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Previously on COMP541
• motivation and introduction

• introduction to language models

• history of neural language models

• pretrained language models
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Lecture overview
• Recap of Language Modeling

• GPT-3

• Understanding in-context learning

• Scaling laws

• Llama 3

• Other LLMs

• Long context models

Disclaimer: Much of the material and slides for this lecture were borrowed from 
—Danqi Chen and Sanjeev Arora's COS 597R class
—Graham Neubig's CS11-711 class
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Recap of Language
Modeling
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Word embeddings
• Word embeddings e.g., word2vec (Mikolov et al.'13), GloVe (Pennington et al.’14)

  “single-layer representations were learned using word vectors”

• Contextualized word embeddings e.g., ELMo (Peters et al.’18), CoVe (McCann et al.’17)

 “RNNs with multiple layers of representations and contextual state were used to form 
 stronger representations”
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• Word embeddings

• Contextualized word embeddings

Used for task-specific neural architectures!

(Clark and Gardner, 2018)

Word embeddings

(Clark and Gardner, 2018)



8

One model for all tasks

• BERT (Devlin et al., 2018), RoBERTa (Liu et al., 2019)

• T5 (Raffel et al., 2019), BART (Lewis et al., 2019)

• GPT-1 (Radford et al., 2018), GPT-2 (Radford et al., 2019)

minimal modifications to downstream tasks

still fine-tuning on  downstream examples103 − 105

(Devlin et al. , 2018)
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encoder models

encoder-decoder models

decoder models

• All based on Transformers

• They mainly differ in the pre-training 
objectives (slight difference in fine-tuning)

• Model sizes and pre-training data are also 
different!
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One model for all tasks

• BERT (Devlin et al., 2018), RoBERTa (Liu et al., 2019)

• T5 (Raffel et al., 2019), BART (Lewis et al., 2019)

• GPT-1 (Radford et al., 2018), GPT-2 (Radford et al., 2019)

• One pre-trained model for all tasks
encoder models

encoder-decoder models

decoder models

• All based on Transformers
• They mainly differ in the pre-training objectives (slight 

difference in fine-tuning)
• Model sizes and pre-training data are also different!

(If you are not familiar with Transformers)
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Encoder vs. Decoder models
• BERT/RoBERTa: 110M/330M parameters

• T5: up to 11B parameters
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Encoder vs decoder models
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(Devlin et al. , 2018)

• BERT/RoBERTa: 110M/330M parameters

• T5: up to 11B parameters

2024

https://www.yitay.net/blog/model-architecture-
blogpost-encoders-prefixlm-denoising

Yi Tay

• Encoder-only models can’t generate text (easily); harder to scale up

• Bidirectional attention is only important at smaller scale?

• “Masking objectives” can be still combined with autoregressive LMs

(Devlin et al., 2018)
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Encoder vs. Decoder models
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Recap: Probabilistic Language Models
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P (X)
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A generative model that calculates 
the probability of language

Sentence/Document



Recap: Auto-regressive Language Models
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Next Token Context



Recap: Next Token Prediction

• This is classification! We can think of neural language models as neural 
classifiers. They classify prefix of a text into |V| classes, where the classes 
are vocabulary tokens.
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Image Credit: https://lena-voita.github.io/nlp_course/language_modeling.html 
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Recap: Next Token Prediction

• feed word embedding for previous (context) words into a network;
• get vector representation of context from the network;
• from this vector representation, predict a probability distribution for the next token.
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Image Credit: https://lena-voita.github.io/nlp_course/language_modeling.html 
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Overview of LLMs Training
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Overview of LLMs Training

Pre-training -> Supervised Fine-tuning (SFT) -> RLHF
Pre-training -> Post-training

Pre-training -> Mid-training -> Post-training

Pre-training → Supervised Fine-tuning (SFT) → RLHF
Pre-training → Post-training
Pre-training → Mid-training → Post-training More next week!



GPT-3
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GPT-3

203

Focus: the GPT-3 paper

“Language models form the backbone of modern techniques for solving a range of problems in natural 
language processing. The paper shows that when such language models are scaled up to an unprecedented 
number of parameters, the language model itself can be used as a few-shot learner that achieves very 
competitive performance on many of these problems without any additional training. This is a very 
surprising result that is expected to have substantial impact in the field, and that is likely to withstand the test 
of time. In addition to the scientific contribution of the work, the paper also presents a very extensive and 
thoughtful exposition of the broader impact of the work, which may serve as an example to the NeurIPS 
community on how to think about the real-world impact of the research performed by the community.”

https://neuripsconf.medium.com/announcing-the-neurips-2020-award-recipients-73e4d3101537https://neuripsconf.medium.com/announcing-the-neurips-2020-award-recipients-73e4d3101537

https://neuripsconf.medium.com/announcing-the-neurips-2020-award-recipients-73e4d3101537


GPT-3: main contributions
• An autoregressive language model of 175B 

parameters, 10x larger than any previous LMs

• Introduced the concept of “in-context learning”, and 
showed competitive performance

21https://ai.stanford.edu/blog/understanding-incontext/ 
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22

In-context learning: you can perform a task from only a few examples 
or simple instructions without any gradient updates or fine-tuning!

https://ai.stanford.edu/blog/understanding-incontext/ 

GPT-3: main contributions

15

In-context learning: you can perform a task from only a few 
examples or simple instructions without any gradient updates or 
fine-tuning!

https://ai.stanford.edu/blog/understanding-incontext/

https://ai.stanford.edu/blog/understanding-incontext/


GPT-3: main contributions

• Interesting note: the idea of in-context learning starts from GPT-2, “though with 
much more limited results and no systematic study.”
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In-context learning: you can perform a task from only a few 
examples or simple instructions without any gradient updates or 
fine-tuning!

• Interesting note: the idea of in-context learning starts from GPT-2, “though with much 
more limited results and no systematic study.”

3.8. Question Answering

(Radford et al. , 2019)
(Radford et al., 2019)



Why few-shot learning?
• Collecting large supervised training sets is expensive
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GLUE (Devlin et al., 2018)
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Why few-shot learning?
• Fine-tuning can exploit spurious correlation and do not generalize well out-of-distribution
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Why few-shot learning?
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• Fine-tuning can exploit spurious correlation and do not generalize well out-of-distribution

• Premise: The banker near the judge saw the actor.

• Hypothesis: The banker saw the actor.

• Label: Entailment

Lexical overlap heuristic: a premise entails all 
hypotheses constructed from words in the premise

• Premise: The doctors visited the lawyer.

• Hypothesis: The lawyer visited the doctors.

• Label: Not Entailment ❌

NATURAL LANGUAGE  
INFERENCE E.G., MNLI

(McCoy et al. , 2019)(McCoy et al., 2019)
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Why few-shot learning?
• Humans do not require large supervised datasets to learn most language 

tasks

• It allows humans to seamlessly mix together or switch between many 
tasks and tasks when interacting with NLP systems
– Fluidity
–Generality

26



Overview of GPT-3
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• GPT-3 is a Transformer decoder only trained on large amounts of unlabeled text

• Training objective: next-token prediction

• Model architecture the same as GPT-2, including modified initialization, pre-normalization

• Except that “we use alternating dense and locally banded sparse attention patterns 
in the layers of the Transformer”

(Child et al. , 2019)

Overview of GPT-3
• GPT-3 is a Transformer decoder only trained on large amounts of unlabeled text
• Training objective: next-token prediction

• Model architecture the same as GPT-2, including modified initialization, pre-
normalization
– Except that “we use alternating dense and locally banded sparse attention patterns 

in the layers of the Transformer”
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L1(U) =
X

i

logP (ui | ui�k, . . . , ui�1;⇥)

<latexit sha1_base64="GRYwJkaIbrFKegDgZ15RZgacZKw="></latexit>

(Child et al., 2019)



Overview of GPT-3
• GPT-3 is a Transformer decoder only trained on large amounts of unlabeled text

• All models were trained on 300B tokens
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• Scaling laws: “scaling of validation loss should be approximately a smooth power law 
as a function of size”

• Larger models typically use a larger batch size but require a smaller learning rate
• Context window size = 2048
• Use a lot of “model parallelism” during training
• Use Adam optimizer β1 = 0.9, β2 = 0.95, and 𝜖 = 10 -8
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• GPT-3 is a Transformer decoder only trained on large amounts of unlabeled text

• All models were trained on 300B tokens

• Scaling laws (next week): “scaling of validation loss should be approximately a 
smooth power law as a function of size”

• Larger models typically use a larger batch size but require a smaller learning rate

• Context window size = 2048
• Use a lot of “model parallelism” during training

• Use Adam optimizer



GPT-3: Training compute
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GPT-3: training compute
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“We train much larger models on many fewer tokens”
“We train much larger models on many fewer tokens”



GPT-3: training data
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• Common Crawl (CC) + a set of high-quality, curated data

• Common Crawl is a nonprofit organization that crawls the web 
and freely provides its archives and datasets to the public.

• Lots of low-quality and duplicated content - requires heavy filtering

• We will see lots of efforts later, e.g., RefineWeb, FineWeb-edu

• Filtering CC: 

• Filtering based on similarity to a range of high-quality reference corpora

• Fuzzy deduplication at the document level

• Data sampling: sample from high-quality data more frequently!

• Data in the mix: WebText, Books1, Books2, English Wikipedia
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• Common Crawl (CC) + a set of high-quality, curated data
– Common Crawl is a nonprofit organization that crawls the web

and freely provides its archives and datasets to the public.

– Lots of low-quality and duplicated content - requires heavy filtering

– We will see lots of efforts later, e.g., RefineWeb, FineWeb-edu

– Data in the mix: WebText, Books1, Books2, English Wikipedia

• Filtering CC:
– Filtering based on similarity to a range of high-quality reference corpora

– Fuzzy deduplication at the document level

• Data sampling: sample from high-quality data more 
frequently!
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GPT-3: Training data
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Approach
• Few-shot: a few demonstrations are prepended in the context (no weights updated 

allowed)
– The demonstrations are randomly sampled from training set
– K: typically 10-100, depending on how many examples can fit in context (2048)
– Not always “the larger K, the better” => use a development set to decide K
– Optionally add a natural language prompt

• One-shot: special case when K = 1.

      “it most closely matches the way in which some tasks are communicated to humans”

       “it is sometimes difficult to communicate the content or format of a task if no examples are given”

• Zero-shot: avoidance of spurious correlation, “unfairly hard”

 “at least some settings zero-shot is closest to how humans perform tasks”

32



Approach
• Few-shot: stronger performance, only slightly behind state-of-the-art fine-tuned 

models

33

“however, one-shot, or even sometimes zero-shot, seem like the
fairest comparisons to human performance, and are important
targets for future work."

Approach
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A summary of results
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A summary of results
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Evaluation tasks
• Tasks similar to language modeling

• Closed-book question answering

• Machine translation

• Winograd schema and commonsense reasoning

• Reading comprehension

• SuperGLUE

• NLI

• Novel tasks: on-the-fly reasoning, adaptation, open-ended text synthesis

35



Evaluation protocol
• Open-ended generation: beam search (size = 4), length penalty (𝛼 = 0.6)

• Multiple choices questions (MCQ):
– K In-context examples (context + correct completion) + query context
– Feed each answer choice separately and compare per-token likelihood
– Additional benefits:

• Yes/no questions: use True/False 
instead of 0/1

36
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Language modeling
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(Paperno et al., 2016)

Language modeling
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(Paperno et al. , 2016)

LAMBADA



Language modeling
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(Mostafazadeh et al., 2016)

Language modeling

33

STORYCLOZE

(Mostafazadeh et al., 2016)



Language modeling
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(Zellers et al., 2019)

Language modeling

34

HELLASWAG

(Zellers et al., 2019)



Open-domain question answering

• Open-book vs closed-book QA
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Machine translation
• GPT-3’s training data: 93% English (by word count)
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Machine translation
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• GPT-3’s training data: 93% English (by word count)

unsupervised  
NMTunsupervised
NMT



Winograd-style and commonsense reasoning

• Example: Grace was happy to trade me her sweater for my jacket. She thinks 
the [sweater | jacket] looks dowdy to her

42
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Winograd-style and commonsense reasoning
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Winograd-style and commonsense reasoning
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PIQA (PHYSICAL QA)

(Bisk et al., 2019)
(Bisk et al., 2019)



Winograd-style and commonsense reasoning

• ARC: 3rd to 9th grade science exams
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Reading comprehension
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DROP (Dua et al., 2019) SQuAD (Rajpurkar et al., 2017)

Reading comprehension

40

DROP (Dua et al. , 2019)
SQuAD (Rajpurkar et al. , 2017)



Reading comprehension

41RACE (Lai et al. , 2017)

• Reading comprehension tests for 
middle and high school Chinese 
students (age between 12 and 18)
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Reading comprehension
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Reading comprehension
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CoQA (Reddy et al., 2019)



SuperGLUE
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SuperGLUE
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Natural language inference (NLI)

49ANLI (Nie et al., 2019)
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ANLI (Nie et al., 2019)



Novel tasks
• Arithmetic

• Word scrambling and manipulation

• SAT analogies

• News article generation

• Learning and using novel words

50

Why synthetic tasks?
• Easier to control, scale and manipulate
• Less data contamination
• Sometimes provides very clear insights of what is going on



Novel tasks
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52

Novel tasks

47



Novel tasks
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Novel tasks
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Contamination analysis
• How to decide which examples are contaminated?

– "defined roughly as examples that have a 13-gram overlap with anything in the pretraining set”

• How to decide estimated performance gains from contamination?
– Compare the performance on the “clean” subset vs entire dataset

54
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Understanding 
In-Context Learning
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Understanding in-context learning
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Understanding in-context learning
• Hypothesis #1: Transformers perform implicit gradient descent to update an “inner model”

• Hypothesis #2: Transformers learn tasks required for downstream applications during pre-
training, and in-context demonstrations are only used to recognize which task is required
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Understanding in-context learning
Disentangle In-context learning into two roles – task recognition (TR) vs 
task learning (TL)

• TR: recognizes the task from demonstrations and applies LLMs’ pre-
trained priors

• TL: learns a new input-label mapping from demonstrations

• ICL performs both TR and TL, but TL emerges with larger models and 
more demonstrations

58Pan et al. What In-Context Learning “Learns” In-Context: Disentangling Task Recognition and Task Learning, 2023 



Improving in-context learning performance
• Instead of randomly sampling K in-context examples, 

you should use “high-quality” and similar ones!

• Pack more examples in long-context models!
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Scaling Laws
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Simple question
Suppose you take a deep network, and you multiply its size by C1
and its dataset size by C2

By how much does the compute requirement (in FLOPs) increase?

63FLOP= Floating point operation (addition/multiplication/ division)



Scaling up Deep Learning
CNNs drove initial successes, esp for vision datasets (CIFAR, ImageNet etc.)

What’s a recipe to scale them up for arbitrary image tasks?

64

Scaling up Deep Learning

6

ConvNets drove initial successes, esp for vision datasets (CIFAR, ImageNet etc.)

What’s a recipe to scale them up for arbitrary image tasks? 

[Tan & Le ’19]  “Efficient (Conv)-Nets” : If you have  factor more compute, scale up 
width, depth, image-size by , ,  where  are determined by grid search 
on  smaller conv-nets for the same task

2N

αN βN γN α, β, γ



Compute requirement for forward pass 

Total forward pass FLOPs: embeddings ̧num_layers ¹total_attention ̧dense_blockº + logits
(In [Kaplan et al’20] approximated as 6ND; N =# parameters, D = # tokens)

65

(Transformer)
Compute requirement for forward pass 

(transformer)

7

Total forward pass FLOPs: embeddings ̧num_layers ¹total_attention ̧dense_blockº + logits

(Factor 2 for multiply accumulate)

(In [Kaplan et al’20] approximated as 6ND;   N =# parameters,    D = # tokens)



66

8

et al, 2021



Claims that aged relatively well…
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Claims that did not …

68
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Claims that did not….

10× increase in compute should be  allocated to a 5.5× increase in model size

 and a 1.8× increase in training tokens.
10× increase in compute should be allocated to a 5.5× increase in model size
and a 1.8× increase in training tokens.



Brief Era of Undertrained Mega Models
(2020-22)

69

11

Brief Era of Undertrained Mega Models 
(2020-22)

Implication of Kaplan et al. [2020] :   10× increase in compute should be 

allocated to a 5.5× increase in model size and a 1.8× increase in training tokens.”



Gopher [Rae et al’21, Google]
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280B parameters, 300B tokens…
280B parameters, 300B tokens…



PaLM [Choudhery et al’22]

540 B parameters; 780B tokens

Design tailored for parallelization
in TPU v4 pod client-server
architecture (Pathways)

Later stages use bigger batch 
sizes for better gradient estimate 
(less noise)
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Deterministic batches; “fully bitwise reproducible from any checkpoint”. 
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Deterministic batches; “fully bitwise reproducible from any checkpoint”.



PaLM (the hardware)
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Megatron Tuning NLG (Nvidia, 2022)
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Megatron Turing NLG
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(Nvidia, 2022)

530B parameters, 270B tokens

monolithic (unlike Google PaLM, PaLM2); served to highlight Nvidia’s  

own parallelism solution (NVLink within a node, InfiniBand across nodes)*

In hindsight, a fairly unexceptional effort….

By combining tensor-slicing and pipeline parallelism, we can operate them 
within the regime where they are most effective. More specifically, the system 
uses tensor-slicing from Megatron-LM to scale the model within a node and 
uses pipeline parallelism from DeepSpeed to scale the model across nodes.

530B parameters, 270B tokens

monolithic (unlike Google PaLM, PaLM2); served to highlight Nvidia’s
own parallelism solution (NVLink within a node, InfiniBand across nodes)*

In hindsight, a fairly unexceptional effort….



Chinchilla (DeepMind)
• DeepMind’s effort at finding Scaling Laws

74
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Deepmind’s effort at finding Scaling Laws 

“Chinchilla paper”



Experiments: 

• 400 models, sizes 70M to 16B

• Dataset size 5B to 500B

(other hyper-parameters such as batch size, dimension, etc. taken from earlier studies)

75
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“Compute optimal” : Best heldout cross-entropy given total FLOPs budget

• No constraints on # of GPUs and  # Tokens 
• Ignores communication latencies Caveat: Minimization  

only over architectures, 
training, and datasets  
that were popular in ‘22

Let’s  figure out: If  what is the correct scaling recipe?L(N, D) = 2 + 400
N1/3 + 2000

D1/3



Table: Scaling Recipe
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“Chinchilla Scaling Law” 
(  is compute-optimal choice)D ≈ 20N

“Chinchilla Scaling Law” 
(D ≈ 20N is compute-optimal choice)



Main finding
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Main finding
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Side-benefit: 
Compute optimal 
models =>  
faster inference

Side-benefit:
Compute optimal
models =>
faster inference



Cosine LR schedule
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Recap: Cosine LR schedule

21

LR(t) = α + 1
2 (L ≈ α) 1 + cos ( (t ≈ tw)β

(T ≈ tw) ) .

Max LR  

min LR  

total # of iterations 

# of warmup iterations

L =
α =
T =
tw =

Key Finding: When # of tokens (hence T) changes, use  LR schedule for  this new T  

   (DON’T finish training before hitting the end of the cosine schedule.) 
This partly explains why OpenAI’s Scaling Law [Hoffman et al’20] was off..

Key Finding: When # of tokens (hence T) changes, use LR schedule for this new T
(DON’T finish training before hitting the end of the cosine schedule.)
This partly explains why OpenAI’s Scaling Law [Hoffman et al’20] was off..



Finding how loss scales with 
compute and data
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IsoFlop Curves
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IsoFlop Curves
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Figure 3 | IsoFLOP curves. For various model sizes, we choose the number of training tokens such
that the final FLOPs is a constant. The cosine cycle length is set to match the target FLOP count. We
find a clear valley in loss, meaning that for a given FLOP budget there is an optimal model to train
(left). Using the location of these valleys, we project optimal model size and number of tokens for
larger models (center and right). In green, we show the estimated number of parameters and tokens
for an optimal model trained with the compute budget of Gopher.

For each FLOP budget, we plot the final loss (after smoothing) against the parameter count in
Figure 3 (left). In all cases, we ensure that we have trained a diverse enough set of model sizes to see
a clear minimum in the loss. We fit a parabola to each IsoFLOPs curve to directly estimate at what
model size the minimum loss is achieved (Figure 3 (left)). As with the previous approach, we then fit
a power law between FLOPs and loss-optimal model size and number of training tokens, shown in
Figure 3 (center, right). Again, we fit exponents of the form #=>B / ⇠0 and ⇡=>B / ⇠1 and we find that
0 = 0.49 and 1 = 0.51—as summarized in Table 2.

3.3. Approach 3: Fitting a parametric loss function

Lastly, we model all final losses from experiments in Approach 1 & 2 as a parametric function of
model parameter count and the number of seen tokens. Following a classical risk decomposition (see
Section D.2), we propose the following functional form

!̂(#, ⇡) , ⇢ +
�

#U +
⌫

⇡V
. (2)

The first term captures the loss for an ideal generative process on the data distribution, and should
correspond to the entropy of natural text. The second term captures the fact that a perfectly trained
transformer with # parameters underperforms the ideal generative process. The final term captures
the fact that the transformer is not trained to convergence, as we only make a finite number of
optimisation steps, on a sample of the dataset distribution.

Model fitting. To estimate (�, ⌫, ⇢, U, V), we minimize the Huber loss (Huber, 1964) between the
predicted and observed log loss using the L-BFGS algorithm (Nocedal, 1980):

min
�,⌫,⇢,U,V

’
Runs 7

HuberX
⇣
log !̂(#7, ⇡7) � log !7

⌘
(3)

We account for possible local minima by selecting the best fit from a grid of initialisations. The Huber
loss (X = 10�3) is robust to outliers, which we find important for good predictive performance over
held-out data points. Section D.2 details the fitting procedure and the loss decomposition.

6

Qs for class: What functional form does Fig 3  imply for scaling #params and #tokens?
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N = # parameters    D = # tokens  C = total compute

Empirical finding from prev. slide :   for 
some      (functional form confirmed by all 3 approaches..)

N = KCα, D = K≈1Cβ

α, β
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N = KCα, D = K≈1Cβ

α, β



Estimated held-out c-e loss given D, N
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Estimated held-out c-e loss given D, N 
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“Chinchilla Law”: Amended

84



v1: Accounting for inference cost
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Depending on how many tokens are 

extracted in inference, higher cost of  

overtrained 7B model may be worth it 

e.g., Llama1 7B trained on 1.4T tokens (Chinchilla recipe) in Feb’23,  
 but a year later Llama3 8B was trained on 5T tokens

Depending on how many tokens are

extracted in inference, higher cost of

overtrained 7B model may be worth it

e.g., Llama1 7B trained on 1.4T tokens (Chinchilla recipe) in Feb’23,
but a year later Llama3 8B was trained on 5T tokens



Correcting Mistakes in Chinchilla Paper
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[Epoch AI, 2024]
Motivation: Accurate prediction on models that are not compute-optimal

Correcting Mistakes in Chinchilla Paper
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[Epoch AI, 2024]
Motivation: Accurate prediction on models that are not compute-optimal 



Another major Chinchilla Amendation
(data-constrained training)
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Another major Chinchilla Amendation 
(data-constrained training)



Motivation: Not enough data
e.g., Chinchilla law suggests training 530B model on 11T tokens

Assembling a dataset of 11T tokens may involve too many compromises 
(ie low-quality)

Specialized corpora (law, medicine, Wwikipedia etc.) are small; essentially 
fixed size.

Scaling up with web data throws off the data-mix proportions

88
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From paper abstract [Meunnighoff et al’23]
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From paper abstract [Meunnighoff et al’23] 



Experiments with 4.2B model

9032

What is your takeaway from this 

figure if you’re training a model 

that will be widely used? (eg Llama3)

Experiments with 4.2B model 
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Thought process in deriving Chinchilla-like law
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Thought process in deriving Chinchilla-like law 
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Let    total # of tokens with repetition.   unique tokens 

Let  optimal # parameters for  tokens (as per Chinchilla) 

Define     

D = UD =
UN = UD

RD = D
UD

≈ 1 RN = N
UN

≈ 1

Motivation: Exponential  
drop-off in effectiveness Effective datasize  D− = = UD + UDR*D(1 ≈ e≈ RD

R*D )

Hypothesis: There exist learnable parameters  such that R*D, R*N

”effective # of tokens”  

”effective # of parameters”

D− =
N− =



Fitting this model
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Fitting this model 

35

     fit the data quite well to give the expressionlR*N = 5.31, R*D = 15.39

Do best fit using Huber loss 

(Modification of MSE, less  sensitive to outliers)



Two ways to overcome limited text data
4.2B model, trained with 84B tokens. Tokens could be (i) unique (ii) repeated (iii) code tokens 
(iv) filtered using perplexity

94

[Meunnighof et al.]



95

38

Interesting Settings:  (i) Code + Data (up to 50-50 is good)  

(ii) apply perplexity filter to get 42 B tokens, then 2 epochs 

Caveat: Code is known  

to improve reasoning,  

and they didn’t test for this
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But…



Llama 3
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From GPT-3 to Llama 3
• GPT-1, GPT-2, GPT-3, GPT-3.5/ChatGPT, GPT-4, GPT-4-turbo, GPT-4o

• Llama 1, Llama 2, Llama 3

• Mistral, Mixtral

• Claude 1, Claude 2, Claude 3, Claude 3.5 (Haiku, Sonnet, Opus)

• Qwen 1, Qwen 2

• Bard, Gemini, Gemini Pro, Gemma 1, Gemma 2

• …

• Truly open LMs: OLMo, Pythia, BLOOM

98More on these models later…



Llama 3.1: Overview
• Dense Transformers - 8B, 70B, 405B

– Dense vs mixture-of-experts
– Smaller models are getting more attention

• Long-context: 128K tokens (remember, GPT-3 had only 2048 tokens)

• Pre-trained on 15T multilingual tokens (remember, GPT-3 was trained on 
300B tokens)

• Pre-training vs post-training:
– SFT, rejection sampling, direct preference optimization
– multilinguality, coding, reasoning, tool use
– Safety mitigations: helpfulness vs harmlessness

• Multi-modal training and adaptation
99



Llama 3.1: Pre-training data
• “To train the best language model, the curation of a large, high-quality 

training dataset is paramount.”

• PII and safety filtering

• Text extraction and cleaning from raw HTML pages

• De-duplication: URL, document, line-level, …

• Heuristic filtering:
– Remove lines that consist of repeated content (e.g., n-gram coverage ratio)
– Dirty word counting
– KL divergence of token-distribution compared “high-quality corpus”

• Model-based quality classifier: important and new trend!

• Code, reasoning, and multilingual data
100



Llama 3.1: Heuristic filtering
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Heuristic filtering

28



Llama 3.1: Model-based quality filtering
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Model-based quality filtering

29

“To train a quality classifier based on Llama 2, we create a training set of cleaned web 
documents, describe the quality requirements, and instruct Llama 2’s chat model 
to determine if the documents meets these requirements. We use DistilRoberta 
(Sanh et al., 2019) to generate quality scores for each document for efficiency reasons. 
We experimentally evaluate the efficacy of various quality filtering configurations.”

FINEWEB-EDU They generate 450k annotations by llama-3-instruct for identifying educational content
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“To train a quality classifier based on Llama 2, we create a training set of cleaned web 
documents, describe the quality requirements, and instruct Llama 2’s chat model 
to determine if the documents meets these requirements. We use DistilRoberta 
(Sanh et al., 2019) to generate quality scores for each document for efficiency reasons. 
We experimentally evaluate the efficacy of various quality filtering configurations.”

They generate 450k annotations by llama-3-instruct for identifying educational content



Llama 3.1: Model-based quality filtering

103https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu 

Model-based quality filtering

30https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu

https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu


Selecting high-quality data with LM signals
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QuRating: Selecting High-Quality Data for Training Language Models (2024)

Part I
measure

quality

Part II
utilize

quality

QuRating: Selecting high-quality data with LM signals

QuRating: Selecting High-Quality Data for Training Language Models (2024)



Selecting high-quality data with LM signals
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QuRating: Selecting high-quality data with LM signals



Code and math data
• Common wisdom: code and math data are very important for pre-training
• They build domain-specific pipelines that extract code and math-relevant web pages

• Code is a critical building block for generalization far beyond coding tasks
– Compared to text-only pre-training, 8.2% in NL reasoning, 4.2% in world knowledge, 6.6% in 

general win rates, 12x in code performance

• The quality of code data has an outsized impact in downstream tasks
106
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• Common wisdom: code and math data are very important for pre-training

• They build domain-specific pipelines that extract code and math-relevant web pages

• Code is a critical building block for generalization far beyond coding tasks

• The quality of code data has an outsized impact in downstream tasks

• Compared to text-only pre-training, 8.2% in NL reasoning, 4.2% in world knowledge, 6.6% in general win 
rates, 12x in code performance



Determining data mix
• “Roughly 50% of tokens corresponding to general knowledge, 25% of 

mathematical and reasoning tokens, 17% code tokens, 8% multilingual tokens”

• Scaling laws for data mix: “train several smaller models on a data mix and use 
that to predict the performance on that mix”, “repeat this process for different data 
mixes to select a new data mix candidate”

107Data Mixing Laws: Optimizing Data Mixtures by Predicting Language Modeling Performance (2024)
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“Roughly 50% of tokens corresponding to general knowledge, 25% of 
mathematical and reasoning tokens, 17% code tokens, 8% multilingual tokens”

• Scaling laws for data mix: “train several smaller models on a data mix and use that to 
predict the performance on that mix”, “repeat this process for different data mixes to 
select a new data mix candidate”

Data Mixing Laws: Optimizing Data Mixtures by Predicting Language Modeling Performance (2024)



Determining data mix
• Domains: Common Crawl, CC, Github, Wikipedia, Books, arXiv, …

108
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Domains: Common Crawl, CC, Github, Wikipedia, Books, arXiv, …

MiniCPM: Unveiling the Potential of Small Language Models with Scalable Training Strategies (2024)
MiniCPM: Unveiling the Potential of Small Language Models with Scalable Training Strategies (2024)



Training recipe
• AdamW: learning rate of 8×10−5, a linear warm up of 8000 steps, 

and a cosine learning rate schedule decaying to 8×10−7 over 
1,200,000 steps

• They adjusted the pre-training mix during training
– Increased percentage of non-English data
– Upsample mathematical data to improve the model’s knowledge cut-off
– Downsampled subsets of pre-training data that were later identified as lower quality

• Long-context pre-training: first train on 8k, and increase context length to 
128k in six stages (800B training tokens)
– Challenges: scarcity of real long-context pre-training data
– The performance on short-context tasks will degrade drastically

109
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• They adjusted the pre-training mix during training

• Increased percentage of non-English data

• Upsample mathematical data to improve the model’s knowledge cut-off

• Downsampled subsets of pre-training data that were later identified as lower quality

• AdamW: learning rate of , a linear warm up of 8000 steps, and a cosine 

learning rate schedule decaying to  over 1,200,000 steps

8 × 10−5

8 × 10−7

• Long-context pre-training: first train on 8k, and increase context length to 128k in six stages 
(800B training tokens)

• Challenges: scarcity of real long-context pre-training data

• The performance on short-context tasks will degrade drastically

Cosine LR schedule 
with linear warmup



Data annealing
• They upsample on data sources of very high-quality at the end of training (final 

40M tokens; no benchmark datasets used in annealing)

• They view data annealing as a cheap way to measure the impact of domain-
specific datasets on model capabilities

110
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• They upsample on data sources of very high-quality at the end of training (final 40M tokens; no 
benchmark datasets used in annealing)

• They view data annealing as a cheap way to measure the impact of domain-specific datasets on 
model capabilities



Model architecture
• Standard dense Transformers, the same architecture as Llama-2

• Grouped query attention (GQA): 8 key-value heads to improve inference speed

111(Ainslie et al., 2023) GQA: Training generalized multi-query transformer models from multi-head checkpoints.

Model architecture

38

• Standard dense Transformers, the same architecture as Llama-2
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Model architecture
• Standard dense Transformers, the same architecture as Llama-2

• Grouped query attention (GQA): 8 key-value heads to improve inference 
speed

• Prevents self-attention between documents within the same sequence

• A much larger vocabulary: 128K

• RoPE positional embeddings: base frequency = 500,000

112



Rope positional embeddings

113(Su et al., 2021) RoFormer: Enhanced Transformer with Rotary Position Embedding

Rope positional embeddings

40(Su et al., 2021) RoFormer: Enhanced Transformer with Rotary Position Embedding

Base frequency



Evaluation
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Performance: Reading comprehension
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Performance: reading comprehension
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DROP: 3-shot, SQuAD: 1-shot, RACE: 0-shot, QuAC: 1-shot, ARC-C: 25-shot.. 



Performance: Commonsense reasoning
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Performance: commonsense reasoning

43

PiQA: 0-shot, OpenBookQA: 0-shot, Winogrande: 5-shot



Performance: Code and math
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Performance: code and math
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HUMANEVAL GSM8K



Performance: Code and math
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Performance: code and math
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Contamination analysis
• How to decide which examples are 

contaminated?
– "An example of a dataset D to be 

contaminated if a ratio TD of its tokens 
are part of an 8-gram occurring at least 
once in the pre-training corpus”

• How to decide estimated performance 
gains from contamination?
– Compare the performance on the 

“clean” subset vs entire dataset

119
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• How to decide which examples are contaminated?

• "An example of a dataset  to be contaminated if a ratio 
 of its tokens are part of an 8-gram occurring at least 

once in the pre-training corpus”

D
TD

• How to decide estimated performance gains from 
contamination?

• Compare the performance on the “clean” subset vs 
entire dataset



Other LLMs
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Open/Closed Access
• Weights: open? described? closed?

• Inference Code: open? described? closed?

• Training Code: open? described? closed?

• Data: open? described? closed?

121



Licenses and Permissiveness
• Public domain, CC-0: old copyrighted works and products of US 

government workers

• MIT, BSD: very few restrictions

• Apache, CC-BY: must acknowledge owner

• GPL, CC-BY-SA: must acknowledge and use same license for derivative 
works

• CC-NC: cannot use for commercial purposes

• LLaMa, OPEN-RAIL: various other restrictions

• No License: all rights reserved, but can use under fair use

122



Fair Use
• US fair use doctrine — can use copyrighted material in some cases

• A gross simplification:
– Quoting a small amount of material → likely OK
– Doesn’t diminish commercial value → possibly OK
– Use for non-commercial purposes → possibly OK

• Most data on the internet is copyrighted, so model training is currently 
done assuming fair use

• But there are lawsuits!

123

Fair Use
• US fair use doctrine — can use copyrighted material in 

some cases 

• A gross simplification: 

• Quoting a small amount of material → likely OK 

• Doesn’t diminish commercial value → possibly OK   

• Use for non-commercial purposes → possibly OK 

• Most data on the internet is copyrighted, so model training 
is currently done assuming fair use 

• But there are lawsuits!



Why Restrict Model Access?
• Commercial Concerns: Want to make money from the models

• Safety: Limited release prevents possible misuse

• Legal Liability: Training models on copyrighted data is a legal/ethical gray 
area

124



English-Centric Open Models
• Open source/reproducible:

– Pythia: Fully open, many sizes/checkpoints
–OLMo: Possibly strongest reproducible model

• Open weights:
– LLaMa1/2/3/3.1: Most popular, heavily safety tuned
–Mistral/Mixtral: Strong and fast model, several European languages
–Qwen: Strong, more multilingual - particularly en/zh

125



Pythia: Overview
• Creator: Eleuther AI

• Goal: Joint understanding of model training dynamics and scaling

• Unique features: 8 model sizes 70M-12B, 154 checkpoints for each

126

Pythia - Overview
• Creator: Eleuther AI 
• Goal: Joint understanding of model training 

dynamics and scaling 
• Unique features: 8 model sizes 70M-12B, 154 

checkpoints for each

Arch
Transformer+RoPE+SwiGLU, context 2k (cf LLaMa 4k), 

parametric LN

Data Trained on 300B tokens of The Pile (next slide), or deduped 207B

Train
LR scaled inversely to model size (7B=1.2e-4), 

batch size 2M tokens

Pythia - Overview
• Creator: Eleuther AI 
• Goal: Joint understanding of model training 

dynamics and scaling 
• Unique features: 8 model sizes 70M-12B, 154 

checkpoints for each

Arch
Transformer+RoPE+SwiGLU, context 2k (cf LLaMa 4k), 

parametric LN

Data Trained on 300B tokens of The Pile (next slide), or deduped 207B

Train
LR scaled inversely to model size (7B=1.2e-4), 

batch size 2M tokens



The Pile
• A now-standard 800GB dataset of lots of text/code
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Pythia: Findings
• Some insights into training dynamics, e.g. larger models memorize facts 

more quickly (x axis: fact frequency, legend: training step)

• It is possible to intervene on data to reduce gender bias
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OLMo: Overview
• Creator: AI2

• Goal: Better science of state-of-the-art LMs

• Unique features: Top performance of fully documented model, 
instruction tuned etc.
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Dolma
• 3T token corpus created and released by AI2 for LM training

• A pipeline of (1) language filtering, (2) quality filtering, (3) content filtering, 
(4) deduplication, (5) multi-source mixing, and (6) tokenization
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Dolma
• 3T token corpus created and released by AI2 for LM 

training 

• a pipeline of (1) language filtering, (2) quality filtering, (3) 
content filtering, (4) deduplication, (5) multi-source 
mixing, and (6) tokenization



OLMo: Findings
• Competitive average performance

• Performance increases
constantly w/ training
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Llama2: Overview
• Creator: Meta

• Goal: Strong and safe open LM w/ base+chat versions

• Unique features: Open model with strong safeguards and chat tuning, 
good performance
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Data
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• Unique features: Open model with strong safeguards 

and chat tuning, good performance

Arch Transformer+RoPE+SwiGLU, context 4k, RMSNorm

Data
Trained on “public sources, up-sampling the most factual 

sources”, LLaMa 1 has more info (next page), total 2T tokens

Train 7B=3e-4, batch size 4M tokens



Llama3.1:  Overview
• Creator: Meta

• Goal: A herd of language models that natively support multilinguality, 
coding, reasoning, and tool usage

• Compared with Llama2: Larger Data scale (15T multilingual tokens vs 
1.8T tokens). More Training FLOPs (3.8 × 10^25 FLOPs, almost 50× more 
than the largest version of Llama 2)
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LLaMa2 - Overview
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• Goal: Strong and safe open LM w/ base+chat versions 
• Unique features: Open model with strong safeguards 

and chat tuning, good performance

Arch Transformer+RoPE+SwiGLU, context 4k, RMSNorm

Data
Trained on “public sources, up-sampling the most factual 

sources”, LLaMa 1 has more info (next page), total 2T tokens

Train 7B=3e-4, batch size 4M tokens



Llama3.1:  Multimodality
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LLaMa3.1 - Multimodality



Mistral/Mixtral: Overview
• Creator:

• Goal: Strong and somewhat multilingual open LM

• Unique features: Speed optimizations, including GQA and Mixture of 
Experts
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Mistral/Mixtral - Overview
• Creator: 
• Goal: Strong and somewhat multilingual open LM 
• Unique features: Speed optimizations, including 

GQA and Mixture of Experts

Arch
Transformer+RoPE+SwiGLU, context 4k, RMSNorm, sliding 

window attention. Mixtral has 8x experts in feed-forward layer

Data
Not disclosed? 

But includes English and European languages

Train Not disclosed?
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• Unique features: Speed optimizations, including 

GQA and Mixture of Experts

Arch
Transformer+RoPE+SwiGLU, context 4k, RMSNorm, sliding 

window attention. Mixtral has 8x experts in feed-forward layer

Data
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Mistral: Sliding Window Attention
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Mistral - Sliding Window 
Attention



Qwen: Overview
• Creator:

• Goal: Strong multilingual (esp. English and Chinese) LM

• Unique features: Large vocabulary for multilingual support, strong 
performance
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Qwen - Overview
• Creator: 
• Goal: Strong multilingual (esp. English and 

Chinese) LM 
• Unique features: Large vocabulary for multilingual 

support, strong performance

Arch
Transformer+RoPE+SwiGLU, context 4k, RMSNorm, bias in 

attention layer

Data
Trained on multilingual data + instruction data at pre-training time, 

2-3T tokens

Train 3e-4, batch size 4M tokens

Qwen - Overview
• Creator: 
• Goal: Strong multilingual (esp. English and 

Chinese) LM 
• Unique features: Large vocabulary for multilingual 

support, strong performance

Arch
Transformer+RoPE+SwiGLU, context 4k, RMSNorm, bias in 

attention layer

Data
Trained on multilingual data + instruction data at pre-training time, 

2-3T tokens

Train 3e-4, batch size 4M tokens



Qwen: Multilinguality
• Token compression ratio re: XLM-R (lower is better)
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SmolLM: Overview
• Creator:

• Goal: Small scale (135M, 360M, and 1.7B parameters) but strong 
performance

• Unique features: Fully Open-sourced with a high-quality pre-training 
corpus.
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FineWeb – (Edu)
🍷 FineWeb dataset consists of more than 15T tokens of cleaned and deduplicated english 
web data from CommonCrawl.

Url Filtering → Trafilatura text extraction from HTML → FastText LanguageFilter → 
Quality filtering → MinHash deduplication → PII Formatting

“To enhance FineWeb's quality, we developed an educational quality classifier using annotations 
generated by LLama3-70B-Instruct. We then used this classifier to retain only the most educational 
web pages.”

140

FineWeb - (Edu)

“To enhance FineWeb's quality, we developed an educational quality classifier using 
annotations generated by LLama3-70B-Instruct. We then used this classifier to retain only 
the most educational web pages.”

! FineWeb dataset consists of more than 15T tokens of cleaned 
and deduplicated english web data from CommonCrawl. 

Url Filtering -> Trafilatura text extraction from HTML ->FastText LanguageFilter -> 
Quality filtering -> MinHash deduplication -> PII Formatting 



Other Models
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Code Models
• StarCoder 2 — by Big Science (leads: Hugging Face + Service Now), fully 

open model

• CodeLlama — by Meta, code adaptation of LLaMa

• DeepSeek Coder — by DeepSeek, strong performance across many tasks

• Yi Coder - by 01.AI, smaller scales (9B/1.5B) but strong performance.

• More in code generation class!
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Math Models
• LLEMA — by EleutherAI and others, model for math theorem proving 

trained on proof pile

• DeepSeek Math — by DeepSeek, finds math-related pages on the web
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Science Model: Galactica
• Model for science trained by Meta

• Diverse set of interesting training data
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Science Model: Galactica
• Model for science trained by Meta 

• Diverse set of interesting training data



Closed Models
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GPT-4o: Overview
• Creator:

• De-facto standard “strong” language model

• Tuned to be good as a chat-based assistant

• Supports calling external tools through “function calling” interface

• Accepts image inputs

• Fast and cheaper inference compared with earlier GPT-4 versions
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GPT-4o - Overview
• Creator: 
• De-facto standard “strong” language model 
• Tuned to be good as a chat-based assistant 
• Supports calling external tools through “function 

calling” interface 
• Accepts image inputs 
• Fast and cheaper inference compared with earlier 

GPT-4 versions



Gemini
• Creator:

• Performance competitive with corresponding GPT models (Gemini Pro 1.0 
~ gpt-3.5, Gemini Ultra 1.0 ~ gpt-4)

• Pro 1.5 supports very long inputs, 1-10M tokens

• Supports image and video inputs

• Can generate images natively
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Gemini
• Creator: 

• Performance competitive with corresponding GPT 
models (Gemini Pro 1.0 ~ gpt-3.5, Gemini Ultra 1.0 
~ gpt-4) 

• Pro 1.5 supports very long inputs, 1-10M tokens 

• Supports image and video inputs 

• Can generate images natively



Claude 3: Overview
• Creator:

• Context window up to 200k

• Allows for processing images

• Overall strong results competitive with GPT-4
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Claude 3 - Overview

• Creator:  
• Context window up to 200k 
• Allows for processing images 
• Overall strong results competitive with GPT-4



Long Context Models
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How Long are Sequences?
• One sentence: ~20 tokens

• One document: 100-10k tokens

• One book: 50k-300k tokens

• One video: 1.5k-1M tokens (~300/sec)

• One codebase: 20k-1B tokens

• One genome: 3B nucleotides
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Why is Modeling Long Sequences Hard?
• Memory Complexity: Transformer models scale quadratically in memory

• Compute Complexity: Transformer models scale quadratically in 
computation

• Training: Data is lacking, training signal is weak, training on long 
sequences is costly
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Long-Context Use Cases 
and Evaluation
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Benchmarks for Long-
context Models

• Long Range Arena: 
Composite 
benchmark 
containing mostly 
non-NLP tasks (Tay et 
al. 2020) 

• SCROLLS: 
Benchmark 
containing long-
context 
summarization, QA, 
etc. (Shaham et al. 
2022) 

Benchmarks for Long-context Models
• Long Range Arena: 

Composite benchmark containing 
mostly non-NLP tasks (Tay et al. 
2020)

• SCROLLS: 
Benchmark containing long-
context summarization, QA, etc. 
(Shaham et al. 2022)
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Targeted Analysis Tools
• “lost-in-the-middle” (Liu et al. 2023) demonstrates that models pay less 

attention to things in middle context

• “needle in a haystack” tests (Kamradt 2023) test across document 
length/position

• RULER (Hsieh et al. 2024) compiles a number of different NIAH tasks
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Long-context In-context Learning
• Can we provide lots of examples to long-context models and improve 

accuracy through ICL?

• When many in-context examples are provided, it can be better than 
fine-tuning!
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Long-context In-context Learning 
(Bertsch et al. 2024)

• Can we provide lots of examples to long-context 
models and improve accuracy through ICL?

• When many in-context examples are provided, it can 
be better than fine-tuning!

(Bertsch et al. 2024)



Long-context Dialog
• Chatbots that maintain long-term 

conversational context

• e.g. Locomo corpus (Maharana et al. 2024)

• Evaluate w/ question answering, 
summarization, response generation
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Long-context Dialog
• Chatbots that maintain 

long-term 
conversational context 

• e.g. Locomo corpus 
(Maharana et al. 2024) 

• Evaluate w/ question 
answering, 
summarization, 
response generation

8



Tackling Complexity:
Memory-efficient Computation
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Vanilla Attention Complexity
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Vanilla Attention Complexity

Time: O(bs2d) for QKT 

(but fast on GPU)
Memory: O(bs2) for all ops

b: batch size, s: sequence length, d: dimension

Time: O(bs2d) for AV 

(but fast on GPU)
Memory: O(bsd)

Time: O(bs2d) for QKT

(but fast on GPU)
Memory: O(bs2) for all ops

Time: O(bs2d) for AV
(but fast on GPU)
Memory: O(bsd)

b: batch size, s: sequence length, d: dimension



Multi-head Attention Complexity
• Multi-head attention splits attention heads

• No effect on time complexity, but effect on memory
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Time: O(bs2d) for QKT

(but fast on GPU)
Memory: O(bs2h) for all ops

Time: O(bs2d) for AV
(but fast on GPU)
Memory: O(bsd)

b: batch size, s: sequence length, d: dimension



Memory-efficient Computation
• Insight: you don’t need to materialize s2 attention

• Calculate softmax numerator times values, and softmax denominator 
left-to-right
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(Jang 2019, 
Rabe and Staats 2021)
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Ring Attention

• Further distribute 
storage/incremental 
computation across 
multiple devices
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Ring Attention (Liu et al. 2023)

• Further distribute 
storage/
incremental 
computation 
across multiple 
devices

(Liu et al. 2023)



Extrapolation of 
Short-Context Models
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Trained Models Fail to Extrapolate
• Most transformer models are trained on shorter sequences (4k)

– If a document is longer than the limit, truncate or chunk

• This poses problems for positional encodings:
–Learned absolute encodings: impossible to extrapolate
–Fixed absolute encodings: move models out of distribution, very bad
–Relative encodings: should extrapolate better in theory, but not really 

in practice
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An Example of Failed Extrapolation
• Llama-2 w/ 32k context (RoPE) can answer questions about 

sequences up to about 40k, but not beyond
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An Example of Failed 
Extrapolation (Fu et al. 2024)

• Llama-2 w/ 32k context (RoPE) can answer questions 
about sequences up to about 40k, but not beyond

16

(Fu et al. 2024)



Training w/ Long Context
• Simple solution: continually train on longer 

documents

• Problem: there aren’t many long documents

–Solution: upsample the longer documents

• Problem: upsampling favors certain domains 
such as books and GitHub

–Solution: maintain domain mixture, but 
upsample long docs in each domain
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Training w/ Long Context 
(Fu et al. 2024)

• Simple solution: continually train on longer 
documents 

• Problem: there aren’t many long documents 

• Solution: upsample the longer 
documents 

• Problem: upsampling favors certain 
domains such as books and GitHub 

• Solution: maintain domain mixture, but 
upsample long docs in each domain

17

(Fu et al. 2024)



RoPE Scaling
• RoPE has a parameter adjusting 

the period

• typically with b=10000

• Position interpolation: Multiply θ by a constant scaling factor 
(e.g. Cshort/Clong)

• Neural tangent kernel: Scale low-frequency components, but maintain 
high-frequency components
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(Lu et al. 2024)

• typically                 with b=10000

RoPE Scaling 
(see Lu et al. 2024)

• RoPE has a parameter 
adjusting the period
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• Position interpolation: Multiply θ by a constant scaling 
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RoPE Scaling 
(see Lu et al. 2024)

• RoPE has a parameter 
adjusting the period

18

• Position interpolation: Multiply θ by a constant scaling 
factor (e.g. Cshort/Clong) 

• Neural tangent kernel: Scale low-frequency 
components, but maintain high-frequency components



Tackling Complexity:
Alternative Transformer 

Architectures
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Tackling Transformer Complexity
• Sparse Attention

• Sliding Window Attention

• Compression

• Low-rank Approximation
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Sparse Transformers
• Add "stride", only attending to every n previous states
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(Child et al. 2019)Sparse Transformers 
(Child et al. 2019)

• Add "stride", only attending to every n previous states
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Truncated BPTT+Transformer
• Transformer-XL (Dai et al. 2019) attends to fixed 

vectors from the previous sentence

22

Standard Transformer Transformer-XL

• Like truncated backprop through time for RNNs; can use 
previous states, but not backprop into them 

• See also Mistral’s (Jiang et al. 2023) sliding window attention

Truncated BPTT+Transformer
• Transformer-XL (Dai et al. 2019) attends to fixed vectors from the 

previous sentence

• Like truncated backprop through time for RNNs; can use previous states, 
but not backprop into them

• See also Mistral’s (Jiang et al. 2023) sliding window attention
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Compressing Previous States
• Add a "strided" compression step over previous states (Rae et al. 2019)
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Compressing Previous 
States

• Add a "strided" compression step over previous 
states (Rae et al. 2019)
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Low-rank Approximation
• Calculating the attention matrix is expensive, can it be predicted with a 

low-rank matrix?

• Linformer: Add low-rank linear projections into model (Wang et al. 2020)

• Nystromformer: Approximate using the Nystrom method, sampling 
"landmark" points (Xiong et al. 2021)
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• Calculating the attention matrix is expensive, can it be 

predicted with a low-rank matrix? 

• Linformer: Add low-rank linear projections into model 
(Wang et al. 2020) 

• Nystromformer: Approximate using the Nystrom 
method, sampling "landmark" points (Xiong et al. 2021)
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Tackling Complexity:
Non-attentional Models
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Reminder: RNNs

• Each RNN step depends on the previous - slow!
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Reminder: RNNs
I love this movie

RNN RNN RNN RNN

predict

love

predict

this

predict
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.
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I

.

It's the best .

RNN RNN RNN RNN

predict

the

predict

best

predict

.

predict

</s>

predict

It's

RNN

No 
Backprop

• Each RNN  step depends on the previous - slow!



Convolution
• Calculate based on local context
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Convolution
• Calculate based on local context

I hate this movie

CNN CNN

ht = f(W [xt−1; xt; xt+1])



Convolution for Auto-regressive Models
• Functionally identical, just consider previous context
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Convolution for Auto-
regressive Models

• Functionally identical, just consider previous context

I hate this movie

CNNCNNCNNCNN



Structured State Space Models
• Models that take a form like the following

• Because there are no non-linearities, the current h/x as a function of 
previous states can be calculated in advance
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(Gu et al. 2021)

Slide Credit: Albert Gu

Structured State Space 
Models (Gu et al. 2021)

• Models that take a form like the following

29
Slide Credit: Albert Gu

𝑥 𝑦

𝐴

v𝐵 𝐶h

𝐷

• Because there are no non-linearities, the current h/x as a 
function of previous states can be calculated in advance



Selective State Space Models - Mamba
• To improve modeling power of state space models, condition parameters 

on current input

• Use efficient parts of GPU memory to handle expanded state
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(Gu and Dao 2023)

Selective State Space Models - Mamba 
(Gu and Dao 2023)

• To improve modeling power of state space models, 
condition parameters on current input

30

• Use efficient parts of GPU memory to handle 
expanded state



Next lecture: 
Adapting LLMs
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