learning
« Scaling laws

* Llama 3

« Other LLMs

* Long context models

Disclaimer: Much of the material and slides for this lecture were borrowed from
—Dangqi Chen and Sanjeev Arora's COS 597R class
—Graham Neubig's CS11-711 class



Recap of Language
Modeling



Word embeddings

« Word embeddings e.g., word2vec (Mikolov et al.'13), GloVe (Pennington et al.’14)

“single-layer representations were learned using word vectors”

» Contextualized word embeddings e.g., ELMo (Peters et al."18), CoVe (McCann et al.’17)

“RNNs with multiple layers of representations and contextual state were used to form
stronger representations”

Word2Vec cat is happy EOS
[ Input Projection ‘Output‘ Input EProiection’ jOutput T T T T

w(t-2) | ‘ I ) ’ ‘ - < < ‘ 2, happy
wit-1) k | B P s
| | —~of —~eof ~of ,~of b, 4
—/ y — ! ] ' I ' B
= R : B e e A ™
ot / I 1 | | I
| Il I = | | —> | —> | —> A
wit+1) | = ~ | wit+1) i t - :
1 1 | |
=4 I 1 1 1
— 1 1 1
) \ \ \
w(t+2) I ) \\\ \\\

Continuous Bag of Words (CBOW) | [ Skip-gram ]

Used for task-specific neural architectures!



Word embeddings

 Word embeddings
» Contextualized word embeddings

Used for task-specific neural architectures!

End Scores
A
Start Scores Linear
Linear A

Bi-GRU

[
A_Bi-GRU— ’

Prediction
X |Selt-Atiention
Linear Re‘LU Layer " Attention
A | Pre-Process
Self-Attention Embedding
Input
A
i, —Bi-GRU
Linear RelL U Layer
1
|
|
A A
Bi-GRU Bi-GRU
F A F A
CNN + Max Pool CNN + Max Pool
T | 1
Embed A Embed A
l Char Embed [ Char Embed
Context Text | [ Context Text ‘

(Clark and Gardner, 2018)



One model for all tasks

* One pre-trained model for all tasks
— BERT (Deviin et al., 2018), RoBERTa (Liuetal, 2019)

—T5 (Raffel et al., 2019), BART (Lewis et al., 2019)

minimal modifications to downstream tasks
still fine-tuning on 103— 10° downstream examples

— GPT-1 (Radford et al., 2018), GPT-2 (Radford et al., 2019)

Mask LM

*

\

Mask LM
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L e 1) - ()

BERT

=
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*
Unlabeled Sentence A and B Pair /
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(Devlin et al.,
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One model for all tasks

* One pre-trained model for all tasks

minimal modifications to downstream tasks
still fine-tuning on 103— 10° downstream examples

E;%s; E:?)S:I Start/End Span 0
Ine Y- 2 o o i
(¢ )] - () )~ (o)t )]~ [%) BERE

_‘
BERT BERT

BERT BERT
5] [ElEalE]- (]| sl & [ &] - [ [eale ]~ []Cel[= ]~ [] N
o B e — . o . mmm — i i
B Smm- . () DlEa - (E EE GEE- 5 (|Eet| )
\ [ I—T—/ ‘—|—
Sentence 1 Sentence 2 Single Sentence ) |
Question Paragraph Single Sentence
(a) Sentence Pair Classification Tasks: (b) Single Sentence Classification Tasks:
SST-2, ColA (c) Question Answering Tasks: (d) Single Sentence Tagging Tasks:

MNLI, QQP, QNLI, STS-B, MRPC,
RTE, SWAG

(Devlin et al., 2018)



One model for all tasks

* One pre-trained model for all tasks

minimal modifications to downstream tasks

still fine-tuning on 103— 10° downstream examples

12x —

Task
Classifier

Text
Prediction

)

Layer Norm

H—

Feed Forward
A

Layer Norm

G

Masked Multi
Self Attention
A

Text & Position Embed

Classification

Entailment

Similarity

Multiple Choice

Start Text Extract }» Transformer = Linear

Start Premise Delim | Hypothesis | Extract | -+ Transformer [+ Linear
Start Text 1 Delim Text 2 Extract | > Transformer

= Linear

Start Text 2 Delim Text 1 Extract | »{ Transformer

Start Context Delim Answer 1 | Extract | Transformer | Linear
Start Context Delim Answer 2 | Extract | » Transformer [~ Linear
Start Context Delim Answer N Extract | »{ Transformer > Linear

(Radford et al., 2018)




One model for all tasks

* One pre-trained model for all tasks
— BERT (Devinetal,, 2018, ROBERTa (Liu et al., 2019) encoder models
— [5 (Raffel et al., 2019), BART (Lewis et al., 2019) encoder-decoder models
— GPT-1 (Radford et al., 2018), GPT-2 (Radford et al., 2019) decoder models

 All based on Transformers The Annotated Transformer

* They mainly differ in the pre-training Aseention s Al Yon Need
objectives (slight difference in fine-tuning) el el A ol i

avaswani@google.com noam@google.com nikip@google.com usz@google.com

 Model sizes and pre-training data are also ey, e g !

1lion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

different!

illia.polosukhin@gmail.com

o v2022: Austin Huang, Suraj Subramanian, Jonathan Sum, Khalid Almubarak, and Stella Biderman.

* Original: Sasha Rush.



One model for all tasks
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Encoder vs. Decoder models

oo
e

+
5\
‘u
l
|
T
l

|
oo
|

MNLI Dev Accuracy
09
o
X

A BERTBASE (Masked LM)
~— BERTRASE (Left-to-Right)

-3
(=3}
|

200 400 600 800 1,000
Pre-training Steps (Thousands)

Figure 5: Ablation over number of training steps. This
shows the MNLI accuracy after fine-tuning, starting
from model parameters that have been pre-trained for

k steps. The x-axis is the value of k.

(Devlin et al., 2018)

« BERT/RoBERTa: 110M/330M parameters
e TH: up to 11B parameters

Yi Tay

i D024 s o
What happened to BERT & T5? On Transformer
Encoders, PrefixLM and Denoising Objectives

https://www.yitay.net/blog/model-architecture-blogpost-
encoders-prefixlm-denoising

 Encoder-only models can’t generate text (easily); harder to scale up
« Bidirectional attention is only important at smaller scale?
» “Masking objectives” can be still combined with autoregressive LMs

12
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Encoder vs. Decoder models

Smarter, Better, Faster, Longer: A Modern Bidirectional Encoder for Fast,

4 Jeremy Howard
g @jeremyphoward

I'll get straight to the point.

Memory Efficient, and Long Context Finetuning and Inference

Benjamin Warner'" Antoine Chaffin?® Benjamin Clavié'’
Orion Weller® Oskar Hallstrom®> Said Taghadouini’
Alexis Gallagher'! Raja Biswas' Faisal Ladhak* Tom Aarsen®

Nathan Cooper' Griffin Adams' Jeremy Howard' Iacopo Poli’

We trained 2 new models. Like BERT, but modern. ModernBERT.

'Answer.Al 2LightOn *Johns Hopkins University *NVIDIA >HuggingFace

7: core authors, *: work done while at Answer.Al

Not some hypey GenAl thing, but a proper workhorse model, for
retrieval, classification, etc. Real practical stuff. Abstract

Encoder-only transformer models such as
BERT offer a great performance-size tradeoff
for retrieval and classification tasks with re-
spect to larger decoder-only models. Despite
being the workhorse of numerous production
pipelines, there have been limited Pareto im-
provements to BERT since its release. In this
paper, we introduce ModernBERT, bringing
modern model optimizations to encoder-only
models and representing a major Pareto im-
provement over older encoders. Trained on
2 trillion tokens with a native 8192 sequence

It's much faster, more accurate, longer context, and more useful.

PARETO EFFICIENCY: RUNTIME VS GLUE

MODERNBERT -LARGE

ROBERTA-LARGE

MODERNBERT -BASE

DEBERTAVI-GASE

GTE-EN-1LM-LARGE-XF

length, ModernBERT models exhibit state-of-
the-art results on a large pool of evaluations
encompassing diverse classification tasks and

both single and multi-vector retrieval on dif-
ferent domains (including code). In addition
to strong downstream performance, Modern-
BERT is also the most speed and memory effi-
cient encoder and is designed for inference on
common GPUs.

ROBERTA-GASE

GTE-EN-rILN-BASE-xF

BERT-CASE

o 1 Introduction

NOMCBERT-BASE
@

After the release of BERT (Devlin et al., 2019),
encoder-only transformer-based (Vaswani et al.,
2017) language models dominated most appli-
cations of modern Natural Language Processing
(NLP). Despite the rising popularity of Large Lan-
guage Models (LLMs) such as GPT (Radford et al.,
2018 2019 Brown et al  2020) T .lama (Touvron

T T T T ]
20 30 yo 50 60
RUNTME (NS/TOKEN)

7:45 PM - Dec 19, 2024 - 396.3K Views

arXiv:2412.13663v2 [cs.CL] 19 Dec 2024

Correspondence: {bw,bc}@answer.ai, antoine.chaffin@lighton.ai

option against encoder-decoder and decoder-only
language models when dealing with substantial
amounts of data (Penedo et al., 2024).

Encoder models are particularly popular in In-
formation Retrieval (IR) applications, e.g., seman-
tic search, with notable progress on leveraging en-
coders for this task (Karpukhin et al., 2020; Khat-
tab and Zaharia, 2020). While LLMs have taken
the spotlight in recent years, they have also moti-
vated a renewed interest in encoder-only models
for IR. Indeed, encoder-based semantic search is
a core component of Retrieval-Augmented Gener-
ation (RAG) pipelines (Lewis et al., 2020), where
encoder models are used to retrieve and feed LLMs
with context relevant to user queries.

Encoder-only models are also still frequently
used for a variety of discriminative tasks such as
classification (Tunstall et al., 2022) or Natural En-
tity Recognition (NER) (Zaratiana et al., 2024),
where they often match the performance of special-
ized LLMs. Here again, they can be used in con-
junction with LLMs, for example detecting toxic
prompts (Ji et al., 2023; Jiang et al., 2024b) and pre-
venting responses, or routing queries in an agentic
framework (Yao et al., 2023; Schick et al., 2023).

Surprisingly, these pipelines currently rely on
older models, and quite often on the original BERT
itself as their backbone (Wang et al., 2022; Xiao
et al., 2023), without leveraging improvements de-

I P L I ST+ R .
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Recap: Probabilistic Language Models

P(X)
—

Sentence/Document

A generative model that calculates
the probability of language

14



Recap: Auto-regressive Language Models

|
P(X) — HP(QZZ | 331,...,332'_1)
1=1

ER R

Next Token Context




Recap: Next Token Prediction

P(*)

Neural network

Image Credit: https://lena-voita.github.io/nlp course/language modeling.html

* This is classification! We can think of neural language models as neural
classifiers. They classify prefix of a text into |V| classes, where the classes
are vocabulary tokens.

16
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Recap: Next Token Prediction

V] tokens

l

d-sized — —
vector (| I saw a cat on a)

softmax get probability
distribution for
the next token

Transform h linearly
from sized to |V| - the
vocabulary size

Linear
layer

000000006

VA AN AN RN A A AL

: vector representation of

Neural network context I saw a cat on a

(0000]
] |

Process context
(previous history)
Input word embeddings

I saw a cat on a

Image Credit: https://lena-voita.github.io/nlp course/language modeling.html

» feed word embedding for previous (context) words into a network;
» get vector representation of context from the network;

» from this vector representation, predict a probability distribution for the next token.
17
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Overview of LLMs Training

HUMAN
FEEDBACK
FINE-TUNING

7]
\
O Safety Reward Model
Rejection
Q Sampling
v
Human preference data Helpful Reward Model

PRETRAINING

Pretraining data

Pre-training — Supervised Fine-tuning (SFT) — RLHF
Pre-training — Post-training
Pre-training — Mid-training — Post-training

Proximal Policy
Optimization

Supervised 8'\ -
i s Llama-2-chat

More next week!
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GPT-3

arXiv
7 https://arxiv.org>cs 3

[2005.14165] Language Models are Few-Shot Learners

by TB Brown - 2020 - Cited by 31178 — Specifically, we train GPT-3, an autoregressive
language model with 175 billion parameters, 10x more than any previous non-sparse languag...

[Submitted on 28 May 2020 (v1), last revised 22 Jul 2020 (this version, v4)]

Language Models are Few-Shot Learners

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, llya Sutskever, Dario Amodei

Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic in
architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans can generally perform a new language task from only a few
examples or from simple instructions — something which current NLP systems still largely struggle to do. Here we show that scaling up language models greatly improves task-agnostic, few-shot
performance, sometimes even reaching competitiveness with prior state-of-the-art fine-tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion parameters, 10x
more than any previous non-sparse language model, and test its performance in the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning, with tasks and few-shot
demonstrations specified purely via text interaction with the model. GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks, as well as several
tasks that require on-the-fly reasoning or domain adaptation, such as unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same time, we also identify some
datasets where GPT-3's few-shot learning still struggles, as well as some datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally, we find that GPT-3 can generate
samples of news articles which human evaluators have difficulty distinguishing from articles written by humans. We discuss broader societal impacts of this finding and of GPT-3 in general.

“Language models form the backbone of modern techniques for solving a range of problems in natural
language processing. The paper shows that when such language models are scaled up to an unprecedented
number of parameters, the language model itself can be used as a few-shot learner that achieves very
competitive performance on many of these problems without any additional training. This is a very
surprising result that is expected to have substantial impact in the field, and that is likely to withstand the test
of time. In addition to the scientific contribution of the work, the paper also presents a very extensive and
thoughtful exposition of the broader impact of the work, which may serve as an example to the NeurlPS
community on how to think about the real-world impact of the research performed by the community.”

https://neuripsconf.medium.com/announcing-the-neurips-2020-award-recipients-73e4d3101537

20
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GPT-3: main contributions

* An autoregressive language model of 175B
parameters, 10x larger than any previous LMs

* Introduced the concept of “in-context learning”, and
showed competitive performance

In-context learning: you can perform a task from only
a few examples or simple instructions without any
gradient updates or fine-tuning!

Translate English to French: task description
sea otter => loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt

Fine-tuning

The model is trained via repeated gradient updates using a
large corpus of example tasks.

sea otter => loutre de mer example #1
peppermint => menthe poivreée example #2
plush giraffe => girafe peluche example #N
cheese => prompt

https://ai.stanford.edu/blog/understanding-incontext/ 21
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GPT-3: main contributions

In-context learning: you can perform a task from only a few examples
or simple instructions without any gradient updates or fine-tuning!

Circulation revenue has increased by 5% Circulation revenue has increased by
in Finland. // Positive 5% in Finland. // Finance

Panostaja did not disclose the purchase They defeated ... in the NFC

price. // Neutral Championship Game. // Sports

Paying off the national debt will be Apple ... development of in-house
extremely painful. / Negative chips. // Tech

The company anticipated its operating The company anticipated its operating
profit to improve. // profit to improve. //

https://ai.stanford.edu/blog/understanding-incontext/

22


https://ai.stanford.edu/blog/understanding-incontext/

GPT-3: main contributions

In-context learning: you can perform a task from only a few examples
or simple instructions without any gradient updates or fine-tuning!

* [nteresting note: the idea of in-context learning starts from GPT-2, “though with
much more limited results and no systematic study.”

3.7. Translation

We test whether GPT-2 has begun to learn how to translate - .
from one language to another. In order to help it infer that 3.8. Question Answering

this is the desired task, FEEHIRIENETIEETE] tively. Similar to translation, the context of the language

on a context of example pairs of the format english model is seeded with example question answer pairs which
sentence = french sentence and then after a fi- helps the model infer the short answer style of the dataset.
nal prompt of english sentence = we sample from GPT-2 answers 4.1% of questions correctly when evalu-
the model with greedy decoding and use the first generated ated by the exact match metric common]y used on reading

sentence as the translation. On the WMT-14 English-French

(Radford et al., 2019) 23



Why few-shot learning?

 Collecting large supervised training sets IS expensive

Corpus |Train| |Test| Task Metrics Domain
Single-Sentence Tasks
CoLA 8.5k 1k  acceptability Matthews corr. misc.
SST-2 67k 1.8k sentiment acc. movie reviews
Similarity and Paraphrase Tasks
MRPC 3.7k 1.7k paraphrase acc./F1 news
STS-B Tk 1.4k  sentence similarity = Pearson/Spearman corr. misc.
QQP 364k 391k paraphrase acc./F1 social QA questions
Inference Tasks
MNLI 393k 20k NLI matched acc./mismatched acc.  misc.
QNLI 105k 54k QA/NLI acc. Wikipedia
RTE 2.5k 3k NLI acc. news, Wikipedia
WNLI 634 146 coreference/NLI acc. fiction books

GLUE (Devlin et al., 2018)

24



Why few-shot learning?

* Fine-tuning can exploit spurious correlation and do not generalize well out-of-distribution

NATURAL LANGUAGE
INFERENCE E.G., MNLI

 Label: Entailment

| exical overlap heuristic: a premise entails all

hypotheses constructed from words in the premise

 Premise: The doctors visited the lawyer.
 Hypothesis: The lawyer visited the doctors.
. Label: Not Entailment X

Accuracy

100% -
75% -
50% T
25% -

0% =

100% A

75% -

50%

25% -
0% -

 Hypothesis: The banker saw the actor.

* Premise: The banker near the judge saw the actor.

(McCoy et al., 2019)

Lexical overlap Subsequence Constituent
m
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®
Q.
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o
7
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=
)
Y TS E TSNS TS L
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25



Why few-shot learning?

« Humans do not require large supervised datasets to learn most language
tasks

* [t allows humans to seamlessly mix together or switch between many
tasks and tasks when interacting with NLP systems

— Fluidity

— Generality

26



Overview of GPT-3

« GPT-3 Is a Transformer decoder only trained on large amounts of unlabeled text
* Training objective: next-token prediction

Ll(Z/{) = ZlogP(uz | Uig—Fy - ,u@'_l;@)

 Model architecture the same as GPT-2, including modified initialization, pre-
normalization
— Except that “we use alternating dense and locally banded sparse attention patterns
in the layers of the Transformer”

I
(Child et al., 2019)




Overview of GPT-3

« GPT-3 Is a Transformer decoder only trained on large amounts of unlabeled text

o All models were trained on 300B tokens

Model Name Nparams  Mlayers dmodcl TMheads dhcad Batch Size Leaming Rate
GPT-3 Small 125M 12 768 12 64 0.5M 6.0 x 104
GPT-3 Medium 350M 24 1024 16 64 0.5M 3.0 x 1074
GPT-3 Large 760M 24 1536 16 96 0.5M 2.5 x 1074
GPT-3 XL 1.3B 24 2048 24 128 1M 2.0 x 1074
GPT-32.7B 2.7B 32 2560 32 80 M 1.6 x 1074
GPT-3 6.7B 6.7B 32 4096 32 128 2M 1.2 x 104
GPT-3 13B 13.0B 40 5140 40 128 2M 1.0 x 1074
GPT-3 175B or “GPT-3” 175.0B 96 12288 96 128 3.2M 0.6 x 104

Scaling laws: “scaling of validation loss should be approximately a smooth power law
as a function of size”

Larger models typically use a larger batch size but require a smaller learning rate

Context window size = 2048

Use a lot of “model parallelism” during training

Use Adam optimizer ; = 0.9, B, =0.95, ande =108 ’8



Training Petaflop/s-days

GPT-3: Training compute
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“We train much larger models on many fewer tokens”
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Total train  Total train
compute compute Params  Training tokens

Model (PF-days) (flops) M) (billions)
T5-Small 2.08E+00 1.80E+20 60 1,000
T5-Base 7.64E+00  6.60E+20 220 1,000
T5-Large 2.67E+01  2.31E+21 770 1,000
T5-3B 1.04E+02  9.00E+21 3,000 1,000
T5-11B 3.82E+02 3.30E+22 11,000 1,000
BERT-Base 1.89E+00  1.64E+20 109 250
BERT-Large 6.16E+00  5.33E+20 355 250
RoBERTa-Base 1.74E+01  1.50E+21 125 2,000
RoBERTa-Large 4.93E+01 4.26E+21 355 2,000
GPT-3 Small 2.60E+00 2.25E+20 125 300
GPT-3 Medium 7.42E+00 6.41E+20 356 300
GPT-3 Large 1.58E+01  1.37E+21 760 300
GPT-3 XL 2. 75E+01  2.38E+21 1,320 300
GPT-3 2.7B 5.52E+01 4.77E+21 2,650 300
GPT-3 6.7B 1.39E+02  1.20E+22 6,660 300
GPT-3 13B 2.68E+02 2.31E+22 12,850 300
GPT-3 175B 3.64E+03 3.14E+23 174,600 300




GPT-3: Training data

« Common Crawl (CC) + a set of high-quality, curated data

— Common Crawl is a nonprofit organization that crawls the web <
and freely provides its archives and datasets to the public.

— Lots of low-quality and duplicated content - requires heavy filtering
— We will see lots of efforts later, e.g., RefineWeb, FineWeb-edu
— Data in the mix: WebText, Books1, Books2, English Wikipedia

* Filtering CC:
— Filtering based on similarity to a range of high-quality reference corpora
— Fuzzy deduplication at the document level

* Data sampling: sample from high-quality data more
frequently!

COMMON
CRAWL

30



GPT-3: Training data

Quantity Weight in Epochs elapsed when
Dataset (tokens)  training mix training for 300B tokens
Common Crawl (filtered) 410 billion 60% 0.44
WebText2 19 billion 22% 2.9
Books| 12 billion 8% 1.9
Books2 55 billion 8% 0.43
Wikipedia 3 billion 3% 3.4

31



Approach

 Few-shot: a few demonstrations are prepended in the context (no weights updated
allowed)
— The demonstrations are randomly sampled from training set
— K: typically 10-100, depending on how many examples can fit in context (2048)
— Not always “the larger K, the better” => use a development set to decide K
— Optionally add a natural language prompt

* One-shot: special case when K = 1.

“It most closely matches the way in which some tasks are communicated to humans”

“It is sometimes difficult to communicate the content or format of a task if no examples are given”

« Zero-shot: avoidance of spurious correlation, “unfairly hard”

“at least some settings zero-shot is closest to how humans perform tasks”

32



Approach

 Few-shot: stronger performance, only slightly behind state-of-the-art fine-tuned
models

“however, one-shot, or even sometimes zero-shot, seem like the
fairest comparisons to human performance, and are important
targets for future work."

L. Denny Zhou &
@denny_zhou
Few-shot prompting will soon become obsolete. It is just a transitional

step as we shift from machine learning to LLM-centered Al. Natural
interactions will win out.

5:09 PM - Jul 5, 2024 - 79.3K Views
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A summary of results

Zero-shot One-shot Few_-shot

l |

Natural Language
Prompt <

60

Accuracy (%)

Number of Examples in Context (K)

175B Params

13B Params

1.3B Params
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Evaluation tasks

» Tasks similar to language modeling

 Closed-book guestion answering

* Machine translation

* Winograd schema and commonsense reasoning

* Reading comprehension

« SuperGLUE

e NLI

* Novel tasks: on-the-fly reasoning, adaptation, open-ended text synthesis
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Evaluation protocol

* Open-ended generation: beam search (size = 4), length penalty (e = 0.6)

* Multiple choices gquestions (MCQ):

— K In-context examples (context + correct completion) + query context

— Feed each answer choice separately and compare per-token likelihood

— Additional benefits: P(completion|context)
P (completion|answer_context)

Published as a conference paper at ICLR 2024

LARGE LANGUAGE MODELS ARE NOT ROBUST

* Yes/no questions: use True/False MULTIPLE CHOICE SELECTORS

instead of 0/1

Chujie Zheng Hao Zhou! Fandong Meng! Jie Zhou! Minlie Huang'*
"The CoAl Group, DCST, BNRist, Tsinghua University, Beijing 100084, China
tPattern Recognition Center, WeChat Al, Tencent Inc., China
chujiezhengchn@gmail.com aihuang@tsinghua.edu.cn
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Language modeling

Lambada

Human

LAMBADA LAMBADA StoryCloze HellaSwag

Setting (acc) (ppl) (acc) (acc) g
SOTA 68.0¢ 8.63° 91.8° 85.6¢ <
GPT-3 Zero-Shot 76.2 3.00 83.2 78.9 y
GPT"3 One'ShOt 72-5 3.35 84.7 78.1 20 —e— Zero-Shot
GPT-3 Few-Shot 86.4 1.92 87.7 79.3 | -k s i O
28.18 04B 08B 13B 26B . 6.7B . .13B 175B
LAM BADA arameters in LM (Billions)

Context: He shook his head, took a step back and held his hands up as he tried to smile without losing a cigarette. “Yes
you can,” Julia said in a reassuring voice. “I ’ve already focused on my friend. You just have to click the shutter,

on top, here.”
Target sentence: He nodded sheepishly, through his cigarette away and took the _____.

Target word: camera

(Paperno et al., 2016)
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Language modeling

STORYCLOZE

Context

Karen was assigned a roommate her first year of
college. Her roommate asked her to go to a nearby
city for a concert. Karen agreed happily. The show
was absolutely exhilarating.

Jim got his first credit card in college. He didn’t have a
job so he bought everything on his card. After he
graduated he amounted a $10,000 debt. Jim realized
that he was foolish to spend so much money.

Gina misplaced her phone at her grandparents. It
wasn’t anywhere in the living room. She realized she
was in the car before. She grabbed her dad’s keys and
ran outside.

Right Ending

Karen became good friends
with her roommate.

Jim decided to devise a plan
for repayment.

She found her phone in the
car.

(Mostafazadeh et al., 2016)

Wrong Ending

Karen hated her roommate.

Jim decided to open another
credit card.

She didn’t want her phone
anymore.
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Language modeling

HELLASWAG == Come to a complete halt at a stop sign or red light. At a stop sign,
wiki come to a complete halt for about 2 seconds or until vehicles that
arrived before you clear the intersection. If you're stopped at a red
How to light, proceed when the light has turned green. ...
determine : :
who has right A. Stop for no more than two secon.ds,.or until the light turns
of way. yellow. A red light in front of you indicates that you should
stop.
+ B. After you come to a complete stop, turn off your turn signal.
wAdve,sa,.,-a, Allow vehicles to move in different directions before moving
| Filtering onto the sidewalk.

C. Stay out of the oncoming traffic. People coming in from
behind may elect to stay left or right.

D. If the intersection has a white stripe in your lane, stop
before this line. Wait until all traffic has cleared before
crossing the intersection.

(Zellers et al., 2019)



Open-domain question answering

Setting NaturalQS WebQS TriviaQA
RAG (Fine-tuned, Open-Domain) [LPP"20] 44.5 45.5 68.0
T5-11B+SSM (Fine-tuned, Closed-Book) [RRS20] 36.6 44.7 60.5
T5-11B (Fine-tuned, Closed-Book) 34.5 37.4 50.1
GPT-3 Zero-Shot 14.6 14.4 64.3
GPT-3 One-Shot 23.0 25.3 68.0
GPT-3 Few-Shot 29.9 41.5 71.2

* Open-book vs closed-book QA

Question Generated Answer Correct  Probability
Who wrote the book the origin of species? Charles Darwin v 83.4%
Who is the founder of the ubuntu project? Mark Shuttleworth v 82.0%
Who is the quarterback for the green bay packers? Aaron Rodgers v 81.1%
Panda is a national animal of which country? China v 76.8%
Who came up with the theory of relativity? Albert Einstein v 76.4%
When was the first star wars film released? 1977 v 71.4%
What is the most common blood type in sweden? A X 70.6%
Who is regarded as the founder of psychoanalysis? Sigmund Freud v 69.3%
Who took the first steps on the moon in 19697 Neil Armstrong v 66.8%
Who is the largest supermarket chain in the uk? Tesco v 65.3%
What is the meaning of shalom in english? peace v 64.0%
Who was the author of the art of war? Sun Tzu v 59.6%
Largest state in the us by land mass? California X 59.2%
Green algae is an example of which type of reproduction? parthenogenesis X 56.5%



Machine translation

 GPT-3's training data: 93% English (by word count)

unsupervised
NMT

Setting En—Fr Fr—En En—De De—En En—Ro Ro—En
SOTA (Supervised)  45.6* 35.0° 41.2¢ 40.24 38.5¢ 39.9¢
XLM [LC19] 33.4 33.3 26.4 34.3 33.3 31.8
MASS [STQ"19] 37.5 34.9 28.3 35.2 35.2 33.1
mBART [LGG ™' 20] - - 29.8 34.0 35.0 30.5
GPT-3 Zero-Shot 2.2 21.2 24.6 21.2 14.1 19.9
GPT-3 One-Shot 28.3 33.1 26.2 30.4 20.6 38.6
GPT-3 Few-Shot 32.6 39.2 29.7 40.6 21.0 39.5
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Winograd-style and commonsense reasoning

Setting Winograd Winogrande (XL)
Fine-tuned SOTA 90.1¢ 84.6°
GPT-3 Zero-Shot 88.3% 70.2
GPT-3 One-Shot 89.7* 3.2
GPT-3 Few-Shot 88.6* LA

« Example: Grace was happy to trade me her sweater for my jacket. She thinks
the [sweater | jacket] looks dowdy to her

Correct Context —

Incorrect Context —

Grace was happy to trade me her sweater for my jacket. She thinks the
sweater

Grace was happy to trade me her sweater for my jacket. She thinks the
jacket

Target Completion —

looks dowdy on her.

Figure G.13: Formatted dataset example for Winograd. The ‘partial’ evaluation method we use compares the probability
of the completion given a correct and incorrect context.
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Winograd-style and commonsense reasoning

Setting PIQA ARC (Easy) ARC (Challenge) OpenBookQA
Fine-tuned SOTA 79.4  92.0[KKS'20] 78.5[KKS"20] 87.2[KKS*20]
GPT-3 Zero-Shot  80.5* 68.8 514 57.6
GPT-3 One-Shot  80.5* 71.2 53.2 58.8
GPT-3 Few-Shot  82.8*% 70.1 315 65.4

To separate egg whites from the yolk
‘A using a water bottle, you should...

PIOA (PHYSICAL QA)

a. Squeeze the water b. Place the water bottle
bottle and press it and press it against the
against the yolk. yolk. Keep pushing,
Release, which creates which creates suction
suction and lifts the yolk. and lifts the yolk.

(Bisk et al., 2019)



Winograd-style and commonsense reasoning

Setting PIQA ARC (Easy)

ARC (Challenge) OpenBookQA

Fine-tuned SOTA 79.4  92.0[KKS"20] 78.5

GPT-3 Zero-Shot  80.5*% 68.8
GPT-3 One-Shot  80.5* 71.2
GPT-3 Few-Shot 82.8* 70.1

514
93.2
1.3

[KKSt20]  87.2[KKS*20]
57.6
58.8
65.4

« ARC: 3rd to 9th grade science exams

Knowledge Type

Example

Definition

Basic Facts &

Properties

Structure

Processes & Causal

Teleology / Purpose

Algebraic

Experiments

Spatial / Kinematic

What is a worldwide increase in temperature called? (A) greenhouse effect (B) global
warming (C) ozone depletion (D) solar heating

Which element makes up most of the air we breathe? (A) carbon (B) nitrogen (C) oxygen
(D) argon

The crust, the mantle, and the core are structures of Earth. Which description is a feature
of Earth’s mantle? (A) contains fossil remains (B) consists of tectonic plates (C) is located
at the center of Earth (D) has properties of both liquids and solids

What is the first step of the process in the formation of sedimentary rocks? (A) erosion (B)
deposition (C) compaction (D) cementation

What is the main function of the circulatory system? (1) secrete enzymes (2) digest proteins
(3) produce hormones (4) transport materials

If a red flowered plant (RR) is crossed with a white flowered plant (rr), what color will the
offspring be? (A) 100% pink (B) 100% red (C) 50% white, 50% red (D) 100% white

Scientists perform experiments to test hypotheses. How do scientists try to remain ob-
jective during experiments? (A) Scientists analyze all results. (B) Scientists use safety
precautions. (C) Scientists conduct experiments once. (D) Scientists change at least two
variables.

In studying layers of rock sediment, a geologist found an area where older rock was layered
on top of younger rock. Which best explains how this occurred? (A) Earthquake activity
folded the rock layers...
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Reading comprehension

Setting CoQA DROP QuAC SQuADv2 RACE-h RACE-m
Fine-tuned SOTA 90.7¢  89.1> 744¢  93.0¢ 90.0¢ 93.1¢
GPT-3 Zero-Shot  81.5 23.6 41.5 59.5 45.5 58.4
GPT-3 One-Shot  84.0 34.3 43.3 65.4 459 57.4
GPT-3 Few-Shot  85.0 36.5 44.3 69.8 46.8 58.1
What did the General Conference on Weights and
Measures name after Tesla in 19607?
Subtraction ~ That year, his Untitlgd (198_1), a painting of a haloed, How many more.dol- 4300000 Ground Truth Answers: S| unit of magnetic flux density
(28.8%) black-headed man with a bright red skeletal body, de- lars was the Untitled
picted amid the artists signature scrawls, was sold by (1981) painting sold Tes! A ortis sehi T hi
Robert Lehrman for $16.3 million, well above its $12  for than the 12 million N AN B L S N M A W el
million high estimate. dollar estimation? eventually earning him a reputation in popular culture as an
Comparison In 1517, the seventeen-year-old King sailed to Castile. Where did Charles Castile archetynal 'mad scientist’s Fis Patents S h.im e Con'Siderame
(18.2%) There, his Flemish court .... In May 1518, Charles travel to first, Castile amount of money, much of which was used to finance his own
traveled to Barcelona in Aragon. or Barcelona? projects with varying degrees of success.:121,154 He lived most
Selection In 1970, to commemorate the 100th anniversary of the Who was the Uni- Don of his life in a series of New York hotels, through his retirement.
(19.4%) founding of Baldwin City, Baker University professor  versity professor that Mueller Tesla died on 7 January 1943. His work fell into relative

and playwright Don Mueller and Phyllis E. Braun,
Business Manager, produced a musical play entitled
The Ballad Of Black Jack to tell the story of the events
that led up to the battle.

DROP (Dua et al., 2019)

helped produce The
Ballad Of Black Jack,
Ivan Boyd or Don
Mueller?

obscurity after his death, but in 1960 the General Conference on
Weights and Measures named the Sl unit of magnetic flux
density the tesla in his honor. There has been a resurgence in
popular interest in Tesla since the 1990s.

SQuUAD (Rajpurkar et al., 2017)
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Reading comprehension

Setting CoQA

DROP QuAC SQuADv2 RACE-h RACE-m

Fine-tuned SOTA 90.7¢
GPT-3 Zero-Shot  81.5
GPT-3 One-Shot  84.0
GPT-3 Few-Shot  85.0

89.1>  744°  93.0¢ 90.0¢ 93.1°
23.6 41.5 59.5 45.5 58.4
34.3 43.3 65.4 45.9 57.4
36.5 44.3 69.8 46.8 58.1

Passage:

In a small village in England about 150 years ago, a mail coach was standing on the street. It didn’t come to that village often.
People had to pay a lot to get a letter. The person who sent the letter didn’t have to pay the postage, while the receiver had to.
“Here’s a letter for Miss Alice Brown,” said the mailman.

“I'm Alice Brown,” a girl of about 18 said in a low voice.

Alice looked at the envelope for a minute, and then handed it back to the mailman.

“I'm sorry I can’t take it, I don’t have enough money to pay it”, she said.

A gentleman standing around were very sorry for her. Then he came up and paid the postage for her.

When the gentleman gave the letter to her, she said with a smile, *“ Thank you very much, This letter is from Tom. I'm going
to marry him. He went to London to look for work. I've waited a long time for this letter, but now I don’t need it, there is
nothing in it.”

“Really? How do you know that?” the gentleman said in surprise.

“He told me that he would put some signs on the envelope. Look, sir, this cross in the comer means that he is well and this
circle means he has found work. That’s good news.”

The gentleman was Sir Rowland Hill. He didn’t forgot Alice and her letter.

“The postage to be paid by the receiver has to be changed,” he said to himself and had a good plan.

“The postage has to be much lower, what about a penny? And the person who sends the letter pays the postage. He has to buy
a stamp and put it on the envelope.” he said . The government accepted his plan. Then the first stamp was put out in 1840. It
was called the “Penny Black”. It had a picture of the Queen on it.

Questions:
1): The first postage stamp was made _. 4): The idea of using stamps was thought of by _ .
A. in England B. in America C. by Alice D. in 1910 A. the government

B. Sir Rowland Hill

2): The girl handed the letter back to the mailman because - C. Alice Brown

A. she didn’t know whose letter it was D. Tom

B. she had no money to pay the postage 5): From the passage we know the high postage made _ .
C. she received the letter but she didn’t want to open it A. people never send each other letters

D. she had already known what was written in the letter B. lovers almost lose every touch with each other

C. people try their best to avoid paying it

3): We can know from Alice’s words that _ . h -
D. receivers refuse to pay the coming letters

A. Tom had told her what the signs meant before leaving
B. Alice was clever and could guess the meaning of the signs ~ Answer: ADABC
C. Alice had put the signs on the envelope herself
D. Tom had put the signs as Alice had told him to

RACE (Lai et al., 2017)

« Reading comprehension tests for
middle and high school Chinese
students (age between 12 and 18)
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Reading comprehension

Context —

Helsinki is the capital and largest city of Finland. It is in the region
of Uusimaa, in southern Finland, on the shore of the Gulf of Finland.
Helsinki has a population of , an urban population of , and a metropolitan
population of over 1.4 million, making it the most populous municipality
and urban area in Finland. Helsinki is some north of Tallinn, Estonia,
east of Stockholm, Sweden, and west of Saint Petersburg, Russia. Helsinki
has close historical connections with these three cities.

The Helsinki metropolitan area includes the urban core of Helsinki, Espoo,
Vantaa, Kauniainen, and surrounding commuter towns. It is the world’s
northernmost metro area of over one million people, and the city is the
northernmost capital of an EU member state. The Helsinki metropolitan
area is the third largest metropolitan area in the Nordic countries

after Stockholm and Copenhagen, and the City of Helsinki is the third
largest after Stockholm and Oslo. Helsinki is Finland’s major political,
educational, financial, cultural, and research center as well as one of
northern Europe’s major cities. Approximately 75/ of foreign companies
that operate in Finland have settled in the Helsinki region. The nearby
municipality of Vantaa is the location of Helsinki Airport, with frequent
service to various destinations in Europe and Asia.

Q: what is the most populous municipality in Finland?
A: Helsinki

Q: how many people live there?

A: 1.4 million in the metropolitan area

Q: what percent of the foreign companies that operate in Finland are in
Helsinki?

A: 75%
Q: what towns are a part of the metropolitan area?

A:

Target Completion —

Helsinki, Espoo, Vantaa, Kauniainen, and surrounding commuter towns

Figure G.18: Formatted dataset example for CoQA

CoQA (Reddy et al., 2019)
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SuperGLUE

SuperGLUE  BoolQ CB CB COPA RTE
Average Accuracy Accuracy F1  Accuracy Accuracy
Fine-tuned SOTA 89.0 91.0 96.9 939 94.8 92.5
Fine-tuned BERT-Large 69.0 774 83.6 75.7 70.6 71.7
GPT-3 Few-Shot 71.8 76.4 75.6 520 92.0 69.0
WiC WSC MuliRC  MuliRC ReCoRD ReCoRD
Accuracy Accuracy Accuracy Fla Accuracy F1
Fine-tuned SOTA 76.1 93.8 62.3 88.2 92.5 933
Fine-tuned BERT-Large 69.6 64.6 24.1 70.0 71.3 72.0
GPT-3 Few-Shot 494 80.1 30.5 754 90.2 91.1
SuperGLUE Performance
—8— Zero-shot
Human ___ __ ____ ________._ Human
Fine-tuned SOTA - =@— One-shot Fine-tuned SOTA
—&— Few-shot (K=32)
80 80
p
§ Fine-tuned BERT++ Fine-tuned BE
w 70
3
(G
2
? 60
50
. .Random Guessing ________
40 40
0.1 04 08 13 26 6.7 13 175 01234

Billions of Parameters in LM

SuperGLUE (Wang et al., 2019)

In-Context Learning on SuperGLUE

~®— Few-shot GPT-3 175B

8 16
Number of Examples in Context (K)

32
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Natural language inference (NLI)

ANLI Round3

Fine-tuned SOTA
48

46

Fine-tuned RoBERTa-Large
44  Fine-tuned BERT-Large

42 —e— Zero-Shot

—e— (One-Shot
+— Few-Shot (K=50)

40

Accuracy

38

‘L

0.1B 0.4B 0.8B 1.3B 26B 6.7B
Parameters in LM (BI”IODS)

ANLI (Nie et al., 2019)

175B
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Novel tasks

* Arithmetic

* \Word scrambling and manipulation
« SAT analogies

 News article generation

* Learning and using novel words

Why synthetic tasks?

« Easier to control, scale and manipulate

* Less data contamination

« Sometimes provides very clear insights of what is going on
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Novel tasks

Context — Please unscramble the letters into a word, and write that word:
asinoc =
Target Completion — casino

Figure G.19: Formatted dataset example for Cycled Letters

Context —

Please unscramble the letters into a word, and write that word:

r elc.i pro.cal/ls=

Target Completion —

reciprocal

Figure G.26: Formatted dataset example for Symbol Insertion

Context — Please unscramble the letters into a word, and write that word:
taefed =
Target Completion — defeat

Figure G.27: Formatted dataset example for Reversed Words
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Novel tasks

Context — Q: What is 98 plus 457
A:

Target Completion — 143

Figure G.44: Formatted dataset example for Arithmetic 2D+

Context — Q: What is 6209 minus 33657
A:

Target Completion — 2844

Figure G.48: Formatted dataset example for Arithmetic 4D-

Context lull is to trust as

Correct Answer
Incorrect Answer
Incorrect Answer
Incorrect Answer
Incorrect Answer

cajole is to compliance
balk is to fortitude
betray is to loyalty
hinder is to destination
soothe is to passion

b b ke |

Figure G.12: Formatted dataset example for SAT Analogies



Novel tasks

Accuracy

100

40

Arithmetic (few-shot)

Two Digit Addition
Two Digit Subtraction
Three Digit Addition
Three Digit Subtraction
Four Digit Addition
Four Digit Subtraction
Five Digit Addition

Five Digit Subtraction
Two Digit Multiplication
Single Digit Three Ops

04B 08B 1.3B 26B 6.7B  13B 175

Parameters in LM (Billions)

Accuracy

0.1B

Wordscramble (few-shot)

cycle letters

mid word 1 anagrams
mid word 2 anagrams
random insertion
reversed words

0.4B

0.8B 1.3B 2.6B 6.7B  13B
Parameters in LM (Billions)

175B
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Contamination analysis

* How to decide which examples are contaminated?
— "defined roughly as examples that have a 13-gram overlap with anything in the pretraining set”

* How to decide estimated performance gains from contamination?
— Compare the performance on the “clean” subset vs entire dataset

A major methodological concern with language models pretrained on a broad swath of internet data, particularly large
models with the capacity to memorize vast amounts of content, is potential contamination of downstream tasks by
having their test or development sets inadvertently seen during pre-training. To reduce such contamination, we searched
for and attempted to remove any overlaps with the development and test sets of all benchmarks studied in this paper.
Unfortunately, a bug in the filtering caused us to ignore some overlaps, and due to the cost of training it was not feasible
to retrain the model. In Section 4 we characterize the impact of the remaining overlaps, and in future work we will
more aggressively remove data contamination.

30%
20% @

10%

0%

10% WMT1

-20%

Percent Change in Performance
(Accuracy, F1 or BLEU)

®

®

]
s

. 2 @

> @
|

® DROP eval on all data
rsed Is-@ (including dirty)

-30% J, did better
0% 25% 50% 75% 100%

Percentage of Data Clean in Dataset 54



Understanding
In-Context Learning



Understanding in-context learning

Extrapolating to Unnatural Language Processing
with GPT-3's In-context Learning: The Good, the
Bad, and the Mysterious

Frieda Rong
e Unnatural Date Formatting: !<month>!<day>!<year>!

Tnput: 2014-06-01 - i sk o
Output: !06!01!12014!
Input: 2007-12-13 ; ®
Output: 11211312007! | [N-context [ o
Input: 2010-09-23 examples g
Output: !@9!2312010! _
Input: 2005-07-23 test example o
Output: !07!23!12005! 2

!- - — model completion 0

0 2 4 6 8 10 12 14
Number of in-context examples

http://ail.stanford.edu/blog/in-context-learning/
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Understanding in-context learning

 Hypothesis #1: Transformers perform implicit gradient descent to update an “inner model”

Transformers Learn In-Context by Gradient Descent Why Can GPT Learn In-Context?

Language Models Implicitly Perform Gradient Descent as
Meta-Optimizers

Johannes von Oswald !> Eyvind Niklasson? Ettore Randazzo’ Jodo Sacramento ' P

Alexander Mordvintsev? Andrey Zhmoginov? Max Vladymyrov >

Damai Daif; Yutao Sun'; Li Dong!, Yaru Hao!, Shuming Ma!, Zhifang Sui’, Furu Wei!

 Hypothesis #2: Transformers learn tasks required for downstream applications during pre-
training, and in-context demonstrations are only used to recognize which task is required

& Classification

No Demos Demos w/ gold labels

Rethinking the Role of Demonstrations:
What Makes In-Context Learning Work?

(=2}
<

Demos w/ random labels

L wn %))
(52} o 19]

Sewon Min'? Xinxi Lyu!  Ari Holtzman'  Mikel Artetxe?
Mike Lewis’  Hannaneh Hajishirzi'® Luke Zettlemoyer'?
1University of Washington Meta Al 3 Allen Institute for Al

{sewon, alrope, ahai, hannaneh, lsz}@cs.washington.ed

{artetxe,mikelewis}@meta.com ' MetalCL (774M) GPT] (6B)

Macro-F1 (%)
w w -y
o w o

N
(2]

GPT-3 (175B)

Ground-truth labels don’t matter! _



Understanding in-context learning

Disentangle In-context learning into two roles — task recognition (TR) vs
task learning (TL)

* TR: recognizes the task from demonstrations and applies LLMs’ pre-
trained priors

* TL: learns a new input-label mapping from demonstrations

 |CL performs both TR and TL, but TL emerges with larger models and
more demonstrations

Pan et al. What In-Context Learning “Learns” In-Context: Disentangling Task Recognition and Task Learning, 2023

58



Improving in-context learning performance

* Instead of randomly sampling K in-context examples, (== ==

T s . What is the length of the
— 11 Retriever origest ilise o o iesd

you should use “high-quality” and similar ones! e

[ What is the longest riverin | [ Which states borderthe | [ Which states border the |
Lme smallest state in the usa? L shortest river in the usa? | longest river in the usa?
» - "

. . . ﬂ) states ) ( ) ( \
Learning To Retrieve Prompts for In-Context Learning 2szeor#t ik D
) #1 where 42 &5 the lowest 3) how long are #2 3) how long are #2
4)hvers o 43 4) #2 where #3 is the lowest | | 4) #2 where #3 is the highest
5) how long are ¥4 5) border states of #4 5) border states of #4
. . @#4 where #5 is the mghest) k ) k )
Ohad Rubin Jonathan Herzig Jonathan Berant I

The Blavatnik School of Computer Science, Tel Aviv University

{ohad.rubin, jonathan.herzig, joberant}@cs.tau.ac.il

[ Inference LM ]

1) nivers
2)#1in the usa
3) lengths of #2

4) #2 where #3 is longest
5) length of #4

« Pack more examples in long-context models!

100 100
o ® .m O e :ii :: ::"’e
. . ™Y
In-Context Learning with Long-Context Models: An In-Depth - u AW SRt sof o g T PLem e
. b “ ‘ n (L L] $
Exploration il £y
> 60 B > 60{ "
@ ° 5 e @
5 oy ‘e 5
3 X " 8 g oY ¥ &(Vs TREG g 2 e TREC
Amanda Bertsch” Maor Ivgi * Uri Alon” s 401 e TRECEINE @ 407 e “TRECFINE
abertsch@cs.cmu.edu maor.ivgi@cs.tau.ac.il urialon@cs.cmu.edu ¥, . v N s v NLU
* ]
201 v + Banking-77 20 + Banking-77
Jonathan Berant® Matthew R. Gormley” Graham Neubig” . § STt % “Glinke=150
joberant@cs.tau.ac.il mgormley@cs.cmu.edu gneubig@cs.cmu.edu 9 10° 10! 102 103 0 100 10! 102 103
number of examples in-context number of examples in-context

(a) Using randomly selected examples. (b) Using retrieved examples.
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2/3/22,9:31 PM The Bitter Lesson

The Bitter Lesson

Rich Sutton

March 13, 2019

The biggest lesson that can be read from 70 years of Al research is that general methods that leverage
computation are ultimately the most effective, and by a large margin. The ultimateTeasom forthisis—
Moore's law, or rather its generalization of continued exponentially falling cost per unit of
computation. Most Al research has been conducted as if the computation available to the agent were
constant (in which case leveraging human knowledge would be one of the only ways to improve
performance) but, over a slightly longer time than a typical research project, massively more
computation inevitably becomes available. Seeking an improvement that makes a difference in the
shorter term, researchers seek to leverage their human knowledge of the domain, but the only thing
that matters in the long run is the leveraging of computation. These two need not run counter to each
other, but in practice they tend to. Time spent on one is time not spent on the other. There are
psychologﬁ}l) commltme%‘ts_tﬁ investment in one approach or the other. And the human-knowledge
approach tends to complicate methods in ways that make them less suited to taking advantage of
general methods leveraging computation. There were many examples of Al researchers' belated
learning of this bitter lesson, and it is instructive to review some of the most prominent.




One thing that should be learned from the bitter lesson is the great power of general purpose methods,
of methods that continue to scale with increased computation even as the available computation
becomes very great. The two methods that seem to scale arbitrarily in this way are search and learning.
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Simple question

Suppose you take a deep network, and you multiply its size by C,

and Its dataset size by G,

By how much does the compute requirement (in FLOPs) increase?

FLOP= Floating point operation (addition/multiplication/ division)
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Scaling up Deep Learning

CNNs drove initial successes, esp for vision datasets (CIFAR, ImageNet etc.)

What's a recipe to scale them up for arbitrary image tasks?

[Tan & Le '19] “Efficient (Conv)-Nets” : If you have 2N factor more compute, scale up

width, depth, image-size by al ,BN , yN where a, 3, y are determined by grid search

on smaller conv-nets for the same task
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Compute requirement for forward pass

(Transformer)

* Embeddi .
EnSaas | (Factor 2 for multiply accumulate)
— 2 xseq len x vocab size x d _model
* Attention (Single Layer)

— Key, query and value projections: 2 X 3 X seq len x d model x (key size x num heads)

- Key @ Query logits: 2 x seq_len x seq_len X (key_size X num_heads)

— Softmax: 3 x num_heads x seq_len x seq_len

- Softmax @ query reductions: 2 x seq_len x seq_len x (key size x num_heads)
— Final Linear: 2 x seq_len x (key size x num_heads) x d_model

* Dense Block (Single Layer)
— 2 xseq_len x (d_model x ffw _size + d_model x ffw_size)
* Final Logits

— 2 xseq len xd model x vocab_size

Total forward pass FLOPs: embeddings nhum_layers 'total_attention dense_block® + logits
(In [Kaplan et al’20] approximated as 6ND; N =# parameters, D = # tokens)
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Scaling Laws for Neural Language Models

Jared Kaplan * Sam McCandlish*
Johns Hopkins University, OpenAl OpenAl
et al, 2021
43
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Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of computei used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not
bottlenecked by the other two.



Claims that aged relatively well...

Performance depends strongly on scale, weakly on model shape: Model performance depends most
strongly on scale, which consists of three factors: the number of model parameters N (excluding embed-
dings), the size of the dataset D, and the amount of compute C' used for training. Within reasonable limits,

performance depends very weakly on other architectural hyperparameters such as depth vs. width. (Section
3)

Smooth power laws: Performance has a power-law relationship with each of the three scale factors
N, D, C when not bottlenecked by the other two, with trends spanning more than six orders of magnitude
(see Figure 1). We observe no signs of deviation from these trends on the upper end, though performance
must flatten out eventually before reaching zero loss. (Section 3)

Universality of overfitting: Performance improves predictably as long as we scale up N and D in tandem,
but enters a regime of diminishing returns if either NV or D is held fixed while the other increases. The

Universality of training: Training curves follow predictable power-laws whose parameters are roughly
independent of the model size. By extrapolating the early part of a training curve, we can roughly predict the
loss that would be achieved if we trained for much longer. (Section 5)

Transfer improves with test performance: When we evaluate models on text with a different distribution
than they were trained on, the results are strongly correlated to those on the training validation set with
a roughly constant offset in the loss — in other words, transfer to a different distribution incurs a constant
penalty but otherwise improves roughly in line with performance on the training set. (Section 3.2.2)



Claims that did not ...

Sample efficiency: Large models are more sample-efficient than small models, reaching the same level of
performance with fewer optimization steps (Figure 2) and using fewer data points (Figure 4).

Convergence is inefficient: When working within a fixed compute budget C' but without any other restric-
tions on the model size /N or available data D, we attain optimal performance by training very large models
and stopping significantly short of convergence (see Figure 3). Maximally compute-efficient training would
therefore be far more sample efficient than one might expect based on training small models to convergence,
with data requirements growing very slowly as D ~ C°-27 with training compute. (Section @)

Optimal batch size: The ideal batch size for training these models is roughly a power of the loss only,
and continues to be determinable by measuring the gradient noise scale [MKAT18]; it is roughly 1-2 million
tokens at convergence for the largest models we can train. (Section 5.1)

10x increase in compute should be allocated to a 5.5x increase in model size
and a 1.8x increase in training tokens.



Brief Era of Undertrained Mega Models
(2020-22)

Implication of Kaplan et al. [2020] : 10x increase in compute should be
allocated to a 5.5x increase in model size and a 1.8x increase in training tokens.”
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Gopher [Rae et al’'21, Google]
280B parameters, 300B tokens...

Scaling Language Models: Methods, Analysis & Insights from Training Gopher

Model Layers Number Heads Key/Value Size d, .4 MaxLR Batch Size

44M 8 16 32 512 6x1074 0.25M
117M 12 12 64 768 6x 1074 0.25M
417M 12 12 128 1,536 2x1074 0.25M
1.4B 24 16 128 2,048 2x107* 0.25M
7.1B 32 32 128 4,096 1.2x10% 2M
Gopher 280B 80 128 128 16,384 4x10™° 3M — 6M

Table 1 | Model architecture details. For each model, we list the number of layers, the key/value size,
the bottleneck activation size d,;,q¢], the maximum learning rate, and the batch size. The feed-forward

size is always 4 X dodel-
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PalLM [Choudhery et al'22]

PaLM: Scaling Language Modeling with Pathways
[PaLM2] was a followup

540 B parametersr 7808 tOkeﬂS Model #E).f I:Ja',i'la.\met)ers Accelerator chips MO(:.? F,:J.OPS
_ _ _ _ GPT-3 175B V100 21.3%

Design tallored for parallelization Gogher 2608 4096 TPU v3 2.5%
in TPU v4 pod client-server Pal M ° 540B 6144 TPU v4 46.2%
architecture (Pathways) -
|_ ¢ ¢ b b ' h Model Layers +# of Heads dmodel * E)in b?;ﬁgfst)ers Batch Size

ater stages use pigger patc

. f g gg . PaLM 8B 32 16 4096 8.63 256 — 512
sizes for better gradient estimate  pivess 64 32 8192 62.50 512 — 1024
(leSS nO|Se) PaLM 540B 118 48 18432 540.35 512 — 1024 — 2048

Table 1: Model architecture details. We list the number of layers, dy,oq4e1, the number ¢
attention heads and attention head size. The feed-forward size dg is always 4 X dmodel an
attention head size is always 256.

Deterministic batches; “fully bitwise reproducible from any checkpoint”. B



PaLM (the hardware)
. EEEEEN

TPU chips
connected by
fast private
interconnects

Cross-pod transfer

gradients
A Compute gradients

(Forward+backward pass) Pod 1
B  Apply gradients

Pod 1 / D Host (many per Pod)
Pod 2 Model Components Scheduler (per Pod)

Figure 2: The Pathways system (Barham et al., 2022) scales training across two TPU v4
pods using two-way data parallelism at the pod level.

Figure 2 shows how the Pathways system executes the two-way pod-level data parallelism.

A single Python client constructs a sharded dataflow program (shown on the left in Figure 2)
that launches JAX/XLA (XLA, 2019) work on remote servers that each comprise a TPU
pod. The program contains a component A for within-pod forward+backward computation
(including within-pod gradient reduction), transfer subgraph for cross-pod gradient transfer,
and a component B for optimizer update (including summation of local and remote gradients).
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Megatron Tuning NLG (Nvidia, 2022)

b30B parameters, 270B tokens

monolithic (unlike Google PaLM, PaLM2); served to highlight Nvidia's
own parallelism solution (NVLInk within a node, InfiniBand across nodes)*

In hindsight, a fairly unexceptional effort....

By combining tensor-slicing and pipeline parallelism, we can operate them
within the regime where they are most effective. More specifically, the system
uses tensor-slicing from Megatron-LM to scale the model within a node and
uses pipeline parallelism from DeepSpeed to scale the model across nodes.
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Chinchilla (DeepMind)

* DeepMind'’s effort at finding Scaling Laws

@ DeepMind

Training Compute-Optimal Large Language Models

Jordan Hoffmann*, Sebastian Borgeaud*, Arthur Mensch*, Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero, Karen Simonyan,
Erich Elsen, Jack W. Rae, Oriol Vinyals and Laurent Sifre*
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“Compute optimal” : Best heldout cross-entropy given total FLOPs budget
* No constraints on # of GPUs and # Tokens
* |gnores communication latencies

Caveat: Minimization
only over architectures,

Nopt(C), Dope (C) = argmin L(N,D). |training, and datasets
N,D s.t. FLOPs(N,D)=C that were popular in ‘22

Experiments:
400 models, sizes 70M to 16B

» Dataset size bB to b00B
(other hyper-parameters such as batch size, dimension, etc. taken from earlier studies)

75



“Compute optimal” : Best heldout cross-entropy given total FLOPs budget
 No constraints on # of GPUs and # Tokens

* |gnores communication latencies
Caveat: Minimization

only over architectures,

Nopt(C), Dope (C) = argmin L(N,D). |training, and datasets
N,D s.t. FLOPs(N,D)=C that were popular in ‘22
400 2000

Let’s figure out: If L(N,D) =2 + —— + what is the correct scaling recipe?

1/3 1/3
N D




Table: Scaling Recipe

Parameters FLOPs FLOPs (in Gopher unit) Tokens
400 Million 1.92e+19 1/29,968 8.0 Billion
1 Billion 1.21e+20 1/4,761 20.2 Billion
10 Billion 1.23e+22 1/46  205.1 Billion
67 Billion 5.76e+23 1 1.5 Trillion
175 Billion 3.85e+24 6.7 3.7 Trillion
280 Billion 9.90e+24 17.2 5.9 Trillion
520 Billion 3.43e+25 59.5  11.0 Trillion
1 Trillion 1.27e+26 221.3  21.2 Trillion
10 Trillion 1.30e+28 22515.9 216.2 Trillion
“Chinchilla Scaling Law”
(D = 20N 1s compute-optimal choice)
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Main finding

1T
—— Approach 1
S —— Approach 2

" —— Approach 3

_% 10B -=-= Kaplan et al (2020)

g Y¢ Chinchilla (70B)

& 1.08 ¥ Gopher (280B)
% GPT-3 (175B)
Y% Megatron-Turing NLG (530B)

100M

4
i 101 1071 1073 1075

FLOPs

Figure 1 | Overlaid predictions. We overlay the predictions from our three different approaches, Side-benefit:

along with projections from Kaplan et al. (2020). We find that all three methods predict that current Com pute opti mal
large models should be substantially smaller and therefore trained much longer than is currently models =>

done. In Figure A3, we show the results with the predicted optimal tokens plotted against the optimal -
number of parameters for fixed FLOP budgets. Chinchilla outperforms Gopher and the other large faster inference
models (see Section 4.2).
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Cosine LR schedule

1 (t _ tw)ﬂ Learning Rate Schedule with Linear Warmup and Cosine Decay
I—R(t) = f + 5 (L o Lﬂ) [1 + Cos < (T— tw) ' 0.10 1 : —— LR Schedule

L. = Max LR o
Z = min LR

T = total # of iterations

o
o
o

Learning Rate

t, = # of warmup iterations

Key Finding: When # of tokens (hence T) changes, use LR schedule for this new T

(DON'T finish training before hitting the end of the cosine schedule.)
This partly explains why OpenAl’s Scaling Law [Hoffman et al’20] was off..
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Finding how loss scales with
compute and data



IsoFlop Curves

3.2 1T
1.4T
3.0 1T
3 2.8 6e18 )
3 le19 .. 9 » 1008 e
o € ' D 10B - S &%
26 —® 3el9 e . AO‘ )
[ © -7 y
£ e 6e19 = e = 108 o
- —0— 1e20 o 1B ® o>
2.4 G
—e— 3e20 ®
—@— 6e20 ‘0 18
22 —e— 1le2l 100M "
—o— 3e21
2.0 100M
100M 300M 1B 3B 6B 30B 1017 101° 1021 1023 10%5 1017 1010 102! 1023 1025
Parameters FLOPs FLOPs

Figure 3 | IsoFLOP curves. For various model sizes, we choose the number of training tokens such
that the final FLOPs is a constant. The cosine cycle length is set to match the target FLOP count. We
find a clear valley in loss, meaning that for a given FLOP budget there is an optimal model to train
(left). Using the location of these valleys, we project optimal model size and number of tokens for
larger models (center and right). In green, we show the estimated number of parameters and tokens
for an optimal model trained with the compute budget of Gopher.




Method to find Scaling Law

N = # parameters D = # tokens C = total compute

Nopt(C), Dope (C) = argmin

L(N, D).

N,D s.t. FLOPs(N,D)=C

Empirical finding from prev. slide : N = KC% D = K~'C? for

some a, f  (functional form confirmed by all 3 approaches..)

Approach

Coeff. a where N,p; oc C°

Coeff. b where D, o C?

1. Minimum over training curves
2. IsoFLOP profiles
3. Parametric modelling of the loss

0.50 (0.488,0.502)
0.49 (0.462,0.534)
0.46 (0.454, 0.455)

0.50 (0.501,0.512)
0.51 (0.483,0.529)
0.54 (0.542,0.543)

Kaplan et al. (2020)

0.73

0.27
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Estimated held-out c-e loss given D, N

A B

NO.34 G DO.28’

L(N,D) =E +

with E = 1.69, A = 406.4, B = 410.7.

Fitting the decomposition to data. We effectively minimize the following problem

min_ RuZn:i Hubers (LSE(a —alogN;,b - BlogD;,e) —log Li),

where LSE is the log-sum-exp operator. We then set A, B, E = exp(a), exp(b), exp(e).
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"Chinchilla Law": Amended



v1l: Accounting for inference cost

Pretraining Loss

train smaller model
on more data

/B

Chinchilla
optimal :
13B | :

4.5x1072 5.2x10%
Pretraining FLOPs

Depending on how many tokens are
extracted in inference, higher cost of
overtrained 7B model may be worth it

Beyond Chinchilla-Optimal:
Accounting for Inference in Language Model Scaling Laws

Nikhil Sardana'! Jacob Portes' Sasha Doubov! Jonathan Frankle!

e.g., Llama1 7B trained on 1.4T tokens (Chinchilla recipe) in Feb'23,
but a year later Llama3 8B was trained on 5T tokens
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Correcting Mistakes in Chinchilla Paper

[Epoch Al, 2024]
Motivation: Accurate prediction on models that are not compute-optimal

We reconstruct a subset of the data in Hoffmann et al.’s paper by extracting it from their plots and fit the
same parametric model. Our analysis reveals several potential issues with Hoffmann et al.’s estimates of

the parameters of their scaling law:

1. Hoffmann et al.’s estimated model fits the reconstructed data poorly, even when accounting for
potential noise in the data reconstruction and excluding outlier models.

2. The confidence intervals reported by Hoffmann et al. are implausibly tight given the likely number of
data points they had (~400). Obtaining such tight intervals would require hundreds of thousands of

observations.

3. The scaling policy implied by Hoffmann et al.’s estimated model is inconsistent with their other
approaches and the 20-tokens-per-parameter rule of thumb used to train their Chinchilla model.

482.01 . 2085.43
N 0-3478 )0-3658

L(N,D) = 1.8172 +
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Another major Chinchilla Amendation
(data-constrained training)

Scaling Data-Constrained Language Models

Niklas Muennighoff ! Alexander M. Rush ! Boaz Barak 2 Teven Le Scao !
Aleksandra Piktus | Nouamane Tazi ! Sampo Pyysalo > Thomas Wolf ! Colin Raffel !
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Motivation: Not enough data

e.g., Chinchilla law suggests training 530B model on 11T tokens

Assembling a dataset of 11T tokens may involve too many compromises
(ie low-quality)

Specialized corpora (law, medicine, Wwikipedia etc.) are small; essentially
fixed size.

Scaling up with web data throws off the data-mix proportions
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From paper abstract [Meunnighoff et al'23]

regimes. Specifically, we run a large set of experiments varying the extent of data
repetition and compute budget, ranging up to 900 billion training tokens and 9
billion parameter models. We find that with constrained data for a fixed compute
budget, training with up to 4 epochs of repeated data yields negligible changes to
loss compared to having unique data. However, with more repetition, the value of
adding compute eventually decays to zero. We propose and empirically validate
a scaling law for compute optimality that accounts for the decreasing value of
repeated tokens and excess parameters. Finally, we experiment with approaches
mitigating data scarcity, including augmenting the training dataset with code data
or removing commonly used filters. Models and datasets from our 400 training runs
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Experiments with 4.2B model

Return on compute when repeating

3.4 ‘,' o]
32 | 5
" “‘ o) -
) .
wnv 30‘
o |
o, |
n 2.8] ; .
v ; i
C 2.6 O
= ('5 oo,
i AP
2.4 |
|
|
2.21 Up to = 4 epochs 1 Rapidly diminishing
repeating is almost 1 returns for
as good as new data 1 more repetitions

2.0

12B 48B  120B 480B  1.2T
(1) (4) (10) (40) (100)
Tokens
(Epochs)
e % Models trained -

Loss assuming repeated data is worth the same as new data -
Loss predicted by our data-constrained scaling laws "



2.8B parameters trained 4.2B parameters trained 8.7B parameters trained
for 55B tokens for 84B tokens for 178B tokens

34l i i
, ,J\‘
3.2 ! b
w \\
és.o 1\ 1 \
%2.8 1 1
> N
2.6 k : | \\’\\
2.4 ‘ h | P s ——
SB  15B 25B 35B 45B 55B 5B 25B 45B 658 858 5B  40B 100B  140B  180B
Training tokens Training tokens Training tokens
Epochs
1 2 3 —4 —5 — 7 — 14 — 44
FLOP budget (C') Parameters (N) Training tokens (D) Data budget (D¢)
9.3 x 1020 2.8B 55B { 55,28,18,14,11,9,4,1.25}B
2.1 x 102! 4.2B 84B {84,42,98,21, 17,12,6,1.9}8
9.3 x 10%! 8.7B 178B {178,88,58,44,35,25,13,4}B

Figure 4: Validation Loss for Different Data Constraints (IsoFLOP). Each curve represents the
same number of FLOPs spent on an equal size model. Colors represent different numbers of epochs
due to repeating because of data constraints. Parameters and training tokens are set to match the
single-epoch compute-optimal configurations for the given FLOPs. Models trained on data that is
repeated for multiple epochs have consistently worse loss and diverge if too many epochs are used.
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Thought process in deriving Chinchilla-like law

A B D’ = "effective # of tokens”

L(N,D) = —— +

T N/ + LB

Let D = total # of tokens with repetition. Up = unique tokens

Let Uy = optimal # parameters for Uy, tokens (as per Chinchilla)

Define R D I R N
erine D— T — N:__
Up Uy

DB N’ = 7effective # of parameters’

Hypothesis: There exist learnable parameters R, R;‘\; such that

-
D' = Effective datasize = Up + UpR%(1 — e #b)
_RN

N/ZUN+UNR7V(1—6 RN )

Motivation: Exponential
drop-off in effectiveness
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Fitting this model

A B
L(UN,UD,RN,RD)= Ry + “®p + F

(Unv + UnR%(1—€ ®n )@ (Up + UpR%(1—e *b )5

|

Do best fit using Huber loss Ls(a) = {?'| 15 li:
{5( a| — ;{5') 1

12 u| < )
(I| -2 )

(Modification of MSE, less sensitive to outliers)

Rj‘\; = 5.31, RS = 15.39 fit the data quite well to give the expressionl

521 1488
- + +1.87

L(UD7RN7RD) — = =
(Un+5.3-Un(1—e53))035  (Up+15.4-Up(l —eT51))0:35

where Uy = Up - 0.051



Two ways to overcome limited text data

[Meunnighof et al.]

4.2B model, trained with 84B tokens. Tokens could be (i) unique (ii) repeated (ili) code tokens
(v) filtered using perplexity

For these experiments, we set a maximum data budget (D) of 84 billion tokens. For repetition and
code filling, only a subset of D¢ is available and the rest needs to be compensated for via repeating
or adding code. For both filtering methods, we start out with approximately twice the budget (178
billion tokens), as it is easier to gather noisy data and filter it than it is to gather clean data for training.
For perplexity filtering, we select the top 25% samples with the lowest perplexity according to a
language model trained on Wikipedia. This results in 44 billion tokens that are repeated for close
to two epochs to reach the full data budget. For deduplication filtering, all samples with a 100-char
overlap are removed resulting in 21 billion tokens that are repeated for four epochs during training.
See Appendix N for more details on the filtering procedures.

Note: “lowest perplexity” == highest probability (hopefully, “most like wikipedia”)

9%



=24
%]
GUL U DATABUDGET | S
; o 22
- - - i H
Code L ()
O 20
—_— =
©
- :
Hterin
9 218
B Q Strategy
Deduplicate / o -@— Repeating data
Perplexity-filter g 16{ =@= Filling missing data with Python code l
Z Y% Perplexity-filter then repeat
14 v% Deduplicate then repeat
100% 50% 25% 10%

Interesting Settings: (i) Code + Data (up to 50-50 is good)
(i) apply perplexity filter to get 42 B tokens, then 2 epochs

Data Budget

Caveat: Code is known
to improve reasoning,
and they didn’t test for this
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But...

"W\ AdiPolak &
) @AdiPolak
llya Sutskever just said it: Pre-training as we know it is over.

Compute is scaling, but data? It’s the fossil fuel of Al, and AGI has hita
wall. Meanwhile, big companies are still sitting on massive data reserves
—and they’re not sharing.

So, is this the beginning of a new Al race? One where progress isn’t
about more general data, but about building agents and tools from
proprietary data that make existing models smarter?

2025 might redefine how Al evolves. The question is: Will innovation
outpace those holding the keys to more data?

Your thoughts?

Pre-training as we know it will end

Compute is growing:

- Better hardware
Better algorithms
- Larger clusters

Data is not growing

- We have but one internet
- The fossil fuel of Al

Internet. We have, but one Internet. You could even say you can even go as far as to say.

That data is the fossil fuel of Al, It was like, created somehow. And now we use it.
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Llama 3



From GPT-3 to LIlama 3

« GPT-1, GPT-2, GPT-3, GPT-3.5/ChatGPT, GPT-4, GPT-4-turbo, GPT-40
e Llama 1, Llama 2, Llama 3

* Mistral, Mixtral

* Claude 1, Claude 2, Claude 3, Claude 3.5 (Haiku, Sonnet, Opus)
 Qwen 1, Qwen 2

« Bard, Gemini, Gemini Pro, Gemma 1, Gemma 2

* Truly open LMs: OLMo, Pythia, BLOOM

More on these models later...
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Llama 3.1: Overview

* Dense Transformers - 8B, 70B, 4058

— Dense vs mixture-of-experts
— Smaller models are getting more attention

* Long-context: 128K tokens (remember, GPT-3 had only 2048 tokens)

* Pre-trained on 15T multilingual tokens (remember, GPT-3 was trained on
300B tokens)

* Pre-training vs post-training:
— SFT, rejection sampling, direct preference optimization
— multilinguality, coding, reasoning, tool use
— Safety mitigations: helpfulness vs harmlessness

* Multi-modal training and adaptation
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Llama 3.1: Pre-training data

* "To train the best language model, the curation of a large, high-quality
training dataset I1s paramount.”

 Pll and safety filtering
» Text extraction and cleaning from raw HTML pages
* De-duplication: URL, document, line-level, ...

 Heuristic filtering:
— Remove lines that consist of repeated content (e.g., n-gram coverage ratio)
— Dirty word counting
— KL divergence of token-distribution compared “high-quality corpus”

 Model-based quality classifier: important and new trend!

* Code, reasoning, and multilingual data
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Llama 3.1: Heuristic filtering

C4 rules (Raffel et al., 2020)

We only retained lines that ended in a terminal punctuation mark (i.e. a period,
exclamation mark, question mark, or end quotation mark).

We discarded any page with fewer than 5 sentences and only retained lines that
contained at least 3 words.

We removed any page that contained any word on the “List of Dirty, Naughty, Obscene
or Otherwise Bad Words”.6

Many of the scraped pages contained warnings stating that Javascript should be
enabled so we removed any line with the word Javascript.

Some pages had placeholder “lorem ipsum” text; we removed any page where the
phrase “lorem ipsum” appeared.

Some pages inadvertently contained code. Since the curly bracket “{” appears in
many programming languages (such as Javascript, widely used on the web) but not in
natural text, we removed any pages that contained a curly bracket.

""" function returns True if the sample complies with Gopher rules """
signals = json.loads(sample["quality_signals"])

# rule 1: number of words between 56 and 18'000

viord_count = signals["rps_doc_word_count"][8][2]
if word_count < 50 or word_count > 10_000:
return False

# rule 2: mean word length between 3 and 1@
mean_word_length = signals["rps_doc_mean_word_length"] [0] [2]
if mean_word_length < 2 or mean_word_length > 10:

return Fals

# rule 2: symbol to word ratioc below 0.1
symbol_word_ratio = signals(["rps_doc_symbol_to_word_ratio™] [0] [2]
if symbol_word_ratio > 6.1:

return False

# rule 3: 90% of lines need to start without a bullet point
n_lines = signals["ccnet_nlines"][0][2]

n_lines_bulletpoint_start = sum(map(lambda ln: n[2], signals["rps_lines_start_w:

if n_lines_bulletpoint_start / n_lines > 0.90:
return False

# rule 4: the ratio between characters in the most frequent 2-qram and the total
# of characters must be below 0.2
top_2_gram_frac = signals["rps_doc_frac_chars_top_2gram"] [@] [2]
if top_2 gram_frac = 0.2:
return Fal

# rule 5: ...

Gopher Rules (Rae et al., 2021)

def gopher_rules_pass(sample) -= bool:

©
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Llama 3.1: Model-based quality filtering

“To train a quality classifier based on Llama 2, we create a training set of cleaned web
documents, describe the quality requirements, and instruct Llama 2’s chat model
i to determine if the documents meets these requirements. \We use DistilRoberta

i (Sanh et al., 2019) to generate quality scores for each document for efficiency reasons.
EWe experimentally evaluate the efficacy of various quality filtering configurations.”

e |

They generate 450k annotations by llama-3-instruct for identifying educational content

Datasets comparisons on 8 NLP benchmarks Datasets comparisons on MMLU Datasets comparisons on ARC
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Llama 3.1: Model-based quality filtering

Below is an extract from a web page. Evaluate whether the page has a high educational value and could be useful in an educational setting for teaching

from primary school to grade school levels using the additive 5-point scoring system described below. Points are accumulated based on the satisfaction of
each criterion:

° Add 1 point if the extract provides some basic information relevant to educational topics, even if it includes some irrelevant or non-academic
content like advertisements and promotional material.

° Add another point if the extract addresses certain elements pertinent to education but does not align closely with educational standards. [t might
mix educational content with non-educational material, offering a superficial overview of potentially useful topics, or presenting information in a
disorganized manner and incoherent writing style.

° Award a third point if the extract is appropriate for educational use and introduces key concepts relevant to school curricula. It is coherent though
it may not be comprehensive or could include some extraneous information. It may resemble an introductory section of a textbook or a basic
tutorial that is suitable for learning but has notable limitations like treating concepts that are too complex for grade school students.

® Grant a fourth point if the extract highly relevant and beneficial for educational purposes for a level not higher than grade school, exhibiting a
clear and consistent writing style. It could be similar to a chapter from a textbook or a tutorial, offering substantial educational content, including
exercises and solutions, with minimal irrelevant information, and the concepts aren't too advanced for grade school students. The content is
coherent, focused, and valuable for structured learning.

° Bestow a fifth point if the extract is outstanding in its educational value, perfectly suited for teaching either at primary school or grade school. It
follows detailed reasoning, the writing style is easy to follow and offers profound and thorough insights into the subject matter, devoid of any
non-educational or complex content.

The extract: <extract>.
After examining the extract:

) Briefly justify your total score, up to 100 words.
® Conclude with the score using the format: "Educational score: <total points>"

https://huggingface.co/datasets/HuggingFaceF\W/fineweb-edu 103



https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu

Selecting high-quality data with LM signals

Part |
measure
guality

Part Il
utilize
guality

Text A —

Quality Criterion

Writing Style / Educational Value /
Facts & Trivia / Required Expertise

Text B

Web-Scale Data

(SlimPajama)

=
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Lo

Collect Train
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QuRating: Selecting High-Quality Data for Training Language Models (2024)
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Selecting high-quality data with LM signals

Cluster No. 19 (2.6%)
court, law, case, defendant,

judge, trial, supreme, district _L _L __A

Cluster No. 21 (1.8%)
cells, cell, protein, gene,

expression, human, dna, proteins

Cluster No. 23 (1.8%)

album, band, song, music, songs, ‘
rock, guitar, like, new, sound

Wikipedia

Book

StackExchange

Writing Style Facts & Trivia Educational Value Required Expertise
QuRating: Selecting High-Quality Data for Training Language Models (2024)
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Code and math data

« Common wisdom: code and math data are very important for pre-training
* They build domain-specific pipelines that extract code and math-relevant web pages

Published as a conference paper at ICLR 2024

To Code, or Not To Code?

AT WHICH TRAINING STAGE DOES CODE DATA HELP . ] L
Exploring Impact of Code in Pre-training

LILMS REASONING?

Yingwei Ma''?% Yue Liu'*, Yue Yu'?] Yuanliang Zhang', Yu Jiang?, Changjian Wang', Viraat Aryabumi!, Yixuan Su?, Raymond Ma?, Adrien Morisot?,
ji : g M o

summshan il Ivan Zhang?, Acyr Locatelli?, Marzieh Fadaee!, Ahmet Ustiin?!,

National University of Defense Technology 3

2Peng Cheng Laboratory and Sara Hooker

3Tsinghua University

'Cohere For Al, *Cohere

» Code is a critical building block for generalization far beyond coding tasks

— Compared to text-only pre-training, 8.2% in NL reasoning, 4.2% in world knowledge, 6.6% In
general win rates, 12x in code performance

* The quality of code data has an outsized impact in downstream tasks
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Determining data mix

* "Roughly 0% of tokens corresponding to general knowledge, 25% of
mathematical and reasoning tokens, 17% code tokens, 8% multilingual tokens”

» Scaling laws for data mix: “train several smaller models on a data mix and use

that to predict the performance on that mix”, “repeat this process for different data
mixes to select a new data mix candidate”

Small Steps, Small Models, Seen Mixture

Observed Samples @ Training Step Laws A
l D (@ Data Mixing Laws
Q
Lo}
Large Steps, Small Models, Seen Mixture E5e A
o °o | - x
l @ 5' g ,: il y o
. . A 1 . % | o o % I‘ A—/—‘ ‘
ge Steps, Large Models, Seen Mixture ® =7
R Minimum Loss
l € @ Model Size Laws g 2 8 AN
~ / N < Q
neean Mixture I A @
| VIIXTUTre 7} \"{ /g\'&% X N mixtures 0'00,7)6,»- _ ; "\006\
e//)/}) N n\"\\ > '6@} b > 4 ,)foo‘ o : 6\00
@ Training Step Laws; @ Model Size Laws; 96}«@ e A D7 oF
(@ Data Mixing Laws (ours) Oy S ---" < T

Data Mixing Laws: Optimizing Data Mixtures by Predicting Language Modeling Performance (2024)
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Determining data mix

 Domains: Common Crawl, CC, Github, Wikipedia, Books, arXlv, ...

Data Mixture of Stable Stage

CommonCrawl Chn Code Pretrain

Open Web Math
Arxiv
peS2o

Pile
15.0

Dolma

C4

DathMimure of Decay Stage

Code Pretrain

CommonCrawl Chn
Evollnstruct
OssInstruct
SimOrca
Logic SFT
ShareGPT4

Law Pretrain
Open Web Math
v

peS20

Math_SFT
 Stack Exchange QA
Other

Math Synthetic

UltraChat
Knowledge SFT
Book Chinese

Pile - Code SFT
SFT mixed Baidu Baike

146

C4

Wikipedia

MiniCPM: Unveliling the Potential of Small Language Models with Scalable Training Strategies (2024)
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Training recipe

» AdamW: learning rate of 8x10-5, a linear warm up of 8000 steps, |.. |
and a cosine learning rate schedule decaying to 8x10=7 over - |
1,200,000 steps e/

Cosine LR schedule

* They adjusted the pre-training mix during training with linear warmup

— Increased percentage of non-English data
— Upsample mathematical data to improve the model’s knowledge cut-off
— Downsampled subsets of pre-training data that were later identified as lower quality

« Long-context pre-training: first train on 8k, and increase context length to
128k In six stages (800B training tokens)
— Challenges: scarcity of real long-context pre-training data
— The performance on short-context tasks will degrade drastically
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Data annealing

* They upsample on data sources of very high-quality at the end of training (final
40M tokens; no benchmark datasets used in annealing)

Does your data spark joy? Performance gains from domain
upsampling at the end of training

Cody Blakeney*, Mansheej Paul*, Brett W. Larsen*, Sean Owen, and Jonathan Frankle

Databricks Mosaic Research

* They view data annealing as a cheap way to measure the impact of domain-
specific datasets on model capabilities
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Model architecture

e Standard dense Transformers, the same architecture as Llama-2
* Grouped query attention (GQA): 8 key-value heads to improve inference speed

Multi-head Grouped-query Multi-query

Values

Keys

........

.

: : . ¥ 1 g g o bl ___—:,"r\‘f:s:_s
2 ! . A ! 2 Il ‘\ /’ ‘\ r’ \ l' ‘\ - ’ \ \\‘\:~~
1 1 1 ' 1 1 1 ’ \ ’ \ ’ \ ’ \ PR 7 \ ~ L T PO
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(Ainslie et al., 2023) GQA: Training generalized multi-query transformer models from multi-head checkpoints. 111
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Model architecture

 Standard dense Transformers, the same architecture as Llama-2

* Grouped query attention (GQA): 8 key-value heads to improve inference
speed

* Prevents self-attention between documents within the same sequence
* A much larger vocabulary: 128K

 ROPE positional embeddings: base frequency = 500,000
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Rope positional embeddings

= 1 — (x'1, x'3)
ey {3 X1 X ' ‘
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Evaluation

Reading Comprehension

SQuAD V2 (Rajpurkar et al., 2018), QuaC (Choi et al., 2018),
RACE (Lai et al., 2017),

Code

HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021),

Commonsense
reasoning/understanding

CommonSenseQA (Talmor et al., 2019), PiQA (Bisk et al., 2020),
SiQA (Sap et al., 2019), OpenBookQA (Mihaylov et al., 2018),
WinoGrande (Sakaguchi et al., 2021)

Math, reasoning, and problem solving

GSMS8K (Cobbe et al., 2021), MATH (Hendrycks et al., 2021b),
ARC Challenge (Clark et al., 2018), DROP (Dua et al., 2019),
WorldSense (Benchekroun et al., 2023)

Adv SQuAD (Jia and Liang, 2017),

Adversarial Dynabench SQuAD (Kiela et al., 2021), GSM-Plus (Li et al., 2024c¢)
PAWS (Zhang et al., 2019)

Long context QuALITY (Pang et al., 2022), many-shot GSM8K (An et al., 2023a)
MMLU (Hendrycks et al., 2021a),
MMLU-Pro (Wang et al., 2024b),

Aggregate

AGIEval (Zhong et al., 2023),
BIG-Bench Hard (Suzgun et al., 2023)
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Performance: Reading comprehension

Reading Comprehension

SQuAD QuAC RACE Math and Reasoning
Llama 3 8B 77.0 408 449 +11 54.3 +1.4 ARC-C DROP
Mistral 7B 73.2 +0.8 44.7 +11  53.0 +1.4 Llama 3 8B 79.7 +23  59.5 +1.0
Gemma 7B 81.8 +07 42.4 +1.1 48.8 +1.4 Mistral 7B 78.2 +2.4  53.0 £1.0
Gemma 7B 78.6 +2.4  56.3 £+1.0

Ll.ama l3 708 81.8 +07 511+11  59.0 +1.4 Llama 3 70B B3 Toane
Mixtral 8x22B 841407 44.9 +1.1  59.2 +1.4 Mixtral 8 x22B 919 +16 T7.5 to8
Llama 3 4058 81.8 +07 53.6+11 581 +14 Llama 3 405B 06.1 +1.1 84.8 +0.7
GPT-4 —~ - - GPT-4 96.3 +11  80.9 +0.8
Nenlotron 4 3408 — — — Nemotron 4 340B 94.3 +1.3 —
Gemini Ultra = . = Gemini Ultra —~ 82.42 +o0.8
DROP: 3-shot, SQUAD: 1-shot, RACE: 0-shot, QuUAC: 1-shot, ARC-C: 25-shot..

Setting CoQA DROP QuAC SQuADv2 RACE-h RACE-m Setting ARC (Challenge)

Fine-tuned SOTA 90.7¢ 89.1° 74.4°  93.0¢ 90.0°  93.1° Fine-tuned SOTA _ 78.5[KKS 20

GPT-3 Zero-Shot 81.5 23.6 41.5 59.5 45.5 58.4 GPT-3 Zero-Shot 51.4

GPT-3 One-Shot  84.0 34.3 43.3 65.4 45.9 57.4 GPT-3 One-Shot 53.2

GPT-3 Few-Shot 850 365 443  69.8 46.8 58.1 GPT3 Few-Shot  51.5
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Performance: Commonsense reasoning

Commonsense Understanding

PiQA OpenBookQA  Winogrande
Llama 3 8B 81.0 +1.8 45.0 +4.4 75.7 +2.0
Mistral 7B 83.0 +1.7 47.8 +4.4 78.1 +1.9
Gemma 7B 81.5 +1.8 52.8 +4.4 74.7 +2.0
Llama 3 70B 83.8 +1.7 47.6 +4.4 83.5 +1.7
Mixtral 8x22B 85.5 +1.6 50.8 +4.4 84.7 +1.7
Llama 3 4058 85.6 +1.6 49.2 +4.4 82.2 +1.8
GPT-4 — 87.5 +1.5
Nemotron 4 340B — 89.5 +14
PiQA: 0-shot, OpenBookQA: 0-shot, Winogrande: 5-shot
Setting PIQA  OpenBookQA Setting Winogrande (XL)
Fine-tuned SOTA 79.4 87.2[KKS*20] Fine-tuned SOTA 84.6°
GPT-3 Zero-Shot  80.5* 57.6 GPT-3 Zero-Shot 70.2
GPT-3 One-Shot  80.5* 58.8 GPT-3 One-Shot 73,2
GPT-3 Few-Shot  82.8* 65.4 GPT-3 Few-Shot 77.7
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Performance: Code and math

HUMANEVAL

def incr_list(l: list):
"""Return lis

th elements incremented by 1.

return [i + 1 for i in 1]

def solution(lst):

"""Given a non-empty list of integers, return the sum of all of the odd elements

that are in even positions.

7 ) =>12
3, 3]) ==>9
24;.321] >0

return sum(lstl[i] for i in range(@,len(lst)) if i ¥ 2 == 0 and 1st[i] ¥ 2 == 1)

def encode_cyclic(s: str):

returns encoded string by cycling groups of three characters

groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)]

groups = [(group[1:] + group[@]) if len(group) == 3 else group for group in groups]
return "", join(groups)

def decode_cyclic(s: str):

takes as input string encoded with encode_cyclic function. Returns decoded string.

~ing to

grﬁ&ég = tgt(é ;‘ii:m{ﬁ((B

£

i + 3), len(s))] for i in range((len(s) + 2) // 3)]
# cycle elements in each group
groups = [(group[-1] + group[:-1]) if len(group) == 3 else group for group in groups]
return "".join(groups)

Problem

The battery charge in Mary’s cordless vacuum cleaner lasts ten minutes. It takes
her four minutes to vacuum each room in her house. Mary has three bedrooms, a
kitchen, and a living room. How many times does Mary need to charge her vacuum
cleaner to vacuum her whole house?

Solution

Mary has3 +1+1=5roomsin her house.

At 4 minutes a room, it will take her 4 * 5 = 20 minutes to vacuum her whole house.
At 10 minutes a charge, she will need to charge her vacuum cleaner20/10 =2
times to vacuum her whole house.

Final Answer
2
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Performance: Code and math

Code
HumanEval MBPP
Llama 3 8B 37.2 474 47.6 +a.4
Mistral 7B 30.5 +£7.0 47.5 +4.4
Gemma 7B 32.3 +£7.2 44.4 +4.4
Llama 3 708 58.5 +75 66.2 +4.1
Mixtral 8 x22B 45.1 +7.6 71.2 +a.0
Llama 3 405B 61.0 7.5 73.4 +39
GPT-4 67.0 +7.2 —~
Nemotron 4 340B 07.3 +£7.6 -
Gemini Ultra 74.4 167 —~

Llama 3 8B
Mistral 7B
Gemma 7B

Llama 3 70B
Mixtral 8 x22B

Llama 3 4058
GPT-4
Nemotron 4 340B
Gemini Ultra

GSMB8K MATH
57.2 +2.7 20.3 +1.1
92.5 £2.7 13.1 +0.9
46.4 +2.7 24.3 +1.2
83.7 +2.0 41.4 +1.4
88.4 +1.7 41.8 +1.4
89.0 +1.7 53.8 +1.4
92.0 +1.5 -

88.9°+1.7 53.2+1.4
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Contamination analysis

Contam. o e s * How to decide which examples are
AGIEval 98 85 199 16.3 contaminated?
BIG-Bench Hard 95 26.0 36.0 41.0 |
BoolQ 9%6 40 47 39 —"An example of a dataset D to be
Commmleme @ O Aa R contaminated if a ratio Ty of its tokens
GSMBSK 4 00 01 13 are part of an 8-gram occurring at least
HellaSwag 85 14.8 14.8 14.3 : - .
HumanEval , = - once In the pre-training corpus
MATH 1 0.0 -0.1 -0.2
MBPP — — — —
MMLU — — — — . .
MMLU-Pro - . * How to decide estimated performance
OrnTee e S @y ma B gains from contamination?
i = v a8 — Compare the performance on the
RACE - - - - “clean” subset vs entire dataset
SiQA 63 2.0 2.3 2.6
SQuAD 0 0.0 0.0 0.0
Winogrande 6 -0.1 -0.1 -0.2

WorldSense 19 3.1 =04 3.9
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Other LLMs



Open/Closed Access

 Weights: open? described? closed?
 Inference Code: open? described? closed?
* Training Code: open? described? closed?

» Data: open? described? closed?
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Licenses and Permissiveness

* Public domain, CC-0: old copyrighted works and products of US
government workers

 MIT, BSD: very few restrictions
« Apache, CC-BY: must acknowledge owner

 GPL, CC-BY-SA: must acknowledge and use same license for derivative
WOrks

* CC-NC: cannot use for commercial purposes
 LLaMa, OPEN-RAIL: various other restrictions
* No License: all rights reserved, but can use under fair use
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Fair Use

« US fair use doctrine — can use copyrighted material in some cases

* A gross simplification:
— Quoting a small amount of material — likely OK
— Doesn’t diminish commercial value — possibly OK

— Use for non-commercial purposes — possibly OK
* Most data on the internet is copyrighted, so model training Is currently
done assuming fair use

 But there are lawsuits!

The Times Sues OpenAl and Microsoft | :
Over A.I. Use of Copyrighted Work GitHuband Copilot Intellectual Property

Millions of articles from The New York Times were used to train

chatbots that now compete with it, the lawsuit said.

Litigation
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Why Restrict Model Access?

« Commercial Concerns: \Want to make money from the models

» Safety: Limited release prevents possible misuse

» Legal Liability: Training models on copyrighted data is a legal/ethical gray
area
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English-Centric Open Models

* Open source/reproducible:
—Pythia: Fully open, many sizes/checkpoints
— OLMo: Possibly strongest reproducible model

* Open weights:
—LLaMa1/2/3/3.1: Most popular, heavily safety tuned
— Mistral/Mixtral: Strong and fast model, several European languages
— Qwen: Strong, more multilingual - particularly en/zh
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Pythia: Overview

 Creator: OREENLEL!
» Goal: Joint understanding of model training dynamics and scaling
* Unique features: 8 model sizes 70M-12B, 154 checkpoints for each

Transformer+RoPE+SwiGLU, context 2k (cf LLaMa 4Kk),
parametric LN

Trained on 300B tokens of The Pile (next slide), or deduped 207B

LR scaled inversely to model size (7B=1.2e-4),
batch size 2M tokens
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The Pile

A now-standard 800GB dataset of lots of text/code

Composition of the Pile by Category

= Academic * Internet = Prose * Dialogue * Misc

Bibliotik
ArXiv

PubMed Central

StackExchange
PMA
Freelaw USPTO NIH |OpenWebText2 Wikipedia DM Math I YT
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Pythia: Findings

« Some insights into training dynamics, e.g. larger models memorize facts
more quickly (x axis: fact frequency, legend: training step)

—— 13000
e o/ | — 39000
% 7/ | — 65000
0.4 A& || — 91000
/ e —— 117000
0.3 5 /« —— 143000
<] / B
0.2 'f: e /t °/
/g/ g .,«e“'ﬂ ./
.,"’// o —y
0.1 2 _/ —¢ ./
3’6: gzth%/ o—o/
0.0 .—.—._Q-". S
100 103 10° 10° 103 10° 10° 103 10 10° 103 106
(a) 160 M (b) 1.0 B (c)2.8 B (d)12 B

* [t Is possible to intervene on data to reduce gender bias
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OLMo: Overview

e Creator: A'Z Allen Institute for Al
 Goal: Better science of state-of-the-art LMs

* Unique features: Top performance of fully documented model,
Instruction tuned etc.

Transformer+RoPE+SwiGLU, context 4k, non-parametric LN

Trained on 2.46T tokens of Dolma corpus (next slide)

LR scaled inversely to model size (7B=3e-4),
batch size 4M tokens
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Dolma

« 3T token corpus created and released by Al2 for LM training

* A pipeline of (1) language filtering, (2) quality filtering, (3) content filtering,
(4) deduplication, (b) multi-source mixing, and (6) tokenization

Source Doc Type UTF(_(B; ll;)ytes I():uc;ll:: :Sl;ts U;'l(l)i?i(:e {-31?::12
(billions)  (billions)
Common Crawl & web pages 9,022 3,370 1,775 2,281
The Stack <[> code 1,043 210 260 411
C4 * web pages 790 364 153 198
Reddit social media 339 377 72 89
PeS2o0 = STEM papers 268 38.8 50 70
Project Gutenberg = books 20.4 0.056 4.0 6.0
Wikipedia, Wikibooks W encyclopedic 16.2 6.2 3.7 4.3

Total 11,519 4,367 2,318 3,059
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OLMo: Findings

« Competitive average performance

arc arc hella-  open : : wino-
7B Models challenge easy boolq swag bogkqa piqa  sciq grande ave.
Falcon 47.5 704 746 759 530 785 939 689 | 703
LLaMA 44.5 679 754 76.2 512 772 939 705 | 69.6
Llama 2 48.5 695 802 76.8 484 7677 945 694 | 705
MPT 46.5 705 742 77.6 486 773 937 699 | 698
Pythia 44.1 619 61.1 6338 450 751 091.1 620 | 63.0
RPJ-INCITE 42.8 684 68.6 703 494 760 929 647 | 66.6
OLMo-7B 485 654 734 764 504 784 938 679 | 693

Table 6: Zero-shot evaluation of OLMo-7B and 6 other publicly available comparable model check-
points on 8 core tasks from the downstream evaluation suite described in Section 2.4. For OLMo-7B,

we report results for the 2.46T token checkpoint.

 Performance increases
constantly w/ training
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48

a4

40

51

48

45

arc_c

arc_e

boolq

hellaswag

500 1000 1500 2000 2500

obqa

@
©

<
©

=3
©

500 1000 1500 2000 2500

piga

72

64

56

500 1000 1500 2000 2500

sciq

76

72

68

500 1000 1500 2000 2500

winogrande

78

76

94

o
o

o
=)

66

63

500 1000 1500 2000 2500

500 1000 1500 2000 2500

500 1000 1500 2000 2500

Tokens Seen (billions)

500 1000 1500 2000 2500

131



Llama2: Overview

. Creator: OX) Meta

* Goal: Strong and safe open LM w/ base+chat versions

* Unique features: Open model with strong safeguards and chat tuning,
good performance

Transformer+RoPE+SwiGLU, context 4k, RMSNorm

Trained on “public sources, up-sampling the most factual
sources”, LLaMa 1 has more info (next page), total 2T tokens

/B=3e-4, batch size 4M tokens
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Llama3.1: Overview

. Creator: O Meta

* Goal: A herd of language models that natively support multilinguality,
coding, reasoning, and tool usage

« Compared with Llama2: Larger Data scale (15T multilingual tokens vs
1.8T tokens). More Training FLOPs (3.8 x 10225 FLOPs, almost 50x more

than the largest version of Llama 2)

GPUs TP CP PP DP Seq.Len. Batchsize/DP Tokens/Batch | TFLOPs/GPU BF16 MFU
8,192 8 1 16 64 8,192 32 16M 430 43%
16,384 & 1 16 128 8,192 16 16M 400 41%
16,384 & 16 16 4 131.072 16 16M 380 38%

Table 4 Scaling configurations and MFU for each stage of Llama 3 405B pre-training. See text and Figure 5 for descriptions

of each type of parallelism.
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Llama
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Self-attention

Feedforward
network

IMAGE ENCODER

Image
patches

if image

if video

Qutput
Image representation

Image patch
representation

Image patch
representation

Randomly initialized latents

Cross-attention ¢

Feedforward

network

VIDEO AGGREGATOR

l

Output
Video representation

1: Multimodality

Every 4th layer

N

\

Input

Text tokens

Token embeddings s

l

Feedforward

network

Autaregressive
decoding
LANGUAGE MODEL

Output
Text token

e

Every ~3rd layer

Input
Speech segment

Conformer block

Conformer block

Speech adapter

SPEECH ENCODER

. Vision and speech
encoder pre-training

Vision adapter training

. Language model
pre-training

Model fine tuning

. Speech adapter training

"- Transformer block
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Mistral/Mixtral: Overview

. Creator: H MISTRAL

AI_
« Goal: Strong and somewhat multilingual open LM

* Unique features: Speed optimizations, including GOA and Mixture of
Experts

Transformer+RoPE+SwiGLU, context 4k, RMSNorm, sliding
window attention. Mixtral has 8x experts in feed-forward layer

Not disclosed?
But includes English and European languages

Not disclosed?
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Mistral: Sliding Window Attention

The cat sat on the The cat sat on the pe—
The | HNNREONEDR
cat
- Layers
on
I
the . .

Tokens

Vanilla Attention Sliding Window Attention Effective Context Length
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Qwen: Overview
* Creator: e:’ZAIibaba

* Goal: Strong multilingual (esp. English and Chinese) LM

* Unique features: Large vocabulary for multilingual support, strong
performance

Transformer+RoPE+SwiGLU, context 4k, RMSNorm, bias in
attention layer

Trained on multilingual data + instruction data at pre-training time,
2-31 tokens

3e-4, batch size 4M tokens
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Qwen: Multilinguality

* Token compression ratio re: XLM-R (lower Is better)

3.5
3.0
25
k]
T
14
S 20
S 2
(7]
4
[=%
£
o
o
1.5
1.0
0.5 |||
0.0
th he ar ko vi zh ja tr id pl 0]

aaaaaaaaa

nl pt it de es fr en code
13
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SmolLM: Overview

« Creator: '~ Hugging Face

* Goal: Small scale (135M, 360M, and 1.7B parameters) but strong
performance

* Unique features: Fully Open-sourced with a high-quality pre-training
COrpus.

- Cosmopedia v2: A collection of synthetic textbooks and stories generated by Mixtral (28B tokens)
- Python-Edu: educational Python samples from The Stack (4B tokens)
« FineWeb-Edu (deduplicated): educational web samples from FineWeb (220B tokens)

https://huggingface.co/blog/smollm
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https://huggingface.co/blog/smollm

FineWeb — (Edu)

¥ FineWeb dataset consists of more than 15T tokens of cleaned and deduplicated english
web data from CommonCrawl.

Url Filtering — Trafilatura text extraction from HTML — FastText LanguageFilter —
Quality filtering — MinHash deduplication — PIll Formatting

“To enhance FineWeb's quality, we developed an educational quality classifier using annotations
generated by LLama3-70B-Instruct. We then used this classifier to retain only the most educational
web pages.”

Datasets comparisons on 8 NLP benchmarks Datasets comparisons on MMLU Datasets comparisons on ARC
0.38 &
0.500 ~ey l'\/.\”\~-" " Py f‘,‘-,_..l‘\/”’ oy
- camyt ”\,,' V\‘\,’ 0.55 ,\""‘s'\" AN Sy
0.36 1 : prr— s PR v
s / vy
. B - ARy Yy
0.475 4 Y AP 3 hA
AU 0.50 4 AYA
" AV ’
0.34 1 —5 e s e e e et
0.450 1 \ A aArAY "h Reaches 0.470 at 17B tokens
o g AR A 0.45 NNl
=) = 0.321 ¢
- = 0. Q
$ 042 = J/ g
2 = H 0.40
< 0.400 0.30 £ ~== FineWeb — Edu
I: —— FineWeb
I - C4 0.3
0.3751 0.28 Dolma
—_— Rctmec.chb 0.30
0.350 o ~—— SlimPajama
0.26 —— The Pile
—— RedPajama?2 .
0.3251 | ! | | | | | | 0.25 . | |
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350

Training tokens (billions) Training tokens (billions) Training tokens (billions) 140



Other Models



Code Models

« StarCoder 2 — by Big Science (leads: Hugging Face + Service Now), fully
open model

 CodelLlama — by Meta, code adaptation of LLaMa
 DeepSeek Coder — by DeepSeek, strong performance across many tasks
* Yi Coder - by 01.Al, smaller scales (9B/1.5B) but strong performance.

 More In code generation class!
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Math Models

 LLEMA — by EleutherAl and others, model for math theorem proving
trained on proof pile

 DeepSeek Math — by DeepSeek, finds math-related pages on the web
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Science Model: Galactica

* Model for science trained by Meta
* Diverse set of interesting training data

Modality Entity Sequence

Text Abell 370 Abell 370 is a cluster... .

2GM
ETEX Schwarzschild radius r_{s} = \frac{2GM}{c"2} = —

c

Code Transformer class Transformer (nn.Module) —H» »H»i-
SMILES Glycine C(C(=0)0)N ) T\
AA Sequence Collagen a-1(II) chain MIRLGAPQTL. . Wo%
DNA Sequence Human genome CGGTACCCTC. .

Table 1: Tokenizing Nature. Galactica trains on text sequences that represent scientific phenomena.
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Closed Models



GPT-40: Overview

» Creator: @ OpenAl

» De-facto standard “strong” language model

e Tuned to be good as a chat-based assistant

» Supports calling external tools through “function calling” interface
« Accepts Image Inputs

» Fast and cheaper inference compared with earlier GPT-4 versions
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Gemini

» Creator: Q Google DeepMind

« Performance competitive with corresponding GPT models (Gemini Pro 1.0
~ gpt-3.5, Gemini Ultra 1.0 ~ gpt-4)

* Pro 1.5 supports very long inputs, 1-10M tokens
» Supports image and video inputs

« Can generate images natively
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Claude 3: Overview

e Creator: ANTHROP\C

« Context window up to 200k
 Allows for processing images

 Overall strong results competitive with GPT-4
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Long Context Models



How Long are Sequences?

* One sentence: ~20 tokens

* One document: 100-10k tokens

* One book: 50k-300k tokens

« One video: 1.5k-1M tokens (~300/sec)
* One codebase: 20k-1B tokens

* One genome: 3B nucleotides
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Why is Modeling Long Sequences Hard?

« Memory Complexity: Transformer models scale quadratically in memory

« Compute Complexity: Transformer models scale quadratically in
computation

* Training: Data is lacking, training signal is weak, training on long
seguences Is costly
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Long-Context Use Cases
and Evaluation



Benchmarks for Long-context Models

 Long Range Arena:
Composite benchmark containing  nNarrative@a

mostly non-NLP tasks (Tay et al. T
2020) GovReport

« SCROLLS: SummScreen
Benchmark containing long- QUALITY
context summarization, QA, etc. Qasper
(Shaham et al. 2022) ContractNLI
CNN/DM

SQuAD

MultiNLI

10

1

Popular Datasets B SCROLLS

-
<«
ve
—
-

GPI3

10° 100 10" 100
Words per Input (Log Scale)
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Targeted Analysis Tools

20 Total Retrieved Documents (~4K tokens)

* "lost-in-the-middle” (Liu et al. 2023) demonstrates that models pay less -
attention to things in middle context

~
o

Accuracy
D
w

* “needle in a haystack” tests (Kamradt 2023) test across document
length/position

[o)]
o

« RULER (Hsieh et al. 2024) compiles a number of different NIAH tasks s 1o s aom

Position of Document with the Answer

w
w

=@ gpt-3.5-turbo-0613

Pressure Testing GPT-4 128K via "Needle In A HayStack” ~ = gpt-3.5-turbo-0613 (closed-book)
Asking GPT-4 To Do Fact Retrieval Across Context Lengths & Document Depth

Top Of
Document 100%
Accuracy
Of Retrieval
GPT-4 retrieval accuracy
DosDapth e ot started to degrade at large
i s context lengths when the fact
1 was placed between
10%-50% document depth
Placed Fact : _—
Document .. Accuracy
D epth Of Retrieval
Doc Depth
0%
Accuracy
Bottom Of of Retrieval
Document K 10K 19k 28K 37K 456K 55K 64K 73K 82K 91K 100K 109K nsk 128K

-—— Context Length (# Tokens) _— 154



Long-context In-context Learning gertsch et al. 2024)

« Can we provide lots of examples to long-context models and improve

accuracy through [CL?

accuracy

* \When many in-context examples are provided, It can be better than

fine-tuning!

100
e o o° o
[ X J
80 -
L
601 Y
v v
40 - v
e Retrieval ICL
20+ Random ICL
Finetuned
0 L : : : .
100 10! 102 103 10%

number of examples in-context

(a) Clinic-150

accuracy

100
80 ® °® : o
E \ 4
601 .
®
40
e Retrieval ICL
20 Random ICL
Finetuned
6 ; ; ; .
100 101 102 103 104

number of examples in-context

(b) Trecfine
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Long-context Dialog

» Chatbots that maintain long-term
conversational context

e £.9. Locomo corpus (Maharana et al. 2024)

« Evaluate w/ question answering,
summarization, response generation

Joannais a writer
from Midwest. She
is allergic to pets.

Persona
driven
dialog

Image
sharing
behavior

Unfortunately, allergies make it so |
can't have any.

..these little ones
keep me calm when
things are important

Awww! How long have you had them?

.. for 3 years now

20 May, 2022

4 just got a new addition to
the family, this is Max!

Do you have any of your own?

Nate loves dogs
and turtles. He
has two pet turtles.

Image
response
behavior

Memory
from event
graphs

25 May, 2022

... took Max for a walk and ran
into this super nice couple who
had a dog.. We decided to do

doggy playdates

21 October, 2022

used to have a dog in Michigan .. then

| got allergic.. had to get rid of her
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Tackling Complexity:
Memory-efficient Computation



Vanilla Attention Complexity

KT
Attention(Q), K, V') = softmax (Q ) V

vV
T
A = softmax (QK ) Attention(Q, K, V) = AV
Vg
Time: O(bs?d) for QKT Time: O(bs?d) for AV
(but fast on GPU) (but fast on GPU)

Memory:|O(bs?)[for all ops Memory: O(bsd)

b: batch size, s: sequence length, d: dimension
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Multi-head Attention Complexity

* Multi-head attention splits attention heads

* No effect on time complexity, but effect on memory

Time: O(bs?d) for QKT
(but fast on GPU)

Memory:

O(bs?h)

for all ops

Time: O(bs2d) for AV

(but fast on GPU)
Memory: O(bsd)

b: batch size, s: sequence length, d: dimension
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Memory-efficient Computation gang 2019,
Rabe and Staats 2021)

* Insight: you don’t need to materialize s2 attention

e Calculate softmax numerator times values, and softmax denominator
left-to-right

softmax numerator * V/ softmax denominator * V/
QKT ) ( ( Q\/KT ) )
V* = exp ( V S* = sum | exp
V dk dk
Memory: O(bsd) Memory: O(bsh)

Attention(Q, K, V) =V*/S5* Memory: O(bsd)
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Ring Attention (Liu et al. 2023)

* Further distribute
storage/incremental
computation across
multiple devices

(@)

Key Value Block

(b)

Query Outer Loop

Blockwise

 S—

T

Blockwise
Attention

1
1
1
1
1
1
! FeedForward
1
:
1
1
1
1

|

query block

Device 1

: Key Value Block !

Blockwise
FeedForward

~— ]

U

! Blockwise
Attention

) C—

query block

...................

Device 2

[ FeedForward

Blockwise

Blockwise
FeedForward

Blockwise Blockwise
FeedForward FeedForward

)

i

[

———————

1 1

Blockwise
Attention

]*

_______
] 1

1 Query2 1

_______

_______

Key1

Valuetl

4

Blockwise Blockwise
Attention Attention
h

1
T R

. Key2

. Value2 ,

compute, send to
next device

Key3 | | Keya
Value3 | . Valued
receive from

) \ previous device )
/N &

Key Value Block
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Extrapolation of
Short-Context Models



Trained Models Fail to Extrapolate

* Most transformer models are trained on shorter sequences (4k)

It a document is longer than the limit, truncate or chunk

* This poses problems for positional encodings:

_earned absolute encodings: iImpossible to extrapolate
~ixed absolute encodings: move models out of distribution, very bad

Relative encodings: should extrapolate better in theory, but not really

IN practice
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An Example of Failed Extrapolation (Fuetal. 2024)

 Llama-2 w/ 32k context (RoPE) can answer questions about
seguences up to about 40k, but not beyond

Together Al LLaMA-2 7B 32K, acc 27.9

1K 32K 64K 96K 128K
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Training w/ Long Context (Fu etal. 2024)

« Simple solution: continually train on longer Together Al LLaMA-2 7B 32K, acc 27.9
documents

* Problem: there aren’'t many long documents

—Solution: upsample the longer documents

* Problem: upsampling favors certain domains
such as books and GitHub

Ours LLaMA 7B, post-trained on 80K, acc 88.0

— Solution: maintain domain mixture, but
upsample long docs in each domain

1K 32K 64K 96K 128K
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RoPE Scaling (Lu et al. 2024)

 ROPE has a parameter adjusting (cosiby —sinify -0 0\
_the periOd smz@l cos 164 0 0
R(0,1) = :
0 0 -+« €080 4, —smwdk
\ 0 0 sini0d2 COSZOdk)

5
- typically 6; = b~ 4 with b=10000

* Position interpolation: Multiply 6 by a constant scaling factor
(e-g- Cshort/clong)

* Neural tangent kernel: Scale low-frequency components, but maintain
high-frequency components
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Tackling Complexity:
Alternative Transformer
Architectures



Tackling Transformer Complexity

« Sparse Attention
e Sliding Window Attention
« Compression

* Low-rank Approximation
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Sparse Transformers (child et al. 2019)

« Add "stride”, only attending to every n previous states

FF —

[

(a) Transformer (b) Sparse Transformer (strided) (c) Sparse Transformer (fixed)
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Truncated BPTT+Transformer

* Transformer-XL (Dai et al. 2019) attends to fixed vectors from the
previous sentence

Standard Transformer Transformer-X
® ®© ®© o0 © 0 9 © © © 0/0 © 0 0,90 © © ®
! . T
¢ & & o\ ¢ ¢ O ¢ ¢ ¢ 0.0 ¢ o 0 ¢ &6 ¢ o
© o o 0O y ® © © © ¢ © .60 o ¢ ¢ 6 & & e
¢ 8 s 6 W © @ @ o .0 o ¢ & e e e e
- J S i Xg X12
Segment 2 Limited Context Fixed (No Grad) -

 Like truncated backprop through time for RNNs; can use previous states,
but not backprop into them

» See also Mistral's (Jiang et al. 2023) sliding window attention
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Compressing Previous States

* Add a "strided" compression step over previous states (Rae et al. 2019)

Compressed Memory \/\fc@ Memory Sequence
000000 000000 000
00000e _000000 000
000000 000000 000

HHA A S S G —t+—+—>1
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Low-rank Approximation

 Calculating the attention matrix is expensive, can it be predicted with a
low-rank matrix?

* Linformer: Add low-rank linear projections into model (\Wang et al. 2020)

* Nystromformer: Approximate using the Nystrom method, sampling
'landmark” points (Xiong et al. 2021)

softmax Nystrom approximation

A

IQZ IQ2
" ®) NN ISERISL

I—Ql I—Ql
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Tackling Complexity:
Non-attentional Models



Reminder: RNNs

movie _
[I%I] {1%11
¥ RNN
............ NO

 Each RNN step depends on the previous - slow!
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Convolution

e Calculate based on local context

| hate this movie
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Convolution for Auto-regressive Models

* Functionally identical, just consider previous context

| hate this movie
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Structured State Space Models Gu etal. 2021)

* Models that take a form like the following

=

D

h

E———

T

i

A

h'(t) = Ah(t) + Bx(t)
y(t) = Ch(t) + Dx(t)

 Because there are no non-linearities, the current h/x as a function of

previous states can be calculated in advance

Slide Credit: Albert Gu
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Selective State Space Models - Mamba
(Gu and Dao 2023)

* To improve modeling power of state space models, condition parameters
on current input

A

S - 5 < —
- 7 N -
- 7 ~N -
- 7> S -

KN
|
Be_y | &
— : —
N\ I L]
[T 5 ) | — | C | Ve
\\ t . ! \—> t

B . B GPU

|| \ AT Discetie I%‘ A T B -

B ] ' . | GPU HBM

L — Selection Mechanism -

» Use efficient parts of GPU memory to handle expanded state
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Next lecture:
Adapting LLMs



