

’ lu?rati]n' Koma Zhang // Quanta Magazing
/"‘| ' /’A‘(‘
| }’l‘ ///,./’ | : -

Previously on COMP541

* what Is deep learning

* a brief history of deep learning
e compositionality

* end-to-end learning

e distributed representations

Lecture overview

* what is learning?

 types of machine learning problems
* Image classification

* [Inear regression

e generalization

 cross-validation

« maximum likelihood estimation

Disclaimer: Much of the material and slides for this lecture were borrowed from
—Bernhard Scholkopf's MLSS 2017 lecture,
—Tommi Jaakkola’'s 6.867 class,
—Fei-Fei Li and Andrej Karpathy's CS231n class
—Justin Johnson's EECS598 class

What is learning?

Two definitions of learning

 "Learning is the acquisition of knowledge about the world.”
Kupfermann (1985)

« “Learning Is an adaptive change in behavior caused by experience.”
Shepherd (1988)

Empirical Inference

» Drawing conclusions from empirical data (observations,
measurements)

 Example 1: scientific inference

A

Empirical Inference

» Drawing conclusions from empirical data (observations,
measurements)

 Example 1: scientific inference

A

Empirical Inference

» Drawing conclusions from empirical data (observations,
measurements)

 Example 1: scientific inference

y=2a;k(x, x;)+b

Leibniz, Weyl, Chaitin

Empirical Inference
» Drawing conclusions from empirical data (observations,
measurements)

 Example 1: scientific inference

A y=2,~a,~k(x, x1)+b

Leibniz, Weyl, Chaitin

Empirical Inference

« Example 2: perception

10

19

The choice of representation may determine whether
the learning task is very easy or very difficult!

31

Generalization

* Observe

* \What's next’

1,2,4,7,
1,2,4,7,
1,2,4,7,
1,2,4,7,
1,2,4,7,

11,16,...:
12,20,...:
13,24,...."
14,28
1,5,...

- divisors of 28
. decimal expansions of m=3.14159... and

4

vy OO0 00O

+1 +2 +3 eeeee 11 pieces 16 pieces

Image credit: mathsp|ce com
a,+1 = a, +n ("lazy caterer’'s sequence’)
Apiz = Apy1 T ap+]

Tribonacci'-sequence

e=2.718... Interleaved (thanks to O. Bousquet)

e don't need e: 1247 appears at position 16992 in

« The On-Line Encyclopedia of Integer Sequences: > 1300 hits...

32

https://oeis.org/

Generalization, |l

» Question: which continuation is correct (‘generalizes’)?

* Answer? There's no way to tell (“induction problem")

» Question of statistical learning theory: how to come up with
a law that generalizes (“demarcation problem")

33

Types of ML problems

Types of machine learning problems

Based on the information available:
» Supervised learning

» Unsupervised learning

» Semi-supervised learning

* Reinforcement learning

35

Supervised learning

» Input: {(X,y)}

 Task: Predict targety from inputX
— Classification: Discrete output
— Regression: Real-valued output

—» cat

———
Image classification

Face detection

36

Unsupervised learning

- Input: {x}

~

Che

« Task: Reveal structure in the observed data f
— Clustering: Partition data into groups == \Nuk

— Feature extraction: Learning meaningful features
automatically

— Dimensionality reduction: Learning a
lower-dimensional representation of input

Anomaly detection
37

Semi-supervised learning

* I[nput:
Few labeled examples {(X, y)}
Many unlabeled examples {x }

 Task: Predict target y from inputX
— Classification: Discrete output
— Regression: Real-valued output

Try to improve predictions based on

Interactive segmentation

examples by making use of the additional “unlabeled” examples

Image credit: Wikipedia 3g

Reinforcement learning

* I[nput: action
Interaction with an environment; /\
the agent receives a numerical Agent Environment

reward signal \/

observation, reward

» Task: A way of behaving that is very rewarding
INn the long run

19 20 21 22 23 24

i,

» Goal is to estimate and maximize the ml‘ §““A

long-term cumulative reward
TD-Gammon (Tesauro, 1990-1995)

Adapted from Doina Precup 39

Types of machine learning problems

How Much Information Does the Machine Need to'Predict?

S

“Pure” Reinforcement Learning (cherry)

» The machine predicts a scalar
reward given once in a while.

> A few bits for some samples

Supervised Learning (icing)

» The machine predicts a category
or a few numbers for each input

» Predicting human-supplied data
> 10-10,000 bits per sample

Unsupervised/Predictive Learning (cake)

» The machine predicts any part of
its input for any observed part.

» Predicts future frames in videos
» Millions of bits per sample

4 (Yes, I know, this picture is slightly offensive to RL folks

Y LeCun

. But I'll make it up)

“If intelligence was a cake,
unsupervised learning would
be the cake, supervised
learning would be the icing on
the cake, and reinforcement
learning would be the cherry
on the cake. We know how to
make the icing and the cherry,
but we don't know how to
make the cake.”

—Yann LeCun
NIPS 2016 Keynote

40

Image classification

— non-parametric vs. parametric models
— nearest neighbor classifier

— hyperparameter

— cross-validation

41

Image Classification: a core task in
Computer Vision

Input: image Output: Assign image to one
of a fixed set of categories

cat

42

The problem: Semantic Gap

[[105 112 108 111 104 99 106 99 96 103 112 119 104 97 93 87]
[91 98 102 106 104 79 98 103 99 105 123 136 110 105 94 85]
[76 85 90 105 128 185 87 96 95 99 115 112 106 183 99 85]
[99 81 81 93 120 131 127 180 95 98 102 99 96 93 101 94]
(106 91 61 64 €69 91 88 85 101 107 109 98 75 84 96 95]
[114 188 85 55 55 69 64 5S4 64 87 112 129 98 74 84 91]
(133 137 147 183 65 81 8@ 65 52 S4 74 B4 182 93 85 82]
(128 137 144 140 169 95 86 70 62 65 63 63 60 73 86 101]
(125 133 148 137 119 121 117 94 65 79 80 65 54 64 72 98]
(127 125 131 147 133 127 126 131 111 96 89 75 61 64 72 84)
(115 114 109 123 150 148 131 118 113 109 100 92 74 65 72 78]
[89 93 90 97 108 147 131 118 113 114 113 109 106 95 77 80)
[63 77 86 81 77 79 102 123 117 115 117 125 125 130 115 87]
[62 65 82 89 78 71 80 101 124 126 119 101 107 114 131 119)
[63 65 75 88 89 71 62 81 120 138 135 105 81 98 110 118)
[87 65 71 87 186 95 69 45 76 130 126 187 92 94 105 112)
(118 97 82 86 117 123 116 66 41 S1 95 983 89 05 102 1087]
[164 146 112 80 82 120 124 184 76 48 45 66 88 101 102 109)
(157 17@ 157 120 93 86 114 132 112 97 69 55 70 82 99 94)
[130 128 134 161 139 100 109 118 121 134 114 B7 65 53 €9 86)
[128 112 96 117 150 144 120 115 104 107 102 93 87 81 72 79]
(123 107 96 86 83 112 153 149 122 109 104 75 890 107 112 99]
(122 121 102 80 82 86 94 117 145 148 153 182 58 78 92 107]
[122 164 148 183 71 56 78 83 93 1€3 119 139 182 61 €9 84]]

What the computer sees

An image Is just a big grid of
numbers between [0, 255].

e.g. 800 x 600 x 3
(3 channels RGB)

43

Challenges: Viewpoint Variation

[(105 112 108 111 104 99 106 99 96 103 112 119 104 97 93 87]
[91 98 102 106 104 79 98 103 99 105 123 136 110 105 94 85)
[76 85 90 105 128 185 87 96 95 99 115 112 106 183 99 85]
[99 81 81 93 120 131 127 180 95 98 102 99 96 93 101 94]
(106 91 61 64 69 91 88 85 101 107 109 98 75 84 96 95]
[114 188 85 55 55 69 64 5S4 64 87 112 129 98 74 84 91)
[133 137 147 103 65 81 88 65 52 54 74 B84 182 93 85 82]
[128 137 144 140 109 95 86 70 62 65 63 63 60 73 86 101]
(125 133 148 137 119 121 117 94 65 79 80 65 54 64 72 98]
(127 125 131 147 133 127 126 131 111 9 89 75 61 64 72 84)
(115 114 109 123 150 148 131 118 113 109 100 92 74 65 72 78]
[89 93 90 97 108 147 131 118 113 114 113 109 106 95 77 8e]
[63 77 86 81 77 79 182 123 117 115 117 125 125 130 115 87]
[62 65 82 89 78 71 8@ 101 124 126 119 101 107 114 131 119)
2 [63 65 75 88 89 71 62 81 120 138 135 105 81 98 110 118)
[87 65 71 87 16 95 69 45 76 130 126 107 92 94 1@5 112)
[118 97 82 86 117 123 116 66 41 51 95 93 89 95 102 107]
[164 146 112 80 82 120 124 184 76 48 45 66 88 101 102 109]
[157 17@ 157 120 93 86 114 132 112 97 69 55 70 82 99 94]
[130 128 134 161 139 100 109 118 121 134 114 87 65 53 69 86]
[128 112 96 117 150 144 120 115 104 107 102 93 87 81 72 79]
[123 107 96 86 83 112 153 149 122 109 104 75 80 107 112 99)
(122 121 182 88 82 86 94 117 145 148 153 182 58 78 92 107]
[122 164 148 163 71 56 78 83 93 103 119 139 182 61 69 84]]

All pixels change when
the camera moves!

allenges: Intraclass Variation

Challenges: Fine-Grained Categories

Main Coon Ragdoll American Shorthhair

46

Challenges: Background clutter

47

Challenges: lllumination Changes

48

Challenges: Deformation

49

10N

Occlus

Challenges

o ¥

T', r"‘z K

A

\

ﬁgt-,

-

\Q‘:.

Thss
2|

£
£
s
c."\n

50

Image Classification: Very Useful!

Medical Imaging VWhale recognition

Malignant

Kaggle Challenge

51

https://www.kaggle.com/c/whale-categorization-playground

An image classifier

def classify_image(image):
return cléss_label
Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for
recognizing a cat, or other classes.

52

You could try ...

/N
<
%
2

53

Machine Learning: Data-Driven Approach

1. Collect a dataset of images and labels

2. Use Machine Learning to train an image classifier

3. Evaluate the classifier on a withheld set of test images

def train(images, labels):
Machine learning!
return model

def predict(model, test_images):

Use model to predict labels
return test_labels

Example training set

airplane A i.
automobile n;; gg
bird \ " ;%'haiill
cat Eﬂ
deer EE

54

First classifier: Nearest Neighbor
Classifier

def train(images, labels): NMemorize all data
i o
L and labels
return model
Predict the label of

Use model to predict labe —> the most similar
return test labels training image

def predict(model, test_images):

55

Example dataset: CIFAR-10

10 labels

50,000 training Images, each image Is tiny: 32x32
10,000 test images.

airplane ﬁ% » ..='.’5
automobile EEEHE‘
bird imll Ve FEEW
« FEODSEEEsP
deer ;""7 n.m-&n@.
S | S OV o [RPAP T
o EEEEEDSaNE
horse :.mn-m
o Rl el RS e
o B A B

Example dataset: CIFAR-10

10 labels
50,000 training images For every test image (first column),
10,000 test images. examples of nearest neighbors in rows

e LIS - HENZS | @D
automobile EEEHE‘
v Eill NES yEEE | 2 BEERREERE

« EEOHEECEe P | S - SRl S S

e HMASESVERE | O R
wg [RESEN®EIPIET A
wo I 1 B

e "k N e S
Bl B R
e R R 51) o R R S T *IIIII
o e e PRI e | - e RS
. ‘
C _ b “
wi ENPESESE | @ - MEERNEEE AR

b s At sy
" s] e i o o

58

WS Res D Nearest Neighbor classifier

class NearestNeighbor:
def __init_ (self):
pass

def train(self, X, y):
""" X is N x D where each row is an example. Y is 1l-dimension of size N """
the nearest neighbor classifier simply remembers all the training data
self.Xtr = X
self.ytr =y

def predict(self, X):
""" X is N x D where each row is an example we wish to predict label for
num test = X.shape[0]
lets make sure that the output type matches the input type
Ypred = np.zeros(num_test, dtype = self.ytr.dtype)

loop over all test rows
for i in xrange(num test):
find the nearest training image to the i'th test image
using the L1 distance (sum of absolute value differences)
distances = np.sum(np.abs(self.Xtr - X[1i,:]), axis = 1)
min_index = np.argmin(distances) # get the index with smallest distance
Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

return Ypred

import numpy as np

class NearestNeighbor:
def __init_ (self):

pass

Nearest Neighbor classifier

4
#
S

def train(self, X, y):
"um X is N x D where each row is an example. Y is l-dimension of size N """

the nearest neighbor classifier simply remembers all the training data

elf
selfytr =y

Xtr= X

Memorize training data

def predict(self, X):

""" X is N x D where each row is an example we wish to predict label for

nnn

num test = X.shape[0]
lets make sure that the output type matches the input type
Ypred = np.zeros(num_test, dtype = self.ytr.dtype)

loop over all test rows
for i in xrange(num test):

P
"

-
=

find the nearest training image to the i'th test image
using the L1 distance (sum of absolute value differences)

distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
min_index = np.argmin(distances) # get the index with smallest distance
Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

return Ypred

60

1MOFRL: Numpy-as. g Nearest Neighbor classifier

class NearestNeighbor:
def __init_ (self):
pass

def train(self, X, y):
"um X is N x D where each row is an example. Y is l-dimension of size N """
the nearest neighbor classifier simply remembers all the training data
self.Xtr = X
selfytr =y

def predict(self, X):
"u" X is N x D where each row is an example we wish to predict label for
num test = X.shape[0]
lets make sure that the output type matches the input type
Ypred = np.zeros(num_test, dtype = self.ytr.dtype)

nnn

loop over all test rows

for i in xrange(num_test): For every test Image:
find the nearest training image to the i'th test image . .
using the L1 distance (sum of absolute value differences) - Flnd the neareSt tralﬂ
distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1) .
min_index = np.argmin(distances) # get the index with smallest distance |r7753§353
Ypred[i] = self.ytr[min_index] # predict the label of the nearest example _ Retum the |abe| Of
return Ypred nearest training image

61

e Nearest Neighbor classifier

class NearestNeighbor:
def init ()2

pass Q: how does the
def train(self, X, y): | o . classification speed
""" X is N x D where each row is an example. Y is 1l-dimension of size N """ .
, 1 the 1 depend on the size of
-Xt = X [n
e o the training data?
def predict(k)

""" X is N x D where each row is an example we wish to predict label for
num test = X.shape[0]
Ypred = np.zeros(num test, dtype = .ytr.dtype)

for i in xrange(num test):

distances

= np.sum(np.abs(FXtr - X[1,:]), axis = 1)
min index = np.argmin(distances) - i] [t}
Ypred[i] = f.ytr[min_index]

return Ypred

62

e Nearest Neighbor classifier

class NearestNeighbor:
def init ():

e Q: how does the
def train(sclf, X, y): | - . classification speed
"t X is N x D where each row is an example. Y is 1l-dimension of size N """ .
depend on the size of the
Xtr = X - S 1i .
e training data? linearly :(
def predict(54 f-
"X is N x D where each row is an example we wish to predict label for """ Th|S |S backwards

num test = X.shape[0] .
* test time performance

IS usually much more
Important In practice.
 Deep Neural Networks

Ypred = np.zeros(num test, dtype = .ytr.dtype)

for i in xrange(num test):

distances = nb.sum(np.abs(Xtr - X[i,:]),‘ axis = 1) ﬂlp this: expenSive

min index = np.argmin(distances) ..

Ypred[i] = .ytr[min_index] tralnlﬂg, Cheap test
evaluation

return Ypred

63

Nearest Neighbor Decision Boundaries

Nearest neighbors
iIn two dimensions

Points are training
examples; colors
give training labels

X1

64

Nearest Neighbor Decision Boundaries

Nearest neighbors
iIn two dimensions

Points are training
examples; colors
give training labels

Background colors
give the category
a test point would
be assigned

X1

65

Nearest Neighbor Decision Boundaries

X1 . .
Decision
. boundary
Nearest neighbors . s the boundary
in two dimensions ¢ ° between two
/ . classification
Points are training 44 B B _ regions
examples; colors ’ N .
give training labels T’ ST
Background colors \ by
give the category 5
a test point would 9
be assigned
X0

66

Nearest Neighbor Decision Boundaries

Nearest neighbors
IN two dimensions

Points are training
examples; colors
give training labels

Background colors
give the category
a test point would
be assigned

X1

<

Decision
boundary

IS the boundary
between two
classification
regions

Decision
boundaries
can be noisy;
affected by
outliers

X0

67

Nearest Neighbor Decision Boundaries

Nearest neighbors
IN two dimensions

Points are training
examples; colors
give training labels

Background colors
give the category
a test point would
be assigned

X1

<

boundaries?

6@
§\\‘.-.

How to smooth out decision

Decision
boundary

IS the boundary
between two
classification
regions

Decision
boundaries
can be noisy;
affected by
outliers

X0

68

Nearest Neighbor Decision Boundaries

Nearest neighbors
IN two dimensions

Points are training
examples; colors
give training labels

Background colors
give the category
a test point would
be assigned

&5, 0.5
ﬁ‘\\‘.-. ..

How to smooth out decision
boundaries? Use more neighbors

Decision
boundary

IS the boundary
between two
classification
regions

Decision
boundaries
can be noisy;
affected by
outliers

X0

69

K-Nearest Neighbors

Instead of copying label from nearest
neighbor, take majority vote from
K closest points

K=3

70

K-Nearest Neighbors

K =1

Using more neighbors helps
smooth out rough decision
boundaries

K=3

71

K-Nearest Neighbors

K =1

Using more neighbors helps
reduce the effect of outliers

K=3

72

: When K > 1 th b
K' N earest N elg h bOI‘S tiesek?etvv>een clear:s(éasr.1)

Need to break somehow!

K =1 K=3

73

How do we compare the images? \What is the distance metric’

L1 distance: di(I1,) =Y [I}—I}]

test image

56 | 32

10

18

training image

90 | 23

128

133

10

20

24

17

24 | 26

178

200

8

10

89

100

2 | 0

255

220

12

16

178

170

32

233

112

pixel-wise absolute value differences

46

12

14

1

82

13

39

33

add

12

10

0

30

32

27

108

> 456

74

The choice of distance Is a hyperparameter
common choices:

L1 (Manhattan) distance L2 (Euclidean) distance

1 (11, I2) Z 7 — L] da (11, I2) = \/Z (17 — 13)°
p

75

K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance L2 (Euclidean) distance

117]2 ZU'Z? Ip‘ d2(117]2) — \/Z (If_I§)2
p

76

Example dataset: CIFAR-10

10 labels
50,000 training images For every test image (first column),
10,000 test images. examples of nearest neighbors in rows

e LIS - HENZS | @D
automobile EEEHE‘
v Eill NES yEEE | 2 BEERREERE

« EEOHEECEe P | S - SRl S S

e HMASESVERE | O R
wg [RESEN®EIPIET A
wo I 1 B

e "k N e S
Bl B R
e R R 51) o R R S T *IIIII
o e e PRI e | - e RS
. ‘
C _ b “
wi ENPESESE | @ - MEERNEEE AR

b s At sy
" s] e i o o

77

VWhat Is the best distance to use?
What Is the best value of k to use?

.e. how do we set the hyperparameters’

VWhat is the best distance to use’
VWhat Is the best value of k to use’

.e. how do we set the hyperparameters’

Very problem-dependent.
Must try them all out and see what works best.

Try out what hyperparameters work best on test set.

l

train data

test data

80

Trying out what hyperparameters work best on test set:

Very bad idea. The test set is a proxy for the generalization performance!

Use only VERY SPARINGLY, at the end.

l

train data

test data

81

train data

test data

v

fold 1

fold 2

fold 3

fold 4

fold 5

test data

use to tune hyperparameters

82

train data test data

v

fold 1

fold 2

fold 3 fold 4 fold 5 test data

‘\ >\ 4
Cross-validation
cycle through the choice of which

fold 1s the validation fold, average
results.

83

Cross-validation accuracy

i Cross-validation gn k

Example of
b-fold cross-validation
for the value of k.

031 °

Each point: single
outcome.

o
N
w0

0.28 |

The line goes

through the mean, bars
Indicated standard
deviation

027 }

0.26

0.25

(Seems that k ~= 7 works
024 1 1 - 1 - 1 the best for this data)

=20 0 20 40 60 80 100 120

84

Problem: Curse of Dimensionality

* Curse of dimensionality: For uniform

coverage of space, number of training points Dimensions = 3
needed grows exponentially with dimension Points = 43
Dimensions = 3 OO OO OO OO
Points = 42 © o o o 4
© 0 0 0 A5
o~ O
O O O O e © o o N
. . . O
Dlmensmns =1 O O O O o o o o O O
Points = 4 OO O
——0—0—0 © O O O @ © o o Oo
®@ © o o ©o © o o |°

Problem: Curse of Dimensionality

* Curse of dimensionality: For uniform
coverage of space, number of training points
needed grows exponentially with dimension

Number of possible
32x32 binary Images:

232x32 ~ 10308

86

Problem: Curse of Dimensionality

* Curse of dimensionality: For uniform
coverage of space, number of training points
needed grows exponentially with dimension

Number of possible Number of elementary particles
32x32 binary images: IN the visible universe: o

232x32 ~ 10308 ~ 1097

87

https://en.wikipedia.org/wiki/Elementary_particle

k-Nearest Neighbor on images never used.

- Very slow at test time
- Distance metrics on pixels are not informative

Original Boxed Shifted Tinted

(all 3 images have same L2 distance to the one on the left)

88

Nearest Neighbor with ConvNet features
works well

Devlin et al, “Exploring Nearest Neighbor Approaches for Image Captioning”, 2015

89

Nearest Neighbor with ConvNet features
works well

Example: Image Captioning with Nearest Neighbor

A cat sitting in a
bathroom sink.

A bedroom with a
f bed and a couch.

A wooden bench in
front of a building.

A train is stopped at
- a train station.

Devlin et al, “Exploring Nearest Neighbor Approaches for Image Captioning”, 2015

90

The learning problem

— linear classification

— hypothesis class, estimation algorithm
— loss and estimation criterion

— sampling, empirical and expected losses

91

The Learning Problem

Digit
Recognition

Image
Classification

« Steps
—entertain a (biased) set of possibilities (hypothesis class)
—adjust predictions based on available examples (estimation)
—rethink the set of possibilities (model selection)

* Principles of learning are “universal”
—society (e.g., scientific community)
—animal (e.g., human)

—machine

92

Hypothesis class

* Representation: examples are binary vectors of length d = 64

x = [111...0001]" = H

and labels y € {—1,1} ("no","yes")

* The mapping from examples to labels is a “linear classifier”

y=sign(0-x)=sign(O1x1+...+0424)

where 6 is a vector of parameters we have to learn from examples.

93

Linear classifier/experts

* \\We can understand the simple linear classifier

A

y=sign(0-x)=sign(61x1+...+60424q)

as a way of combining expert opinion (in this case simple binary
featureS) maJorlty rule

A y = Slgﬂ (61 + ...+ QdCBd

votes
combmed ‘votes”
Expert 1

94

Estimation
X Yy
01111110011100100000001000000010011114141011140111411001110111110001 'Fl

0001111100000011000001110000011001111110111111001111111100000011 +1
1111111000000110000011000111111000000111100000111110001101111111 -1

 How do we adjust the parameters 6 based on the labeled
examples?
y =sign(60-x)

For example, we can simply refine/update the parameters
whenever we make a mistake (perceptron algorithm):

0, «—0;,+yx;, 1=1,...,d If prediction was wrong

95

Evaluation

» Does the simple mistake driven algorithm work?

1

0.9f

0.8}

average error
© o o o o o
N w NN (6)] (o] ~
T

©
[EY

o

0 200 400 600 800 1000 1200 1400
number of examples

(average classification error as a function of the number of examples
and labels seen so far)

96

lllustration of Convergence

» Convergence of the perceptron learning algorithm

1

® ") 1 M))

o <)
<])
o \®
0.5t 05
®
0t ot
(]
-0.5 0.5t @
o
1 -1 -
1 0 0 0.5 1 -1 -0.5 0 0.5 1
| 1
@ ° g 9
@ ™
o \® e
0.5+] 05t
0f : 0t
®
-0.5¢ ® 0.5
° <]

1 Slide credit: Russ Salakhutdinov g7

Linear classifier: image classification

Image parameters

f(an) 10 numbers,

Indicating class
. scores

[32x32x3]
array of numbers 0...1
(3072 numbers total)

98

Linear classifier: image classification

flx, W) =Wz

10 numbers,
Indicating class
e scores

[32x32x3]
array of numbers 0...1

99

Linear classifier: image classification

f(z, W)

10x1

10x3072

Wiz

\

3072x1

10 numbers,

[32x32x3]
array of numbers 0...1

Indicating class
scores

parameters, or “weights”

100

Linear classifier: image classification

f(z, W)

10x1

10x3072

Wiz

\

3072x1

10 numbers,

[32x32x3]
array of numbers 0...1

(+0)

parameters, or “weights”

10x1

Indicating class
scores

101

Example with an image with 4 pixels, and
3 classes (cat/dog/ship)

stretch pixels into single column

02 (-05] 01 | 20 56 121 -96.8 | cat score

(o8 NEERFOS ROON| | 231 | 4 (BSR _. [Eg87ON ., score

0 0.25| 0.2 | -0.3 -1.2 ;
input image 24 61.95 ship score

102

Interpreting a Linear Classifier

airplane e % w»w i

automobile E===.‘ f(wz, W, b) N sz i b
o B WE b e

cat Ml el LATES . Q: what does the

deer linear classifier do, in
- Tt o | VPP - plain English?

v EEEREODEEE

- EE O EXE R

ship AT Bl

e A 0 8 2

103

Interpreting a Linear Classifier
o SRR EEHRED

automobile E... '- f(:cz, W, b) — Wa:z + b
s Sl NS ¥ B

-« EETENEEE P | |

W Example trained weights of a
- =gﬁ§= ‘& linear classifier trained on

horse ..mﬂ‘-. n _ .

s el el RS e CIFAR-10:

truck Jghlﬂliﬂll

horse

104

Interpreting a Linear Classifier

car classifier

=t [\ &= 3
»w
0
airplane classifier Q‘

/

deer classifier

f(:l?z', W, b) = Wx; +b

[32x32x3]
array of numbers 0...1
(3072 numbers total)

105

Model selection

* The simple linear classifier cannot solve all the problems
(e.g., XOR)

T2

» Can we rethink the approach to do even better?

* \We can, for example, add “polynomial experts”
il;/ = Sigﬂ((91331+ —|—(9d513d—|—91251315132—|—)

106

Model selection (cont'd)

2 ‘ ‘ ‘ ‘ ‘ +‘ 2 +

15+ 1.5+ * '
i i

0.5 0.5+

ol o

05 05

ds i s o os 1 15 2 s i w5 o0 o5 i 15 2

)

s

i

0.

ol

05

15 1 -o0s 0 05 1 15 2 s 1 -os 0 05 1 15 2
4t order polynomial 8t order polynomial

107

Review: The learning problem

Image Classification

 Hypothesis class: we consider some restricted setF of mappings
f: X — L from images to labels

- Estimation: on the basis of a training set of examples and labels,
{(x1,91)s- -, (Xn,yn)}, we find an estimate f € F

- Evaluation: we measure how well f generalizes to yet unseen examples,
.e., whether f(X,eq) agrees wWith yneqw

111

Hypothesis and estimation

« We used a simple linear classifier, a parameterized mapping f(x;6) from images X
to labels L, to solve a binary image classification problem (2's vs 3's):

g = f(x;0)=sign(6 x)
where x is a pixel image and § € {—1,1}.

* The parameters 6 were adjusted on the basis of the training examples and labels
according to a simple mistake driven update rule (written here in a vector form)

0 — 0+ y;x;, whenever vy; # sign(9 ' Xi)

 The update rule attempts to minimize the number of errors that the classifier
makes on the training examples

112

Estimation criterion

* \We can formulate the binary classification problem more explicitly by defining
a zero-one loss:

. 0,y =9
Loss(y,y) :{ | z#z

so that

—ZLoss yz,yZ = ZLoss Vi, | XZ,Q))

gives the fraction of predlctlon errors on the training set.

* This is a function of the parameters 8 and we can try to minimize it directly.

113

Suppose: 3 training examples, 3 classes.
With some W the scores f(z,W) =Wz are:

cat 3.2 1.3 2.2
car o 4.9 2.5
frog -1.7 2.0 -3.1

Multiclass SVM loss:

Given an example (i, ¥i)
where z; Is the image and
where y; Is the (integer) label,

and using the shorthand for the
scores vector: s = f(z;, W)

the SVM loss has the form:

114

Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z,W) =Wz are:
Given an example (i, ¥;)
where z; Is the image and
where y; Is the (integer) label,

and using the shorthand for the
scores vector: s = f(z;, W)

cat 3-2 the SVM loss has the form:

car B, 4.9 2.5 L; =3 ,,, max(0,s; — sy, +1)

_’| 7 20 _31 = max(0, 5.1-3.2 + 1)
frog rmax(0, -1.7-3.2 + 1)

Losses: 2.9 — max(0, 2.9) + max(0, -3.9)
=29+0
_ 29

115

Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z,W) =Wz are:
Given an example (i, ¥;)
where z; Is the image and
where y; Is the (integer) label,

and using the shorthand for the
scores vector: s = f(z;, W)

cat 3-2 the SVM loss has the form:

car B, 4.9 2.5 L; =3 ,,, max(0,s; — sy, +1)

frog -1 7 270 -3.1 = max(0, 1.3-4.9 + 1)

+max(0, 2.0-4.9+ 1)
Losses: 2.9 0 = max(0, -2.6) + max(0, -1.9)
=0+0

-0

116

Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z,W) =Wz are:
Given an example (i, ¥;)
where z; Is the image and
where y; Is the (integer) label,

and using the shorthand for the
scores vector: s = f(z;, W)

cat the SVM loss has the form:
car 5 1 4-9 25 L; = Zj;éyi max(O, $j — Sy, T 1)
frog -1 7 270 -3.1 = max(0, 2.2 - (-3.1) + 1)
+max(0, 2.5 -(-3.1) + 1)
Losses: 2.9 0 10.9 = max(0, 5.3) + max(0, 5.6)
=53+5H06

=10.9

117

Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z,W) =Wz are:
Given an example (i, ¥;)
where z; Is the image and
where y; Is the (integer) label,

and using the shorthand for the
scores vector: s = f(z;, W)

the SVM loss has the form:

cat
Li =), max(0,s; — sy, +1)
car 5 1 4'9 2 . 5 and the full training loss is the
mean over all examples In the
frog -1.7 2.0 -3.1 training data:

Losses: 2.9 0 10.9 L=+Y L
L=(29+0+ 10.9)/3
— 46 118

Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z,W) =Wz are:
Given an example (i, ¥;)
where z; Is the image and
where y; Is the (integer) label,

and using the shorthand for the
scores vector: s = f(z;, W)

the SVM loss has the form:

cat

Li =)_.,, max(0,s; — sy, + 1)
car 5. 4.9 2.5 i L

Q: what is the min/max
frog -1.7 2.0 -3.1 possible loss?

Losses: 2.9 0 10.9

122

There 1s something missing In the loss:

flx,W) =Wz

Iy = % 22111 Zj;éyi max(0, f(zi; W); — f(@i; W)y, +1)

e.g. suppose that we found a W such that L = 0.
ls this W unique?

127

Suppose: 3 training examples, 3 classes.
With some W the scores f(x, W) =Wz are:

Li =4, max(0,s; — sy, +1)

cat 3.2 2.2
car 5. 4.9 2.5
frog -1.7 2.0 -3.1
Losses: 2.9 0

Before:

= max(0, 1.3-49 + 1)
+max(0, 2.0-4.9 + 1)

= max(0, -2.6) + max(0, -1.9)

=0+0

=0

With W twice as large:

= max(0,2.6-98+ 1)
+max(0, 4.0-9.8 + 1)

= max(0, -6.2) + max(0, -4.8)

=0+0

=0

128

A = regularization strength

Weight Regularization yerparameten
L=1Y ¥, max(0, f(z:; W); — f(zi; W)y, + 1)?/\R<W>

In common use:

L2 regularization RW) =) .>,W.

L1 regularization R(W) = 3121 W

Elastic net (L1 + L2) RW) =2, 52, BW, + Wy
Max norm regularization

Dropout

Batch normalization

129

L2 regularization: motivation

r=[1,1,1,1]

w1 — 1,0,0,0]
wy = [0.25,0.25,0.25, 0.25]

wixr=wsz =1

Estimation criterion (revisited)

* \\Ve have reduced the estimation problem to a minimization problem

empirical loss

N\

rl n
find 6 that INiMi — L 79 7;;9
In at minimizes n; oss(y f(x))

—valid for any parameterized class of mappings from examples to predictions

—valid when the predictions are discrete labels, real valued, or other provided
that the loss is defined appropriately

—may be Ill-posed (under-constrained) as stated

* But why is It sensible to minimize the empirical loss in the first place
since we are only interested in the performance on new examples?

131

Training and test performance: sampling

* \WWe assume that each training and test example-label pair, (x, y) is drawn
independently at random from the same but unknown population of
examples and labels.

« We can represent this population as a joint probability distribution P(x,y)
so that each training/test example is a sample from this distribution

(Xia y’L) ~ P

132

Training and test performance: sampling

* \WWe assume that each training and test example-label pair, (x, y) is drawn
independently at random from the same but unknown population of
examples and labels.

« We can represent this population as a joint probability distribution P(x,y)
so that each training/test example is a sample from this distribution

(Xz'a yz) ~ P

Empirical (training) loss

L™ Loss (3 (x0)
i=1
Expected (test) loss = Exy)~pP {LOSS(?J;f(X; 9))}

* The training loss based on a few sampled examples and labels serves as
a proxy for the test performance measured over the whole population

133

Regression, example

Linear regression
— Estimation, errors, analysis

134

Regression

* The goal I1s to make quantitative (real valued) predictions on the basis of a (vector
of) features or attributes

« Example: predicting vehicle fuel efficiency (mpg) from 8 attributes
y X

cyls disp hp weight

18.0| 8 307.0 130.00 3504

260 4 97.00 46.00 1835
33.5| 4 98.00 83.00 2075

* \We need to
—specify the class of functions (e.g., linear)
—select how to measure prediction loss

—solve the resulting minimization problem 135

Linear regression

* \We begin by considering linear regression (easy to extend to more complex
predictions later on)

f:R—=R flx;w)=wy+ wix
fRESR flxsw) =wo+wiz) + ... waTy
where w are parameters we need to set.

136

Linear regression: squared loss

6
4
2
o
2
4
S

f:R—=>R f(z;w)=wy+ wiz
f:RESR f(x; W) = wg 4+ wixy + ... Wy

2 -1 0 1 2

« \We can measure the prediction loss In terms of squared error,

Loss(y, §) = (y—??)Q, so that the empirical loss on n training samples becomes
mean squared error
] — 2
Jn(W) = — Z (yi — f(xi; w))

n -
1=1 137

Linear regression: estimation

* \We have to minimize the empirical squared loss
2
—Z f(xis w))

= — E (yi — wo — wiz;)? (1-dim)
n
1=1

Jn(W)

« By setting the derivatives with respect to w; and w, to zero, we get necessary
conditions for the “optimal”™ parameter values

0
a—len(w) = 0
0 —Jp(w) = 0

5’w0

138

Optimality conditions: derivation

%, 0 1)
a—wl«]n(w) = 8—101 n ; (yi — wo — w1zy)

139

Optimality conditions: derivation

%, 0 1<)
a—len(W) = 8—101 n ; (yi — wo — w1zy)

1~ 0)
— 5; a—m(yz—wo—wwz)

140

Optimality conditions: derivation

%, 0 1<)
a—len(W) = 8—101 n ; (yi — wo — w1z)

1~ O)
— 5; a—m(yz—wo—wwz)

2 n
= = D (Y — wo — wizi) 5—(yi — wo — wiT;)
1=1

141

Optimality conditions: derivation

%, 0 1<)
a—len(W) — 8—101 E ; (yz — Wo — wlxz)

1~ O)
= — —_— ; — Wo — W1 X5
n;&wl (i — wo — w1;)
2 n
= EZ(yq;—wo—wlzm) ——(yi — wo — wizy)
1=1

2 n
- Z (yi — wo — wrw;)(—2;) =0
i=1

142

Optimality conditions: derivation

%, 0 1)
a—len(W) — 8—101 E ; (yz — Wo — wlxz)

1~ 0)
— E; a—wl (yi — wo — w1w;)
2 n
= = > (g — wo — wiws) =—(ys — wo — wiz;)
1=1
2 n
- Z (yi — wo — wrw;)(—z;) =0
1=1

W) = 23 (i o — wi)(<1) = 0

143

Linear regression: matrix notation

* \We can express the solution a bit more generally by resorting to a matrix notation

so that

Y1

X =

1 1
i .
1 x,
Y1 1
Un 1
y — Xw]|?

146

Linear regression: solution

» By setting the derivatives of ||y — Xwl||?/n to zero, we get the same
optimality conditions as before, now expressed in a matrix form

9 1 , 01 .
8_wﬁ”y_XWH = 8wn(y Xw)" (y — Xw)

147

Linear regression: solution

» By setting the derivatives of ||y — Xwl||?/n to zero, we get the same
optimality conditions as before, now expressed in a matrix form

o 1) o 1 -

— |y — = — (y-X ~ X

5 1Y — X S Y~ XW) " (y — Xw)
= gXT(y—Xw)

n

148

Linear regression: solution

» By setting the derivatives of ||y — Xwl||?/n to zero, we get the same
optimality conditions as before, now expressed in a matrix form

o 1 0 1

- EHY — Xw|? = T E(Y - Xw)" (y — Xw)
y
= —X'(y - Xw)
n
2
= X'y —-X'Xw)=0
n

which gives
w = (X'X)"'X"y

* The solution is a linear function of the outputs y

149

Alternative: Gradient Descent Algorithm

 One straightforward method: gradient descent NN
_ initialize @ (e.g., randomly)

repeatedly update @ based on the gradient

W/,
A=—73,Vel(f(x";0),y") = AVeQ(0) .0
0—0+aA —

* a Is the learning rate

Slide adapted from Sanja Fidler

150

151

152

Effect of learning rate A

t(w)

 Large A => Fast convergence but larger residual error
Also possible oscillations

« Small L => Slow convergence but small residual error

Slide credit: Erik Sudderth 153

Local and Global Optima

6 | ' .

)

local maximum

2 - \ }\ -
0 y/

-2 = - -

local minimum

global maximum

global minimum

-6 - 1 1 | | | =

0 0.2 0.4 0.6 0.8 1 1:2

154

Stochastic Gradient Descent

* Two ways to generalize this for all examples in training set:

1. Batch updates: sum or average updates across every example n, then
change the parameter values

2.Stochastic/online updates: update the parameters for each training case
In turn, according to 1ts own gradients

A= —Vol(f(x";0),y") — A\VeQ(6)
0+—0+aA

Slide adapted from Sanja Fidler 155

Linear regression: generalization

* As the number of training examples increases our solution
gets “better”

6 T T T 25k

N
T

L
o1
T

mean squared error

[EnY
T

o
a

o

50 100 150 200
-2 -1 0 1 2 number of training examples

|
(o))
o

We'd like to understand the error a bit better

156

Linear regression: types of errors

« Structural error measures the error introduced by the limited
function class (infinite training data):

min B y)ep (y = wo = w012)° = B y)np (y — wp — wiz)”

where (w{, wT) are the optimal linear regression parameters.

« Approximation error measures how close we can get to the optimal linear
predictions with limited training data:

* * ~ A 2
E g y)~p (Wo +wiz — o — i)

where (W, w1)are the parameter estimates based on a small training set
(therefore themselves random variables).

157

Linear regression: error decomposition

* The expected error of our linear regression function decomposes into the sum of
structural and approximation errors

By gy (y — o — n2)” =
E(CB,y)NP (y o wg)k o wfx)2 +

%k *k A A 2
Egy)~p (wy + wiz — o — w1x)

2.5
2k

@
- 1.5F
o

]
o
(7]

3
a 1r
S

0.5r

0 L L L
0 50 100 150 200

number of training examples 158

Bias-Variance Tradeoff

* Variance of trained model: does it vary a lot if the training set changes
 Bias of trained model: is the average model close to the true solution?

 (Generalization error can be seen as the sum of bias and the variance

possible f

O A £ f*
@ : %] E =)

posste / possible f

low variance/ high variance/
high bias ' gaod race-of ' low bias

159

Parametric vs. non-parametric models

 Parametric model: its capacity is fixed and does not increase with
the amount of training data

—examples: linear classifier, neural network with fixed number of hidden units,
etc.

* Non-parametric model: the capacity increases with the amount of
training data

—examples: k nearest neighbors classifier, neural network with adaptable
hidden layer size, etc.

160

Beyond linear regression models

— additive regression models, examples
— generalization and cross-validation
— population minimizer

162

Linear regression

* Linear regression functions,
f:R—=-R f(x;w)=wy+ wix, or
f:Rd—>72 f(x;w) = wg + wixy + ... + wyxy

combined with the squared loss, are convenient because they are linear in the parameters.

—we get closed form estimates of the parameters
w = (XTX)" X'y
where, for example, ¥ = [y1, ..., yn]’.

A

—the resulting prediction errors €; = ¥y; — f(X;; W) are uncorrelated with any linear
function of the inputs x.

—we can easily extend these to non-linear functions of the inputs while still keeping

them linear in the parameters 163

Beyond linear regression

« Example extension: m™” order polynomial regression where f: R — R
IS given by

flx;w) =wo +unz + ...+ Wp_12™ 4+ wyz™

—Iinear In the parameters, non-linear in the Inputs
—solution as before

w=(X'X)" X'y

where
Wo 1z 22]
~ 2 m
. W1 1 xo =x T
W = , X = 2 2
W 1 z, z?2 X!

- 164

Polynomial regression

degree =1 degree = 3

degree = 5 degree

|
N

165

Underfitting and Overfitting

Underfitting Appropriate capacity Overfitting
o®
> / _ > /'\
O [

Image credit: lan Goodfellow 166

Generalization and Capacity

Error

Underfitting zone| Overfitting zone

Training error

(Generalization error

simpler functions are more likely to generalize

0 Optimal Capacity

Capacity

Image credit: lan Goodfellow 167

B | asS an d Va r| ance sufficiently simpler

models are more likely

to generalize

A

Underfitting zone Overfitting zone

(Generalization

o

Variance

Optimal Capacity
capacity

Image credit: lan Goodfellow 168

Complexity and overfitting

« With limited training examples our polynomial regression model may achieve
zero training error but nevertheless has a large test (generalization) error

RS A
train EZ(yt — f(z; W))? = 0

t=1
test E)~p (¥ — f(2; Ww))? > 0

> -1 0 1 2
X

* \We suffer from overfitting when the training error no longer bears
any relation to the generalization error

169

Avoiding overfitting: cross-validation

* Cross-validation allows us to estimate the
generalization error based on training examples
alone

Leave-one-out cross-validation treats each training
example In turn as a test example:

I A T A |
laa A W N P O P N W » o
T T T T

N
[
3
|
-
|
o
4
1 ol
o
4
[
=
1
N

V= %Z (yi = e ™))’
1=1

where W% are the least squares estimates of the
parameters without the i”* training example.

[A T A |
laa A W N P O P N W » o
T T T T

N

-15 -1 -0.5 0 0.5 1 15 2

170

Polynomial regression: example (cont'd)

degree = 1, CV = 0.6 degree =3, CV =15

degree = 5, CV = 6.0 degree =7, CV = 15.6

171

Additive models

* More generally, predictions can be based on a linear combination of
a set of basis functions (or features) {¢1(x), ..., ¢m(x)}, where each
$i(x) : R* — R, and

f(x;w) = wg + w191(X) + . . . + Wi O (X)

 Examples
If ¢;(x) =2 i=1,...,m, then

flz;w) =wo +wiz + ...+ Wy 12+ w,, ™

172

Additive models

* More generally, predictions can be based on a linear combination of
a set of basis functions (or features) {¢1(x), ..., ¢m(x)}, where each
$i(x) : R* — R, and

f(x;w) = wg + w191(X) + . . . + Wi O (X)

 Examples
If ¢;(x) =" i=1,...,m, then

flz;w) =wo +wiz + ...+ Wy 12+ w,, ™
It m=d, ¢;(x) =x;, 1 =1,...,d, then

f(x; W) = wo + wix1 + ... + Waky

173

Additive models (cont'd)

* The basis functions can capture various (e.g., qualitative) properties of
the Iinputs.

* For example: we can try to rate companies based on text descriptions

x = text document (collection of words)
bi(x) = 1 if word 7 appears in the document
Z B 0 otherwise

fxw) = wo+ Z w;$i(X)

iewords

174

Additive models (cont'd)

* \We can view the additive models graphically in terms of simple “units”
and “weights”

b w)

* [n neural networks, the basis functions themselves have adjustable parameters
(cf. prototypes)

176

Take-home messages

Bigger model
Training error high? —=————————— . onger
Y New model architecture
l No
More data
Train-Dev error high? =———- . . (orization
Yes New model architecture

l No
Make training data more

Dev error h|gh? — similar to test data.

Yes Data synthesis
(Domain adaptation.)
NO New model architecture

T t rror h| h? — More dev set data
este g Voo
l No
Donel

(Bias)

(Variance)

(Train-test data
mismatch)

(Overfit dev set)

Slide credit: Andrew Ng 179

Statistical regression models

— model formulation, motivation
— maximum likelihood estimation

180

Statistical view of linear regression

* [n a statistical regression model we model both the function and noise
Observed output = function + noise
y = f(xsw)+e

where, e.9., ¢ ~ N(0,0?).

* \Whatever we cannot capture with our chosen
family of functions will be interpreted as noise

181

Statistical view of linear regression

- f(X; W) is trying to capture the mean of the observations y given the input X:
Ely|x} = E{f(x;w)+e|x}
= f(x;w)

where E{y|x }is the conditional expectation of y given X, evaluated according to
the model (not according to the underlying distribution P)

5

182

Statistical view of linear regression

« According to our statistical model

y=f(x;w)+e e~ N(0,0°)

the outputs y given X are normally distributed with mean f(x; w) and variance ¢*:

o 1 1 . 5
(o, w.0%) = Z—sexp{ 5 5y~ fx:w))’)

(we model the uncertainty in the predictions, not just the mean)

e |_oss function? Estimation?

183

Maximum likelihood estimation

 Given observations D,, = {(x1,91),--., (Xn,yn)} we find the parameters w
that maximize the (conditional) likelihood of the outputs

n

L(Dna W, 02) — H p(yi|X’i7W7 02)
1=1

e Example: linear function

p(ylx, w,0?) =
1 1

e —_—
V2mo? P 202

(y — wo — wiz)* }

| |
H N o N H o
* TR o T T T

I\.)@
Ly
ol
Jany
N

184

Maximum likelihood estimation (cont'd)

Likelihood of the observed outputs:

L(D,W, 02) — H P(yi‘Xivwa 02)
1=1

* |t Is often easier (but equivalent) to try to maximize the log-likelihood:

I(D;w,0?) = log L(D;w,0%) =) log P(yilxi,w,0”)
1=1

) <—L(yi — f(xi;w))* — log W)

_ 202
1=1

n

= <—%ﬂ> > (yi— fxiw)>+...

1=1 185

Maximum likelihood estimation (cont'd)

« Maximizing log-likelihood Is equivalent to minimizing empirical loss when the
loss is defined according to

Loss(y;, f(xs; w)) = — log P(y;|x;, w, 0%)

Loss defined as the negative log-probability is known as the log-loss.

186

Maximum likelihood estimation (cont'd)

* The log-likelihood of observations
n
lOg L(D7 W, 02) — Z log P(y’L|X’I/7 W, 02)
i=1
IS a generic fitting criterion and can be used to estimate the noise variance o¢? as
well.

 Let w be the maximum likelihood (here least squares) setting of the parameters.
What is the maximum likelihood estimate of ¢2, obtained by solving

0
W 10gL(D;W,O'2) =3 ?

187

Maximum likelihood estimation (cont'd)

* The log-likelihood of observations

n
lOg L(D7 W, 02) — Z log P(y’L|X’I/7 W, 02)
i=1
IS a generic fitting criterion and can be used to estimate the noise variance o¢? as
well.

 Let w be the maximum likelihood (here least squares) setting of the parameters.
The maximum likelihood estimate of the noise variance o2 is

n

5= 3 (e~ f(xis W)

l.e., the mean squared prediction error.

188

Polynomial regression

« Consider again a simple m* degree polynomial regression model

y = wot+wix+...+w,x™ +e e~ N(0,0°)

where g2 is assumed fixed (known).

* |[n this model the outputs {y,,...,y,} corresponding to any inputs {x,,...,x,} are

generated according to

y = Xw+e, where
Y1
y = e X =
YUn

and ¢, ~ N(0,0%),i=1,...

189

ML estimator, uncertainty

* We are interested in studying how the choice of inputs {x,,...,x,} or,
equivalently, X, affects the accuracy of our regression model

e Our model for the outputs {y,,...,y,} given X is
y=Xw+e, e~ N(0,0°)

* \We assume also that the training outputs are actually generated by a model In
this class with some fixed but unknown parameters w* (same ¢?)

y=Xw*+e, e~ N(0,0°I)

* \We can now ask, for a given X, how accurately we are able to recover the
"true’’ parameters w*

190

ML estimator, uncertainty

* The ML estimator w viewed here as a function of the outputs y for a fixed X,
IS given by
w = (X'X)"' X'y

« \WWe need to understand how W varies in relation to w* when the outputs are
generated according to

y=Xw*+e, e~ N(0,0°1)

* [n the absence of noise e, the ML estimator would recover w* exactly
(with only minor constraints on X)

w o= (X'X)IXT(Xw*)
= (XI'X) ' XTX)w*

— VV>|<

191

ML estimator, uncertainty

 |n the presence of noise we can still use the fact that y = Xw™ + e
to simplify the parameter estimates

A

W =

|
2*
l
S
~
s
|
<
~
o

« So the ML estimate is the correct parameter vector plus an estimate based
purely on noise

192

Recap: Lecture overview

* what is learning?

» types of machine learning problems
* Image classification

* [iInear regression

* generalization

* Cross-validation

* maximum likelthood estimation

193

Next Lecture:

Multi-layer Perceptrons

