

Good news, everyone!

* Assignment 1 will be out Q a)

i

— MLPs and Backpropagation

* | am trying to finalize the paper list

for the presentations
— More information ‘
on Thursday ‘ ~

Previously on COMP541

learning problem

parametric vs. non-parametric models

— nearest-neighbor classifier
— linear classification
— |linear regression

e capacity

hyperparameter

underfitting and overfitting

variance-bias tradeoff

model selection

cross-validation

AN

-~
ack

Lecture overview

* the perceptron

the multi-layer perceptron

stochastic gradient descent
backpropagation

shallow yet very powerful: word2vec

Disclaimer: Much of the material and slides for this lecture were borrowed from

—Hugo Larochelle’s Neural networks slides

—Nick Locascio’s MIT 6.5191 slides

—Efstratios Gavves and Max Willing's UVA deep learning class
—Leonid Sigal's CPSC532L class

—Richard Socher’'s CS5224d class

—Dan Jurafsky's CS124 class

A Brief History of Neural Networks

Deep Neural Network

(Pretraining)
Multi-layered m .

XOR Perceptron N\ A
ADALINE (Backpropagation)
A A
A
Perceptron
A ~ Golden Age R Dark Age (“Al Winter”) .
Electronic Brain
1943 1957 1960 1969 1986 1995 2006

1960 1970

L M

S. McCulloch - W. Pitts F. Rosenblatt B. Widrow - M. Hoff M. Minsky - S. Papert D. Rumelhart - G. Hinton - R. Wiliams G. Hinton - S. Ruslan
RANDY TERY NorX g | Foward Activity ——jp " 3 i
. ‘ . ’ O 4 ‘ (O ““““ T : o, —-— ———
} ‘ - 2 . 'y
x/]r \ﬂ x/ !, \-1 >|< ‘ o o s @—— Backward Error
= Adjustable Weights = Learnable Weights and Threshold + XOR Problem + Solution to nonlinearly separable problems » Limitations of learning prior knowledge * Hierarchical feature Learning
« Weights are not Learned + Big computation, local optima and overfitting ¢ Kernel function: Human Intervention

Image: VUNI Inc. 5

The Perceptron

The Perceptron

Inputs weights sum non-linearity

£ —

Perceptron Forward Pass

* Neuron pre-activation
(or Input activation)

a(x)=b+> wr;=b+w'x

 Neuron output activation:
h(x) = g(a(x)) = g(b+), wix;)

where
W are the weights (parameters)

b is the bias term

2(+) is called the activation function

Inputs weights

@

sum

non-linearity

Output Activation of The Neuron

iInputs weights sum non-linearity

h(x) = gla(x)) = g(b+), wix;)

Range is determined by g(*)

Bias only
changes the
position of
the riff

Image credit: Pascal Vincent

Linear Activation Function

h(X) — g(a(x)) — g(b + Zz wzxz) inputs weights

gla) =a

 No nonlinear transformation
* No input squashing

sum

non-linearity

&

10

Sigmoid Activation Function

h(X) — g(a(x)) — g(b -+ Zz wzxz) inputs weights sum non-linearity

g(a) = sigm(a) = 1+ex;(_a)

* Squashes
the neuron’s
output

between EEJ////
Oand 1 e T —
« Always - | _—
positive
 Bounded

o Strictly
Increasing

£ —

11

Perceptron Forward Pass

Inputs weights

h(x) = g(a(x)) = g(b + >_; wiz;)

sum

non-linearity

&

12

Perceptron Forward Pass

Inputs weights

h(x) = g((2*0.1) +
(3%0.5) +

(-1%2.5) +

(5%0.2) +
(1%3.0)

sum

non-linearity

&

13

Perceptron Forward Pass

Inputs weights

h(x) =¢(3.2) = o(3.2)

= 0.96

1 + 6_3'2

sum

non-linearity

&

14

Hyperbolic Tangent (tanh) Activation Function

h(X) — g(a(x)) — g(b -+ Zz ’wzxz) inputs weights sum non-linearity
g(a) = tanh(a) =

__exp(a)—exp(—a) exp(2a)—1

-~ exp(a)+texp(—a) exp(2a)+1

£ —

* Squashes the
neuron’s output
between

-1and 1 o :
« Can be positive o] | | |

@

or negative
 Bounded

o Strictly
Increasing

15

Rectified Linear (ReLU) Activation Function

h(X) — g(a(x)) — g(b -+ Zz ’wzxz) inputs weights sum non-linearity

g(a) = reclin(a) = max(0, a)

 Bounded below
by 0 (always
non-negative)

£ —

* Not upper
bounded

o Strictly
Increasing

« Tendsto
produce units
with sparse

activities
16

Decision Boundary of a Neuron

* Could do binary classification:

—Wwith sigmoid, one can interpret neuron as estimating p(y =1 | x)

—also known as logistic regression classifier
Decision boundary is linear

—If activation is greater

than 0.5, predict 1
—otherwise predict O %
)
\
Same idea can be
applied to a tanh activation % 0
X X

Image credit: Pascal Vincent

Capacity of Single Neuron

» Can solve linearly separable problems

18

Capacity of Single Neuron

« Can not solve non-linearly separable problems

XOR (331,332) XOR (Il,l’g)
A T‘C\\] A
| A o) Eiﬁl N A
N SN AR
0 o A % 0 o~ _A
> < AR
0 I 0 I
1 AND ($_1, 5132)

* Need to transform the input into a better representation
« Remember basis functions!

Perceptron Diagram Simplified

Inputs weights

sum

non-linearity

&

20

Perceptron Diagram Simplified

Inputs output

Multi-Output Perceptron

« Remember multi-way classification
—\We need multiple outputs (1 output per class)

—\We need to estimate conditional probability p(y = ¢ | X)
—Discriminative Learning

« Softmax activation function at the output

o(a) = softmax(a) = Zecxgc(g(l(ic) fjg}({gfczc)

—strictly positive
—Ssums to one

* Predict class with the highest estimated class conditional probability.

22

Multi-Layer Perceptron

Single Hidden Layer Neural Network

* Hidden layer pre-activation:
a(x) =bM) + Wibx
(a(x); =07 + 3, w!Yay)
* Hidden layer activation:
h(x) = g(a(x))
« Qutput layer activation:

o(x)=o0 (b(z) + W(Q)Th(l)x)

Inputs

hidden
layer

24

Multi-Layer Perceptron (MLP)

e Consider a network with L hidden inputs hidden output
layers. layer layer

—Ilayer pre-activation for k>0

q(k) (x) = b(k) 1 W(k)h(k—l)(x) Q

—hidden layer activation from 1 to L:

h()(x) = g(a® (x))

—output layer activation (k=L+1) Q
h(4) (x) = o(al“+V) (x)) = f(x) (h) (x) = x)

25

Deep Neural Network

inputs hidden output
layer layer

Exgx

Capacity of Neural Networ

» Consider a single layer neural network

Image credit: Pascal Vincent

S

27

rks
etwo

f Neural N

city o

Capa

O k
al

eu

SI

. a

O S

27 ' - s
.- LR
S

- ""’:”33:?..;:,...:

;..;.;.;.;.;.;.;';:‘.:.&

= ...~,....
.........
......

...
~.~.',~...,. S
2 .0.#..'..::

.
%:.:::.
KL N
.% 2
~.-.“‘>‘.
R ez
S S
RELREE %
XL

Q

1
Incen
dit; Pascal V

e cre

Imag

Capacity of Neural Networks

« Consider a single layer neural network

Image credit: Pascal Vincent

29

Universal Approximation

* Universal Approximation Theorem (Hornik, 1991):

—"a single hidden layer neural network with a linear output unit can approximate any
continuous function arbitrarily well, given enough hidden units”

* This applies for sigmoid, tanh and many other activation functions.

 However, this does not mean that there is learning algorithm that can
find the necessary parameter values.

30

Applying Neural Networks

Example Problem: Will my flight be delayed?

Temperature: -20 F

Wind Speed: 45 mph

. mILANO
® . gs5 PARIS

0905 0919 NEW YORK
910 0920 FRANKFURT
325 0955 LONDON

SeDELL
SSoELAYED

.«DELAYED
*«DELAYED

32

Example Problem: Will my flight be delayed?

l
[-20, 45]
l

Predicted: 0.05

eeDELS
0815 uILANO .-DELAYED
—> as st PAAL K seDELAYED

i FRANKFURT eeDELAYED

925 0955 LONDQ)

33

Example Problem: Will my flight be delayed?

l
[-20, 45]
l

Predicted: 0.05
Actual: 1

- S0t _——
15 MILANG ,DELAYEE)
_ ._-: i = S -

H 0845 0859 PANI =
2905 0915 NEW YORK DELAYED
910 0920 FRANKFURT *«DELAYED

95 0855 LONDQ)

34

Quantifying Loss

I
[-20, 45]
l

0(f(x\7;0),y)

\§ _/ Actual
Y

Predicted

Total Loss

Input

[

[-20, 45],
180, 0],
4, 15],
45, 60],
]

Zz

(1) - 6),

(Z))

J Actual

Predicted

Predicted Actual
| [
0.05 1
0.02 0
0.96 1
0.35 1
| |

36

Total Loss

Input

[

[-20, 45],
80, 0],
4, 15],
45, 60],

Predicted Actual

Predicted

Binary Cross Entropy Loss

Input Predicted Actual
[| [
S
[80, 0], 0'96 1
[4, 15], 0'35 1
[45, 60],] :]

]

Jcross_entropy(e) — % Z y(Z) lOg(f(X(Z), 9)) T (1 o y(Z)) lOg(l o f(X(Z)a 9)))

« For classification problems with a softmax output layer.
« Maximize log-probability of the correct class given an input

Binary Cross Entropy Loss

Input

[

[-20, 45],
80, 0],
4, 15],
45, 60],

Predicted Actual

| |
005 1
0.02 0
0.96 1
03 1
]]

39

Training Neural Networks

Training

J(0) = argmm—Zl x1):0),4) 4 AQ(0)

J J
Y

Y

Loss function Regularizer

» Learning Is cast as optimization.
—For classification problems, we would like to minimize classification error

—Loss function can sometimes be viewed as a surrogate for what we want to optimize
(e.g. upper bound)

41

Loss is a function of the model’s
parameters

How to minimize loss?

J(0)"

Start at random point
& .
(0,.0,) .

0

43

How to minimize loss?

44

How to minimize loss?

Move In direction opposite

of gradient to new point \¢
J(g)J(u.u) | N——

0y

9,

45

How to minimize loss?

Move In direction opposite

of gradient to new point
_.

46

How to minimize loss?

47

This is called Stochastic Gradient Descent
(SGD)

Stochastic Gradient Descent (SGD)

e Initialize @ randomly
* For N Epochs

— For each training example (x, y):

« Compute Loss Gradient: 0](9)
ol
« Update 6 with update rule:
)J (6
0 =0-— 7767()

00

0,

49

Why is it Stochastic Gradient Descent?

e Initialize @ randomly

Only an estimate of

e For N EpOChS true gradient!
— For each training example (x, y):
« Compute Loss Gradient: 0J(9)
ol
« Update 6 with update rule:
N.J (0
0. =6— 7}0)

00

0,

50

Why is it Stochastic Gradient Descent?

e Initialize @ randomly

More accurate

e For N EpOChS estimate!
— For each training batch {(xy, yy),..., (xz/V5)}:

- Compute Loss Gradient: 0J(0) 1 <= d.J(0) e N
« Update 6 with update rule:
Advantages:
0J(0) « More accurate estimation of gradient
0. =60 —1
T / 0 — Smoother convergence

— Allows for larger learning rates

* Minibatches lead to fast training!
— Can parallelize computation + achieve
significant speed increases on GPU's

51

Stochastic Gradient Descent (SGD)

« Algorithm that performs updates after each example |
—initialize 9 — {W(l)’ b(l)’ o ’W(L—Fl)’ b(L—|—1)} J(eo.el):

—for N iterations TS e N

—for each training example (X(t),y(t)) or batch)
Training epoch

A= —Vl(f(x;0),yV) —AVeQ(0) > =

lteration over all examples
0—0+aA y P

* To apply this algorithm to neural network training, we need:
—the loss function {(f(x(!); 8),y®))
—a procedure to compute the parameter gradients: Vgl(f(x(t); 0), y(t))
—the regularizer €2(@) (and the gradient V¢$2(0))

52

Stochastic Gradient Descent (SGD)

» Algorithm that performs updates after each example |
—initialize 9 — {W(l)’ b(l)’ o ’W(L—Fl)’ b(L—|—1)} J(eo.el);

—for N iterations TR N

—for each training example (X(t),y(t)) or batch)
Training epoch

A= —Vl(f(x;0),yV) —AVeQ(0) > =

lteration over all examples
0—0+aA y P

« To apply this algorithm to neural network training, we need:
—the loss function {(f(x(!); 8),y®))
—a procedure to compute the parameter gradients: Vgl(f(x(t); 0), y(t>)
—the regularizer €2(@) (and the gradient V¢$2(0))

53

What is a neural network again?

« A family of parametric, non-linear and hierarchical representation learning
functions

car(x;01...1) =hr(hp—1(... h1(z,01),0-1),0L)

— X:input, 0, parameters for layer [, a;= h/x, 6;): (non-)linear function

* Given training corpus {X, Y} find optimal parameters

0" «— argm@in Z U(y,ar(z;01,....1))
(z,y)E(X,Y)

54

Neural network models

» A neural network model is a series of hierarchically connected functions
* The hierarchy can be very, very complex

Forward connections (Feedforward architecture)

induy
(9-*2) "y

-~y > > =
\ w H Ot
AN ~/~ ~ ~/~
S SE f \s.
) D D D

SSOT

55

Neural network models

» A neural network model is a series of hierarchically connected functions

* The hierarchy can be very, very complex

Interweaved connections
(Directed Acyclic Graph
architecture — DAGNN)

Loss

N

hs(xi;0) ha(xi;0)

A‘\)
h4 (ilfz'; 9)

h3<£87;; 9)

A

hg(ﬁlﬁi; (9) hg(wi; (9)

~_ —

hl(fﬁi; 9)

I

Input

56

Neural network models

» A neural network model is a series of hierarchically connected functions
* The hierarchy can be very, very complex

indug
(:'x) Ty
(6 :'x)ey
(6 :'x)%y

SSOT

Loopy connections (Recurrent architecture, special care needed)

57

Neural network models

» A neural network model is a series of hierarchically connected functions

* The hierarchy can be very, very complex

Loss

— > o > g >
/\ = — = =N —~ = N
S 3 5 3 & 8 %
hs(i;0)] | ha(as;0) = = |3 = = |= |°
\ 1‘ ~— ~ ~— | ~~—| ~— I
ha(z;;0)
\ Functions — Modules
ha(x;; 0)
1 \J >
/
ha(:;0) ha(z4;0)
'\/ - > = b/
= = 2 N
hi(z4;0) Emtiw i uE
f - = /l=l\ =

What is a module

« A module iIs a building block for our network

« Each module is an object/function a = h(x; 8) that
— Contains trainable parameters (0)
— Receives as an argument an input x

— And returns an output a based on the activation function A4(...)

e The activation function should be (at least) first order
differentiable (almost) everywhere

* For easier/more efficient backpropagation
— store module input
— easy to get module output fast
— easy to compute derivatives

Loss

hs(xi; 6) ha(zi;0)

h4(£€i; (9)

hg(xi; (9)

ha(z;0) ha(z;0)

hl (2177;; 9)

Input

59

Anything goes or do special constraints
exist?

* A neural network is a composition of modules (building blocks)
* Any architecture works
* |f the architecture is a feedforward cascade, no special care

* [T acyclic, there Is right order
of computing the forward
computations

* |f there are loops, these
form recurrent connections
(revisited later)

60

What is a module

« SiImply compute the activation of each module in the
network

a; — hl(xl; (9) where d] — Lj4+10r L] — A]—1

* \We need to know the precise function behind each
module (...)

* Recursive operations
— One module’s output is another’s input

o Steps
— Visit modules one by one starting from the data input
— Some modules might have several inputs from multiple modules

« Compute modules activations with the right order
— Make sure all the inputs computed at the right time

Loss

hs(xi; 6) ha(zi;0)

h4(£€i; (9)

hg(xi; (9)

hg(ilff,;;e) hg(wz,e)

hl (2177;; 9)

Input

61

What is a module

« Simply compute the gradients of each module dLoss(Input)
for our data N
— We need to know the gradient formulation of each hs (i 0) ha(z;; 0)
module dh(x;;0,) w.r.t. their inputs x; and parameters 6,
* \We need the forward computations first ha(z:; 6)
— Their result is the sum of losses for our input data
hg(ﬂfi; (9)
* Then take the reverse network (reverse connections) |
and traverse it backwards ha(xi;0)] | ha(zi; 0)
* Instead of using the activation functions, we use T (24: 0)

their gradients

* The whole process can be described very neatly and concisely
with the backpropagation algorithm

Again, what is a neural network again?

» ar(x;01,...1) =hr(hp—1(...hi(x,61),0-1),61)

— Xx: input, 8 parameters for layer [, a;= h/(x, 6,): (non-)linear function

« Given training corpus {X, Y} find optimal parameters

0" «— a,rgmein Z f(yaaL(fL‘;Hl,...,L))
(z,y)e(X,Y)

* To use any gradient descent based optimization ((9t+1 _ gt ?7 35)
— U —)

we need the gradients

oL
—,=1,...,L
00,

« How to compute the gradients for such a complicated function enclosing other
functions, like a; (...)?

Again, what is a neural network again?

» ar(x;01,...1) =hr(hp—1(...hi(x,61),0-1),61)

— Xx: input, 8 parameters for layer [, a;= h/(x, 6,): (non-)linear function

« Given training corpus {X, Y} find optimal parameters

0" «— argmein Z g(yaaL(CC;Hl,...,L))
(z,y)e(X,Y)

* To use any gradient descent based optimization ((9t+1 _ gt 77 oL >
S | Ay

we need the gradients

oL
—,=1,...,L
00,

- How to compute the gradients for such a complicated function enclosing other
functions, like a; (...)?

How do we compute gradients?

* Numerical Differentiation
« Symbolic Differentiation

 Automatic Differentiation (AutoDiff)

65

1, - Vector of all zeros, except for one 1 in i-th location

Numerical Differentiation

* \We can approximate the gradient numerically, using:

of(x) .. fx+hl)—f(x)

slide adopted from T. Chen, H. Shen, A. Krishnamurthy 66

1, - Vector of all zeros, except for one 1 in i-th location

Numerical Differentiation

* \We can approximate the gradient numerically, using:

of(x) .. fx+hl)—f(x)

* Even better, we can use central differencing:

8.73‘2' ~ h—0 2h

slide adopted from T. Chen, H. Shen, A. Krishnamurthy 67

1, - Vector of all zeros, except for one 1 in i-th location

Numerical Differentiation

* \We can approximate the gradient numerically, using:

of(x) .. fx+hl)—f(x)

* Even better, we can use central differencing:

8.73‘2' ~ h—0 2h

 However, both of these suffer from rounding errors and are not good enough
for learning (they are very good tools for checking the correctness of
Implementation though, e.g., use 42 =0.000001).

slide adopted from T. Chen, H. Shen, A. Krishnamurthy 68

1; - Vector of all zeros, except for one 1 in i-th location

N U m e rl Ca I D | ffe re ntl atl O n 1z-j - Matrix of all zeros, except for one 1 in (i,j)-th location

* \We can approximate the gradient numerically, using:

OL(W,b) . L(W +hl;;,b) — L(W,b) OL(W,b) . L(W,b+hl;) — L(W,D)
Ows; h—0 h ob; h>0 h
* Even better, we can use central differencing:
OL(W.b) . L(W +hli;b)— LW +hli,b) OL(W.b) . L(W,b+h1;)—L(W,b+h1;)
Owi; h—0 2h 0b; 0 2h

 However, both of these suffer from rounding errors and are not good enough
for learning (they are very good tools for checking the correctness of

Implementation though, e.g., use 42 =0.000001).

slide adopted from T. Chen, H. Shen, A. Krishnamurthy 69

Y= f(3717 $2) — ln(l'l) + X120 — Sin(a’;g)

Symbolic Differentiation

. Input function is represented as computational graph (a symbolic tree)

e ERCASC) @

U5

&\ | \
TNy @T @*@ sin ~(v5)——v

* Implements differentiation rules for composite functions:

Sum Rule Product Rule Chain Rule
d(f(z)+g(z)) df(z) dg(z) d(f(z) g(z)) df(z) dg(z) d(f(g(z))) df(g(z)) dg(z)
dx - dx + dx dx - dx 9(z) + f(z) da dx N dx dz

Problem: For complex functions, expressions can be exponentially large; also
difficult to deal with piece-wise functions (creates many symbolic cases)

slide adopted from T. Chen, H. Shen, A. Krishnamurthy 70

Automatic Differentiation (AutoDiff)

* Intuition: Interleave symbolic differentiation and simplification

» Key ldea: Apply symbolic differentiation at the elementary
operation level, evaluate and keep intermediate results

Success of deep learning owes A LOT to success of AutoDiff algorithms
(also to advances in parallel architectures, and large datasets, ...)

slide adopted from T. Chen, H. Shen, A. Krishnamurthy 71

Automatic Differentiation (AutoDiff)

« Each node Is an input, intermediate, or output
variable

 Computational graph (a DAG) with variable
ordering from topological sort.

y = f(r1,22) = In(x1) + 2122 — sin(22)

slide adopted from T. Chen, H. Shen, A. Krishnamurthy 72

Automatic Differentiation (AutoDiff)

y = f(r1,22) = In(x1) + 2122 — sin(22)

()= @
I
\@ \ Computational graph is governed by these

///////” equations:
To—> — — Vo = 21
’ @ SN ‘ Y
V1 = I9
vy = In(vg)

« Each node Is an input, intermediate, or output
variable

c
w
|

Vo - U1
vy = sin(vy)
 Computational graph (a DAG) with variable

_ _ Vs = Vg +V
ordering from topological sort. ° S

c
o
I

V5 — Vg

Y = Ve
slide adopted from T. Chen, H. Shen, A. Krishnamurthy 73

Automatic Differentiation (AutoDiff)

y = f(r1,22) = In(x1) + 2122 — sin(22)

Let's see how we can evaluate a function
using computational graph (DNN inferences)

()= @
I
\@ \ Computational graph is governed by these

///////” equations:
To—> — — Vo = 21
’ @ SN ‘ Y
V1 = I9
vy = In(vg)

« Each node Is an input, intermediate, or output
variable

c
w
|

Vo - U1
vy = sin(vy)
 Computational graph (a DAG) with variable

_ _ Vs = Vg +V
ordering from topological sort. ° S

c
o
I

V5 — Vg

Y = Ve
slide adopted from T. Chen, H. Shen, A. Krishnamurthy 74

Automatic Differentiation (AutoDiff)

y = f(r1,22) = In(x1) + 2122 — sin(22)

Let's see how we can evaluate a function
using computational graph (DNN inferences)

Q\ Forward Evaluation

Trace:

/Xv(:)
v () 5m() () —v v = a1

V1 — X2

f(2,5)

vy = In(vp)
« Each node Is an input, intermediate, or output

) U3 =— Vo * U1
variable

vy = sin(vy)
 Computational graph (a DAG) with variable
ordering from topological sort.

Vs = Vg + VU3
Vg — V5 — Uy

Yy = Ve

75

Automatic Differentiation (AutoDiff)

y = f(r1,22) = In(x1) + 2122 — sin(22)

Let's see how we can evaluate a function
using computational graph (DNN inferences)

Q\ Forward Evaluation

Trace;: (2.5

/Xv(:)
12 @ Sin : Y by = <1 2

V1 — X2

vy = In(vp)
« Each node Is an input, intermediate, or output

) U3 =— Vo * U1
variable

vy = sin(vy)
 Computational graph (a DAG) with variable
ordering from topological sort.

Vs = Vg + VU3
Vg — V5 — Uy

Yy = Ve

76

Automatic Differentiation (AutoDiff)

y = f(r1,22) = In(x1) + 2122 — sin(22)

Let's see how we can evaluate a function
using computational graph (DNN inferences)

Q\ Forward Evaluation

Trace;: (2.5

/Xv(:)
12 @ Sin : Y by = <1 2

V1 — T2 5

vy = In(vp)
« Each node Is an input, intermediate, or output

) U3 =— Vo * U1
variable

vy = sin(vy)
 Computational graph (a DAG) with variable
ordering from topological sort.

Vs = Vg + VU3
Vg — V5 — Uy

Yy = Ve

77

Automatic Differentiation (AutoDiff)

y = f(r1,22) = In(x1) + 2122 — sin(22)

Let's see how we can evaluate a function
using computational graph (DNN inferences)

Q\ Forward Evaluation

Trace:

/Xv(:)
12 @ Sin : Y g = doil 2

V1 — T2 5
vy = In(vp) In(2) = 0.693

V3 — Vg - U1

« Each node Is an input, intermediate, or output

variable .
vy = sin(vy)

 Computational graph (a DAG) with variable
ordering from topological sort.

Vs = Vg + VU3
Vg — V5 — Uy

Yy = Ve

78

Automatic Differentiation (AutoDiff)

y = f(r1,22) = In(x1) + 2122 — sin(22)

Let's see how we can evaluate a function
using computational graph (DNN inferences)

Q\ Forward Evaluation

Trace;: (2.5

/X'(:)
12 @ sin : Y Vo = 1 2

U1 = X2 5
. . . . v2 = In(vo) In(2) = 0.693
« Each node is an input, intermediate, or output T = o DI E = 10

variable .
vy = sin(vy)

 Computational graph (a DAG) with variable
ordering from topological sort.

Vs = Vg + VU3
Vg — V5 — Uy

Yy = Ve

79

Automatic Differentiation (AutoDiff)

y = f(r1,22) = In(x1) + 2122 — sin(22)

Let's see how we can evaluate a function
using computational graph (DNN inferences)

Q\ Forward Evaluation

Trace;: (2.5

/Xv(:)
12 @ Sin : Y by = <1 2

V1 = X9 5
vy = In(vp) In(2) = 0.693
. anh node Is an input, intermediate, or output o = @y < T 2% 5 = 10
variable va = sin(v;) sin(5) = -0.959

 Computational graph (a DAG) with variable
ordering from topological sort.

Vs = Vg + VU3
Vg — V5 — Uy

Yy = Ve

80

Automatic Differentiation (AutoDiff)

y = f(r1,22) = In(x1) + 2122 — sin(22)

Let's see how we can evaluate a function
using computational graph (DNN inferences)

Q\ Forward Evaluation

Trace;: (2.5

/Xv(:)
12 @ Sin : Y by = <1 2

V1 = X9 5
vy = In(vp) In(2) = 0.693
. anh node Is an input, intermediate, or output o = @y < T 2% 5 = 10
variable va = sin(v;) sin(5) = -0.959
« Computational graph (a DAG) with variable Vs = Vg + Vs 0.693 + 10 = 10.693

ordering from topological sort. _
Vg — V5 — Uy

Yy = Ve

81

Automatic Differentiation (AutoDiff)

y = f(r1,22) = In(x1) + 2122 — sin(22)

Let's see how we can evaluate a function
using computational graph (DNN inferences)

Q\ Forward Evaluation

Trace;: £(2.5)

/Xv(:)
e @ ———r | e z

V1 — X2 5
| | | | Vg = ln(vo) In(2) = 0.693
« Each node Is an input, intermediate, or output Vs = g - U1 2%x5 =10
variable vy = sin(v;) sin(5) = -0.959
« Computational graph (a DAG) with variable Vs = Vg + Vs 0.693 + 10 = 10.693

' logical sort.
ordering from topological sort Ve =vs — Vs |10.693 + 0.959 = 11.652

82

Automatic Differentiation (AutoDiff)

y = f(r1,22) = In(x1) + 2122 — sin(22)

Let's see how we can evaluate a function
using computational graph (DNN inferences)

Q\ Forward Evaluation

Trace:

(D@ | W z
V1 — X2 5
| | | | Vg = ln(vo) In(2) = 0.693
« Each node Is an input, intermediate, or output Vs = g - U1 2%x5 =10
variable vy = sin(v;) sin(5) = -0.959
« Computational graph (a DAG) with variable Vs = Vg + Vs 0.693 + 10 = 10.693

' logical sort.
ordering from topological sort Ve =vs — Vs |10.693 + 0.959 = 11.652

Y = Vg 11.652

83

Automatic Differentiation (AutoDiff)

y = f(r1,22) = In(x1) + 2122 — sin(22)

Let's see how we can evaluate a function
using computational graph (DNN inferences)

Q\ Forward Evaluation

Trace:

(D@ | W z
V1 — X2 5
| | | | Vg = ln(vo) In(2) = 0.693
« Each node Is an input, intermediate, or output Vs = g - U1 2%x5 =10
variable vy = sin(v;) sin(5) = -0.959
« Computational graph (a DAG) with variable Vs = Vg + Vs 0.693 + 10 = 10.693

' logical sort.
ordering from topological sort Ve =vs — Vs |10.693 + 0.959 = 11.652

Y = Vg 11.652

84

Automatic Differentiation (AutoDiff)
T _.ﬁ\ @\ y = f(x1,22) =In(x1) + x122 — sin(x2)

Forward Evaluation

Trace: £(2.5)
Vo = I 2
V1 = T9 5
vy = In(vg) In(2) = 0.693
V3 = Vg * U1 2x5=10
vy = sin(vy) sin(5) = -0.959
V5 = Vg + U3 0.693 + 10 = 10.693
Vg = Us — U4 10.693 + 0.959 = 11.652
Y = Vg 11.652

Automatic Differentiation (AutoDiff)

Forward Evaluation

Trace: 1(2.5)
Vo = Iq 2
V1 = T2 5
vy = In(vg) In(2) = 0.693
V3 = Vg * U1 2xb=10
vy = sin(vy) sin(b) = -0.959

Us = V2 1+ U3
Vg — V5 — U4y

Y = Ve

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.652

y = f(r1,22) = In(x1) + 2122 — sin(22)

Let's see how we can evaluate a function
using computational graph (DNN inferences)

8f(x17 xQ)
(9:1:1

(:Ul :2,:U2 :5)

We will do this with forward mode first,
by introducing a derivative of each variable
node with respect to the input variable.

86

Automatic Differentiation (AutoDiff)
o In y = f(x1,22) =In(z1) + 2129 — SiN(22)
\ @ Forward Derivative Trace: | 5r,. .
- @ \ f(al, 2)
DT ———(D—

(acl :2,$’2:5)

oy

Forward Evaluation
Trace: £(2.5)

Vo = I 2

V1 = T9 5

vy = In(vg) In(2) = 0.693

V3 = Vg * U1 2x5=10

vy = sin(vy) sin(5) = -0.959

Vs = Vg + U3 0.693 + 10 = 10.693

Vg = Vs — V4 10.693 + 0.959 = 11.652

Y = Vg 11.652

Automatic Differentiation (AutoDiff)
o _,ﬁ, y = f(x1,22) =In(z1) + 2129 — SiN(22)
\ @\ Forward Derivative Trace: B)

/X'@ 0z (z1=2,22=5)
v ()57 () (1) o !
8561
Forward Evaluation
Trace:
f(2,5)

Vo = Iq 2

V1 = T9 5

vy = In(vg) In(2) = 0.693

V3 = Vg * V1 2x5=10

vy = sin(vy) sin(b) = -0.959

Vs = Vg + U3 0.693 + 10 = 10.693

Vg = Uy — V4 10.693 + 0.959 = 11.6H2

Y = Vg 11.652

Automatic Differentiation (AutoDiff)
o _,ﬁ, y = f(x1,22) =In(z1) + 2129 — SiN(22)
\ @\ Forward Derivative Trace: B)

/X'@ 0z (z1=2,22=5)
v ()57 () (1) o !
8561
Forward Evaluation vy
Trace: 011
f(2,5)
Vo = Iq 2
V1 = T9 5
vy = In(vg) In(2) = 0.693
V3 = Vg * V1 2x5=10
vy = sin(vy) sin(b) = -0.959
Vs = Vg + U3 0.693 + 10 = 10.693
Vg = Uy — V4 10.693 + 0.959 = 11.6H2
Y = Vg 11.652

Automatic Differentiation (AutoDiff)
o _,ﬁ, y = f(x1,22) =In(z1) + 2129 — SiN(22)
\ @\ Forward Derivative Trace: B)

/X'@ 0z (z1=2,22=5)
DD o 1
8561
Forward Evaluation vy 5
Trace: 011
f(2,5)
Vo = Iq 2
V1 = T9 5
vy = In(vg) In(2) = 0.693
V3 = Vg * V1 2x5=10
vy = sin(vy) sin(b) = -0.959
Vs = Vg + U3 0.693 + 10 = 10.693
Vg = Uy — V4 10.693 + 0.959 = 11.6H2
Y = Vg 11.652

Automatic Differentiation (AutoDiff)
o _,ﬁ, y = f(x1,22) =In(z1) + 2129 — SiN(22)
\ @\ Forward Derivative Trace: B)

/X'@ Oy (z1=2,22=5)
$2—>@m’ __’ Y % 1
0xq

Forward Evaluation vy 5
Trace: £(2.5) O

Vo = T 2 0Ty

V1 = T2 5

vs = In(vp) In(2) = 0.693

V3 = Vg * U1 2xb=10

vy = sin(vy) sin(b) = -0.959

Vs = Vg + U3 0.693 + 10 = 10.693

Vg = Vs — V4 10.693 + 0.959 = 11.652

Y = Vs 11.652

Automatic Differentiation (AutoDiff)
o _,ﬁ, y = f(x1,22) =In(z1) + 2129 — SiN(22)
\ @\ Forward Derivative Trace: B)

/X'@ Oy (z1=2,22=5)
$2—>@m’ __’ Y % 1
0xq
Forward Evaluation vy 5
: 0x1
Trace: 1(2.5) o
Vg = T1 2 o1 :
o1 = . Chain Rule
vy = In(vg) In(2) = 0.693
V3 = Vg * U1 2xb=10
vy = sin(vy) sin(b) = -0.959
Us = Vg + U3 0.693 + 10 = 10.693
Vg = Us — U4 10.693 + 0.959 = 11.652
Y = Vs 11.652

Automatic Differentiation (AutoDiff)
1 _.ﬁ. y = f(x1,22) = In(x1) + 2122 — sin(22)
\ @ Forward Derivative Trace: | . .
A "
:1:‘2—>@ _—»y Ovg

(acl :2,$’2:5)

1

ox
Forward Evaluation 8_1; 0
: 0x1
Trace: 1(2.5) T
Vo = o1 9 or1 g 8.561
o1 = . Chain Rule
vy = In(vg) In(2) = 0.693
U3 = Vg - U1 2x5=10
vy = sin(vy) sin(b) = -0.959
Vs = Vg + U3 0.693 + 10 = 10.693
Vg = Us — U4 10.693 + 0.959 = 11.652
Y = Ve 11.652

Automatic Differentiation (AutoDiff)
1 _.ﬁ. y = f(x1,22) = In(x1) + 2122 — sin(22)
\ @ Forward Derivative Trace: | . .
A "
:1:‘2—>@ _—»y Ovg

(acl :2,$’2:5)

1

ox
Forward Evaluation 8_1; 0
Trace: O
f25) vz _ 1 0w 1/2%1=0.5

Vo = o1 9 or1 g 8.561

o1 = . Chain Rule

ve = In(vo) In(2) = 0.693

V3 = Vg * U1 2xb=10

vy = sin(vy) sin(b) = -0.959

Vs = VU2 + V3 0.693 + 10 = 10.693

Vg = Vs — V4 10.693 + 0.959 = 11.652

Y = Vs 11.652

Automatic Differentiation (AutoDiff)
o _,ﬁ, y = f(x1,22) =In(z1) + 2129 — SiN(22)
\ @\ Forward Derivative Trace: B)

/X'@ 0z (z1=2,22=5)
v ()57 () (1) o !
8561
Forward Evaluation vy 5
Trace: £(2.5) Oy
! dvy _ 1 0w 1/2*1=05
Vo = T1 9 8561 Vo (9:61
8’1}3
U1 = X2 5 8—x1
ve = In(vo) In(2) = 0.693
V3 — Vg - U1 2xb=10
vy = sin(vy) sin(b) = -0.959
Vs = Vg + V3 0.693 + 10 = 10.693
Vg = Uy — V4 10.693 + 0.959 = 11.6b2
Y = Ve 11.652

Automatic Differentiation (AutoDiff)
o _,ﬁ, y = f(x1,22) =In(z1) + 2129 — SiN(22)
\ @\ Forward Derivative Trace: B)

/X'@ 0z (z1=2,22=5)
D@ —» o 1
8561
Forward Evaluation vy 0
Trace: Ox1
f2,5) Oy _ 2L G 1/2%1=05
Vo = T1 9 8£C1 Vo (9:61
8’1}3
V1 = T2 5 Oz,
vy = In(vg) In(2) = 0.693 Product Rule
V3 — Vg - U1 2xb=10
vy = sin(vy) sin(b) = -0.959
Vs = Vg + U3 0.693 + 10 = 10.693

Vg = Us — U4 10.693 + 0.959 = 11.652
Y = Vg 11.652

96

Automatic Differentiation (AutoDiff)
o _,ﬁ, y = f(x1,22) =In(z1) + 2129 — SiN(22)
\ @\ Forward Derivative Trace: B)

/X'@ 0z (z1=2,22=5)
SN Gy o T R _ 1
8561
Forward Evaluation vy 5
Trace:) Oy
f25) Gop _ 1 O 1/2%1=05
Vo = T1 9 8561 Vo (9:61
— 8,03 = a’UO U1 + Vo - %
V1 = X2 5 0xq 0x1 ! 0 0x1
vy = In(vg) In(2) = 0.693 Product Rule
V3 — Vg - U1 2xb=10
vy = sin(vy) sin(b) = -0.959
Vs = Vg + U3 0.693 + 10 = 10.693

Vg = Us — U4 10.693 + 0.959 = 11.652
Y = Vg 11.652

97

Automatic Differentiation (AutoDiff)
o _,ﬁ, y = f(x1,22) =In(z1) + 2129 — SiN(22)
\ @\ Forward Derivative Trace: B)

/X'@ 0z (z1=2,22=5)
SN Gy o T R I 1
8561
Forward Evaluation vy 5
Trace: 011
f2,5) dus _ 1 0w 2% 1 =05
Vo = X1 2 gﬂh go 9 .
U3 _ OUp o * %) —
U1 = X2 5 5z, O V1 + Vo Dt 1*5+2*0=5
ve = In(vo) In(2) = 0.693 Broduct Rule
V3 — Vg - U1 2xb=10
vy = sin(vy) sin(b) = -0.959
Vs = Vg + V3 0.693 + 10 = 10.693

Vg = Us — U4 10.693 + 0.959 = 11.652
Y = Vg 11.652

98

Automatic Differentiation (AutoDiff)
o _,ﬁ, y = f(x1,22) =In(z1) + 2129 — SiN(22)
\ @\ Forward Derivative Trace: B)

/X'@ 0z (z1=2,22=5)
v ()57 () (1) o !
8561
Forward Evaluation vy 5
Trace: 11
2.5
f25) vz _ 1 9w 1/2%1=05
Vo = T 2 gxl go 0z .
VU3 Vo U1
_ _ : e 1%5 4 2%0 =
U1 = X2 5 B Bz V1 + Vo e 5+2*0=5
vo = In(vg In(2) = 0.693
() Ovy = OV cos(vy) 0 *cos(b) =0
V3 = Vg *+ U1 2xb=10 01 0y
vy = sin(vy) sin(5) = -0.959 dvs _ Ovy n dvs 05+5=55
Vs = Uy + U3 0.693 + 10 = 10.693 oy Gy Quy
8’1)6_8’05 8v4 55-0=55
U6 = U5 — Vs |10.693 + 0.959 = 11.652 90, ~ o1 om 2 -U=9
Y = Vg 11.652 Oy _ 9dvg 5.5
axl B 8331

Automatic Differentiation (AutoDiff)
o _,ﬁ, y = f(x1,22) =In(z1) + 2129 — SiN(22)
\ @\ Forward Derivative Trace: B)

/X'@ 0z (z1=2,22=5)
2 @ sin : J)] 1
8561
v 0
85131
6’02 1 81)0 * —
We now have: Ty O /27 1=05
Of (z1,22) _cs Qs _ 0%) 4y 0 1%5 + 20 = 5
ax — J. 6113‘1 0961 6331
1 (x1=2,2x5=>0) 0y _ o0vq COS() 0 * cos(5) = 0
8331 B 8561 1 -
(91)5 . 81)2 (9’03
9, O + 9, 0b+b=>5bb
Ove _ Ovs _ Ouy 55-0=55
8x1 0331 81’1 .
Oy _ 9v 5.5
or1 Oxy 100

Automatic Differentiation (AutoDiff)
o _,ﬁ, y = f(x1,22) =In(z1) + 2129 — SiN(22)
\ @\ Forward Derivative Trace: B)

/X'@ 0z (z1=2,22=5)
2 @ Sin : Y] 1
8561
vy 0
85131
6’02 1 81)0 * —
\We now have: To = v By 1/2*1=05
Of (x1,x2) 0vs _ 0% 4y O 1%6 4 2%0 = 5
a = 55 (9x1 0:131 65131
L1 —2,25=5
(381 2) g’U4 _ gvl COS(’Ul) 0 *cos(5) =0
Still need: 1 1
Qus _ Ova , Ovs 05+5=55
8f(.73 T) 5371 8581 0x1
— Ovg _ Ovs _ Ovs 55-0=5.5
(9x2 (x1=2,22=D5) 0xq 0x1 0xq
Oy _ v 55
or1 Oxy 101

AutoDiff: Forward Mode

* Forward mode needs m forward passes to get a full Jacobian (all gradients of
output with respect to each input), where m Is the number of inputs

y = f(x): R™ — R"

102

AutoDiff: Forward Mode

* Forward mode needs m forward passes to get a full Jacobian (all gradients of
output with respect to each input), where m Is the number of inputs

y = f(x): R™ — R"

Problem: DNN typically has large number of inputs:

Image as an input, plus all the weights and biases of layers = millions of inputs!

and very few outputs (many DNNs have n = 1)

slide adopted from T. Chen, H. Shen, A. Krishnamurthy 103

AutoDiff: Forward Mode

* Forward mode needs m forward passes to get a full Jacobian (all gradients of
output with respect to each input), where m Is the number of inputs

y = f(x): R™ — R"

Problem: DNN typically has large number of inputs:

Image as an input, plus all the weights and biases of layers = millions of inputs!

and very few outputs (many DNNs have n = 1)

« Automatic differentiation in reverse mode computes all gradients in n backwards
passes (so for most DNNs in a single back pass — back propagation)

slide adopted from T. Chen, H. Shen, A. Krishnamurthy 104

Recap: AutoDiff: Forward Mode

* Forward mode needs m forward passes to get a full Jacobian (all gradients of
output with respect to each input), where m Is the number of inputs

y = f(x): R™ — R"

Problem: DNN typically has large number of inputs:

Image as an input, plus all the weights and biases of layers = millions of inputs!

and very few outputs (many DNNs have n = 1)

slide adopted from T. Chen, H. Shen, A. Krishnamurthy 111

Recap: AutoDiff: Forward Mode

* Forward mode needs m forward passes to get a full Jacobian (all gradients of
output with respect to each input), where m Is the number of inputs

y = f(x): R™ — R"

Problem: DNN typically has large number of inputs:

Image as an input, plus all the weights and biases of layers = millions of inputs!

and very few outputs (many DNNs have n = 1)

« Automatic differentiation in reverse mode computes all gradients in n backwards
passes (so for most DNNs in a single back pass — back propagation)

slide adopted from T. Chen, H. Shen, A. Krishnamurthy 112

AutoDiff: Reverse Mode xl_‘\ /@\

Forward Evaluation

Trace: £(2.5)
Vo = I 2
V1 = T9 5
vy = In(vg) In(2) = 0.693
U3 = Vg * V1 2x5=10
vy = sin(vy) sin(5) = -0.959
V5 = V2 + U3 0.693 + 10 = 10.693
Vg = U — U4 10.693 + 0.959 = 11.652
Y = Vg 11.652

®
e @) () —

— Y Traverse the original graph in the reverse topological

order and for each node in the original graph
introduce an adjoint node, which computes
derivative of the output with respect to the local
node (using Chain rule):

% 8Uk- 5’yj B Z 8’Uk_

V; = A Uk
0v; kepa(i) Ov; vy kepa(i)

"local" derivative

113

AutoDiff: Reverse Mode _*\@*@\

@)
TONY R —@=®
X
@ \ Backwards Derivative T .
x2_’@ _: ackwards Derivative Trace:

Forward Evaluation
Trace:
f(2,5)
Vo = Iq 2
V1 = T9 5
vy = In(vg) In(2) = 0.693
V3 — Vg - U1 2xb=10
vy = sin(vy) sin(b) = -0.959
Vs = VU9 + U3 0.693 + 10 = 10.693
Vg = Vs — U4 10.693 + 0.959 = 11.652
— 0
y Ve 11.652 T = _y
Ovg 114

AutoDiff: Reverse Mode _*\@*@\

@)
TONY R —@=®
X
@ \ Backwards Derivative T .
x2_’@ _: ackwards Derivative Trace:

Forward Evaluation
Trace:
f(2,5)
Vo = Iq 2
V1 = T9 5
vy = In(vg) In(2) = 0.693
V3 — Vg - U1 2xb=10
vy = sin(vy) sin(b) = -0.959
Vs = Vg + VU3 0.693 + 10 = 10.693
Vg = Uy — V4 10.693 + 0.959 = 11.6b2
— 0
y Ve 11.652 T = _y
Ovg 115

AutoDiff: Reverse Mode _*\@*@\

@)
TONY R —@=®
X
@ \ Backwards Derivative T .
x2_’@ _: ackwards Derivative Trace:

Forward Evaluation
Trace: £(2.5)
Vo = I 2
V1 = T9 5
vy = In(v) In(2) = 0.693
U3 = Vg * V1 2x5=10
vy = sin(vy) sin(5) = -0.959
Vs = VU2 + V3 0.693 + 10 = 10.693
Vg = Vs — V4 10.693 + 0.959 = 11.652
y = v 11.652 g = U :
Ovg 116

AutoDiff: Reverse Mode ‘_‘ \

@
xlﬁl&\ 7@ 5”2_@/ (7)—v
X
@ \ Backwards Derivative T .
x2_’@ _: ackwards Derivative Trace:

Forward Evaluation
Trace:
f(2,5)

Vo = Iq 2

V1 = T2 5

v = In(vy) In(2) = 0.693

V3 = Vo - U1 2xb=10

vy = sin(vy) sin(b) = -0.959

Vs = V2 + U3 0.693 + 10 = 10.693 B _ Ovg

V6 =Us — Vs [10.693 + 0.959 = 11.652 Y5 = Y6 508

— 0
y Ve 11.652 T = _y 1
Ovg 117

AutoDiff: Reverse Mode ‘_‘ \

@
xlﬁl&\ 7@ 5”2_@/ (7)—v
X
@ \ Backwards Derivative T .
x2_’@ _: ackwards Derivative Trace:

Forward Evaluation
Trace:
f(2,5)

Vo = Iq 2

V1 = T2 5

v = In(vo) In(2) = 0.693

V3 = Vo - U1 2xb=10

vy = sin(vy) sin(b) = -0.959

Us = Vg + U3 0.693 + 10 = 10.693 B _ Ovg

v =Us — Vs [10.693 + 0.959 = 11.652 Y5 = Y6 508

— 0
y Ve 11.652 T = _y 1
Ovg 118

X
() .

_ Backwards Derivative Trace:
@D

Forward Evaluation
Trace:
f(2,5)
Vo = Iq 2
V1 = T2 5
v = In(vo) In(2) = 0.693
V3 = Vo - U1 2xb=10
vy = sin(vy) sin(b) = -0.959
Us = Vg + U3 0.693 + 10 = 10.693 B _ Ovg
v =Us — Vs [10.693 + 0.959 = 11.652 U5 = Vo = Us 1
— 0
y Ve 11.652 T = _y 1
Ovg 119

AutoDiff: Reverse Mode ‘_‘ \

@
xlﬁl&\ 7@ 5”2_@/ (7)—v
X
@ \ Backwards Derivative T .
x2_’@ _: ackwards Derivative Trace:

Forward Evaluation
Trace:
f(2,5)
Vo = Iq 2
V1 = T2 5
v = In(vy) In(2) = 0.693
V3 — Vg - U1 2xb=10
vy = sin(vy) sin(b) = -0.959
Vs = U2 + V3 0.693 + 10 = 10.693 v
e — _ Us = U= Vg + 1 1x1 = 1
v = U5 —vg |10.693 + 0.959 = 11.652 dv-
Y = Ug 11.652 Oy
Ve — — 1
Ovg 120

AutoDiff: Reverse Mode _@_@\

()
”” ﬁlﬁn\ 7@ xz‘—@‘ (5)—
To—> @@ \ Backwards Derivative Trace:

sin Yy
Forward Evaluation
Trace;
f(2,5)
Vo = 1 2
V1 = X2 5
v = In(vo) In(2) = 0.693
V3 — Vg - U1 2xb=10 8’0
_ _ 6
Vg = sin(vl) sin(b) = -0.959 Vg = v687
4
Vs = Vg2 + U3 0.693 + 10 = 10.693 Ovg
. Vs = Ug—=——= Vg - 1 1x1 =1
Vg = U5 — U4 10.693 + 0.959 = 11.6H2 8'05
Y = Vs 11.652 Oy
Ve — — 1
8’1}6 121

AutoDiff: Reverse Mode _@_@\

()
xl ﬁlﬁn\ 7@ "’"2‘—@‘ (5)—
To—> @@ \ Backwards Derivative Trace:

sin Yy
Forward Evaluation
Trace;
f(2,5)
Vo = 1 2
V1 = X2 5
v = In(vo) In(2) = 0.693
V3 — Vg - U1 2xb=10 8’0
_ _ 6
Vg = sin(vl) sin(b) = -0.959 Vg = v687
4
Vs = Vg2 + U3 0.693 + 10 = 10.693 Ovg
. Vs = Ug—=——= Vg - 1 1x1 =1
Vg = U5 — U4 10.693 + 0.959 = 11.6H2 8'05
Y = Vs 11.652 Oy
Ve — — 1
8’1}6 122

AutoDiff: Reverse Mode _@_@\

()
xl ﬁlﬁn\ 7@ "’"2‘—@‘ (5)—
To—> @@ \ Backwards Derivative Trace:

sin Y
Forward Evaluation
Trace:
f(2,5)
Vo = Iq 2
V1 = T2 5
v9 = In(vg) In(2) = 0.693
V3 — Vg - U1 2xb=10 8’0
_ _ 6 _
vy = sin(vy) sin(5) = -0.959 U4 = V65— = T - (~1)
4
U5 = Vg + U3 0.693 + 10 = 10.693 Hve
. Vs = Ug—=——= Vg - 1 1x1 =1
Vg = U5 — Uy 10.693 + 0.959 = 11.652 Ovs
Y = Ug 11.652 Oy
Ve — — 1
Ovg 123

AutoDiff: Reverse Mode _@_@\

()
xl ﬁlﬁn\ 7@ "’"2‘—@‘ (5)—
To—> @@ \ Backwards Derivative Trace:

sin Yy
Forward Evaluation
Trace:
f(2,5)
Vo = 1 2
V1 = X2 5
vy = In(vg) In(2) = 0.693
V3 — Vg - U1 2xb=10 8’0
_ _ 5
vy = sin(vy) sin(b) =-0.959 Vg = v6(97 = Vg - (—1) 1%-1 = -1
4
Vs = Vg2 + U3 0.693 + 10 = 10.693 v
. Vs = Ug—=——= Vg - 1 1x1 =1
Vg = U5 — U4 10.693 + 0.959 = 11.6H2 8‘05
Y = Ve 11.652 Oy
Ve — — 1
Ove 124

AutoDiff: Reverse Mode “*‘\ @\

332—»@@ \ Backwards Derivative Trace:

Forward Evaluation

Trace:
f(2,5)
Vo = Iq 2
V1 = T9 5 5
Vs = In(vp) n(2) = 0.693 o = T 8”5
v
V3 = Vg * V1 2x5=10 8’02
vy = sin(vy) sin(5) = -0.959 U4 = V65— = T - (~1)
4
Vs = Ug + Vs 0.693 + 10 = 10.693 e
Ve =Us —v4 [10.693 + 0.959 = 11.652 U5 = Vo = Us 1
— 0
y Ve 11.652 T = _y

@)—

1x-1 = -1

1x1 =1

125

AutoDiff: Reverse Mode “*‘\ @\

332—»@@ \ Backwards Derivative Trace:

Forward Evaluation

Trace:
f(2,5)
Vo = Iq 2
V1 = T9 5 5
Vs = In(vp) n(2) = 0.693 o = T 8”5
v
V3 = Vg * V1 2x5=10 8’02
vy = sin(vy) sin(5) = -0.959 U4 = V65— = T - (~1)
4
Vs = Ug + Vs 0.693 + 10 = 10.693 e
Ve =Us —v4 [10.693 + 0.959 = 11.652 U5 = Vo = Us 1
— 0
y Ve 11.652 T = _y

@)—

1x-1 = -1

1x1 =1

126

AutoDiff: Reverse Mode “*‘\ @\

332—»@@ \ Backwards Derivative Trace:

Forward Evaluation

Trace:
f(2,5)
Vo = I 2
V1 = T2 5
vy = In(vg) In(2) = 0.693 Uy = s 225 = 75 - (1)
V3 = Vg * V1 2xb=10 @vz
vy = sin(vy) sin(5) = -0.959 Us =g~ = To (=1)
V5 = Vg + U3 0.693 + 10 = 10.693 G
v = U5 — Vs |10.693 + 0.959 = 11.652 U= Y e 1
Y = Vg 11.652 @6:@

@)—

1x-1 = -1

1x1 =1

127

AutoDiff: Reverse Mode “*‘\ @\

332—»@@ \ Backwards Derivative Trace:

Forward Evaluation

Trace:
f(2,5)
Vo = I 2
V1 = T2 5
vy = In(vg) In(2) = 0.693 Uy = s 225 = 75 - (1)
V3 = Vg * V1 2xb=10 @vz
vy = sin(vy) sin(5) = -0.959 Us =g~ = To (=1)
V5 = Vg + U3 0.693 + 10 = 10.693 G
v = U5 — Vs |10.693 + 0.959 = 11.652 U= Y e 1
Y = Vg 11.652 @6:@

@)—

1x1 =1
1x-1 = -1

1x1 =1

128

AutoDiff: Reverse Mode __/@\

©,
zs <_@ :)
T2 —»@@ - @ Backwards Derivative Trace:

SN Yy
Forward Evaluation
Trace:
f(2,5)
= Ov
Vo X1 2 Ty = 058_7}5
V1 = T2 5 2
0
vy = In(vg) In(2) = 0.693 Ts = UE’&—% — 75 - (1) 151 = 1
V3 = Vg - V1 2x5=10 823
3) _ 6 —_
vy = sin(vi) sin(5) = -0.959 Vg = Vg = = Vg (—1) Ix1 = -1
4
V5 = Vg + U3 0.693 + 10 = 10.693 v
Ve = Us — Vs |10.693 + 0.959 = 11.652 Vs = Vo, = Vo 1 1x1 = 1
Y = Ve 11.652 _ oy
Ve — — 1
8’1}6

129

AutoDiff: Reverse Mode __/@\

1 ()
—*\ @ @_@: o
xz—»@@ \ Backwards Derivative Trace:

SN Yy
Forward Evaluation
Trace:
f(2,5)
— _ _ 8,05 _
Vg = I 2 02:1)5%:@5.(1)
V1 = T2 5 2
0
vy = In(vg) In(2) = 0.693 Ts = @58_”5 — 75 - (1) 1] = 1
V3 = Vg - V1 2x5=10 823
) _ _ (5] _
vy = sin(vy) sin(5) = -0.959 Vg = Vg = = U - (—1) -1 = -1
4
U5 = Vg + U3 0.693 + 10 = 10.693 v
Ve = Us — Vs |10.693 + 0.959 = 11.652 Vs = Vo, = Vo 1 1x1 = 1
Y = Vs 11.652 Oy
Ve — — 1
a’UG 130

AutoDiff: Reverse Mode __/@\

1 ()
—*\ @ @_@: o
xz—»@@ \ Backwards Derivative Trace:

SN Yy
Forward Evaluation
Trace:
f(2,5)
— _ _ 8,05 _
Vg = I 2 02:1)5%:@5.(1)
V1 = T2 5 2
0
vy = In(vg) In(2) = 0.693 Ts = @58_”5 — 75 - (1) 1] = 1
V3 = Vg - V1 2x5=10 823
) _ _ (5] _
vy = sin(vy) sin(5) = -0.959 Vg = Vg = = U - (—1) -1 = -1
4
U5 = Vg + U3 0.693 + 10 = 10.693 v
Ve = Us — Vs |10.693 + 0.959 = 11.652 Vs = Vo, = Vo 1 1x1 = 1
Y = Vs 11.652 Oy
Ve — — 1
a'UG 131

AutoDiff: Reverse Mode __/@\

1 @)
—*\ @\ @_@: o
xz—»@@ —: Backwards Derivative Trace:

SN Yy
Forward Evaluation
Trace:
f(2,5)
= Ov _
Vo = X1 2 @2:@58_?}5205.(1) %] = 1
V1 = T2 5 2
0
vy = In(vg) In(2) = 0.693 Ts = @58_”5 — 75 - (1) 1] = 1
V3 = Vg - V1 2x5=10 823
3) _ _ 6 —_
vy = sin(vi) sin(5) = -0.959 Vg = Vg = = U - (—1) Ix1 = -1
4
U5 = Vg + U3 0.693 + 10 = 10.693 v
Ve = Us — Vs |10.693 + 0.959 = 11.652 Vs = Vo, = Vo 1 1x1 = 1
Y = Vs 11.652 Oy
Ve — — 1
a'UG 132

AutoDiff: Reverse Mode ‘“*—\@—@\

()
x1_’£\ @ :I:2<—< ‘_y
X
@ \ Backwards Derivative T .
x2_’@ _: ackwards Derivative Trace:

sin Yy
Forward Evaluation
Trace:)
f(27 5) V1
_ ov _
V1 = X2 5 U2
_ _ 87}5 _
vy = In(vg) In(2) = 0.693 Ty = U5 2 = @5 - (1) 15 = 1
8’03
V3 — Vg - U1 2xb=10 8’0
_ _ 5
vy = sin(vy) sin(b) =-0.959 Vg = v6(97 = Vg - (—1) 1%-1 = -1
4
Vs = Vg2 + U3 0.693 + 10 = 10.693 v
. Vs = Ug—=——= Vg - 1 1x1 =1
Vg = U5 — U4 10.693 + 0.959 = 11.6H2 8’05
Y = Ve 11.652 Oy
Ve — — 1
Ove 133

AutoDiff: Reverse Mode ‘“*—\@—@\

1 @)
x1_’_n\ @ 21324—: ‘_y
332—»@@ \ Backwards Derivative Trace:

SN Yy
Forward Evaluation
Trace: Hvs Sy
f(27 5) /l_)l = T_Jga— ?74—
U1 8’1)1
= Ov _
Vo = X1 2 @2:@58_?}5205.(1) %] = 1
V1 = T2 5 2
Ov
ve = In(vp) In(2) = 0.693 Vg — @58_?}5 — 75 - (1) 151 = 1
V3 = Vg - V1 2x5=10 81}3
) _ _ (5] _
vy = sin(vi) sin(5) = -0.959 Vg = Vg = = U - (—1) Ix1 = -1
4
V5 = Vg + U3 0.693 + 10 = 10.693 v
Ve = Us — Vs |10.693 + 0.959 = 11.652 Vs = Vo, = Vo 1 1x1 = 1
Y = Vs 11.652 Oy
Ve — — 1
a'UG 134

AutoDiff: Reverse Mode ‘“*—\@—@\

1 @)
:c1_’_n\ @ $2<—< <—y
332—»@@ \ Backwards Derivative Trace:

SN Y
Forward Evaluation
Trace: Hvs Sy
f(27 5) rl_)l = ’l_Jga— ?74—
U1 8’1)1
= Ov _
Vo = X1 2 @2:@58_?}5205.(1) %] = 1
V1 = T2 5 2
Ov
ve = In(vp) In(2) = 0.693 Vg — @58_?}5 — 75 - (1) 151 = 1
V3 = Vg - V1 2x5=10 81}3
) _ _ (5] _
vy = sin(vi) sin(5) = -0.959 Vg = Vg = = U - (—1) Ix1 = -1
4
V5 = Vg + U3 0.693 + 10 = 10.693 v
Ve = Us — Vs |10.693 + 0.959 = 11.652 Vs = Vo, = Vo 1 1x1 = 1
Y = Vs 11.652 Oy
Ve — — 1
a'UG 1356

AutoDiff: Reverse Mode ‘“*—\@—@\

1 @)
:c1_’_n\ @ $2<—< <—y
332—»@@ \ Backwards Derivative Trace:

Sin Yy
Forward Evaluation
Trace: B .
f(27 5) V1 = 1_)38—3 + ?74—4 = V3Vg + @4608(’01)
(%] 0’1)1
_ ov _
V1 = X2 5 8712
(V)
Vo = 111(’00) |ﬂ(2) = 0.693 173 — ,558_5 — ,55 . (1) 1%1 = 1
V3 = Vg - V1 2x5=10 8?}3
. . _ Vg _
vy = sin(vy) sin(5) = -0.959 Vg = Vg = = U - (—1) -1 = -1
4
Vs = Vg2 + U3 0.693 + 10 = 10.693 v
Vg =Us —Us | 10.693 + 0.959 = 11.652 Vs = Vo, = Vo 1 1x1 = 1
Y = Ve 11.652 Oy
Ve — — 1
dvg 136

AutoDiff: Reverse Mode ‘“*—\@—@\

1 @)
:c1_’_n\ @ $2<—< <—y
332—»@@ \ Backwards Derivative Trace:

SN Yy
Forward Evaluation
Trace: B .
£(2,5) by = @38—3 + Uy —— = B30 + Bacos(v1) | 1.716
(%] 0’1)1
_ ov _
V1 = T2 5 8712
(V)
ve = In(vp) In(2) = 0.693 - @58_5 — 75 - (1) 151 = 1
V3 = Vg * V1 2x5=10 8?}3
) . _ Vg _
vy = sin(vy) sin(5) = -0.959 Vg = Vg = = U - (—1) -1 = -1
4
V5 = Vg + U3 0.693 + 10 = 10.693 Site
Ve = Us — Vs |10.693 + 0.959 = 11.652 Vs = Vo, = Vo 1 1x1 = 1
Y = vg 11.652 @6:@ 1
dvg 137

Forward Evaluation

Trace:
f(2,5)
Vo = Iq 2
V1 = T9 5
vy = In(vg) In(2) = 0.693
V3 = Vg * U1 2xb=10
vy = sin(vy) sin(b) = -0.959

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.652

Backwards Derivative Trace:

_ _ (%3 _ 0vg 3 1
Vo =V35— T U257~ = U3V + Vg—
(’?vo (97}0 Vo
_ _ (%3 _ 8?)4 _ _
V] = Uga— + V4 —— = V3V + V4CO0S
V1 0vq
ov _
Uy = @58—05 = U5 - (1)
2
ov ~
U3 = 058—02 = U5 - (1)
ov _
= v6(9—vj = g - (—1)
_ Ovg _
(U ?)68—/05: (U 1
oy
V6 — —

(v1)

5.5

1.716

X1 =1

X1 =1

1x-1 = -1

1x1 =1

138

Forward Evaluation

Trace:
f(2,5)
Vo = Iq 2
V1 = T9 5
vy = In(vg) In(2) = 0.693
V3 = Vg * U1 2xb=10
vy = sin(vy) sin(b) = -0.959

0.693 + 10 = 10.693
10.693 + 0.959 = 11.652
11.652

Backwards Derivative Trace:

_ _ 803 _ 0vg 3 1
Vo =V35— T U257~ = U3V + Vg—
(’?vo (97}0 Vo
_ _ (%3 _ 8?}4 _ _
V] = Uga— + V4 —— = V3V + V4CO0S
V1 0vq
ov _
Uy = @58—05 = U5 - (1)
2
ov ~
U3 = 058—02 = U5 - (1)
ov _
= v6(9—vj = g - (—1)
_ Ovg _
(U ?)68—/05: (U 1
oy
V6 — —

(v1)

5.6

1.716

X1 =1

X1 =1

1x-1 = -1

1x1 =1

139

Automatic Differentiation (AutoDiff)

y = f(r1,22) = In(x1) + 2122 — sin(22)

» AutoDiff can be done at various granularities

Elementary function granularity: Complex function granularity:

140

Backpropagation: Practical Issues

Input Layer

18t Hidden Layer

Wi, by

2"d Hidden Layer

W2, bpo

Output Layer

W, b,

Easier to deal with in vector form

141

Backpropagation: Practical Issues

y = f(W,b,x) = sigmoid(W - x + b)

X B

g
OO OO0

142

Backpropagation: Practical Issues

y = f(W,b,x) = sigmoid(W - x + b)

X >
<€
ox O0x Oy

<
0L(,-) _ Oy OL(,")

OW OW Oy

b

<€

b 0b Oy

dy
ox

Iy
OW

oy
ob

OO OO0

"backprop" Gradient

"local" Jacobians
(matrix of partial derivatives,

e.g. x| xy|

143

Jacobian of Sigmoid layer %,y € R0

* Element-wise sigmoid layer:

X sigmoid > Y

144

Jacobian of Sigmoid layer %,y € R0

* Element-wise sigmoid layer:

X sigmoid > Yy

— What is the dimension of Jacobian?

145

Jacobian of Sigmoid layer %,y € R0

* Element-wise sigmoid layer:

X sigmoid > Yy

— What is the dimension of Jacobian?
— What does it look like?

146

Jacobian of Sigmoid layer %,y € R0

* Element-wise sigmoid layer:

X sigmoid > Yy

— What is the dimension of Jacobian?
— What does it look like?

If we are working with a mini batch of 100 inputs-output pairs,
Jacobian I1s a matrix 204,800 x 204,800!

147

Backpropagation: Common questions

* Question: Does BackProp only work for certain layers?
Answer: No, for any differentiable functions

* Question: \What is computational cost of BackProp?
Answer: On average about twice the forward pass

* Question: |s BackProp a dual of forward propagation?
Answer: Yes

slide adopted from Marc'Aurelio Ranzato 148

Backpropagation: Common questions

* Question: Does BackProp only work for certain layers?
Answer: No, for any differentiable functions

FProp BackProp
* Question: \What is computational cost of BackProp?
Answer: On average about twice the forward pass Sl ey
~— I- - -
+ — <€ =,
| Sp—
* Question: Is BackProp a dual of forward propagation?
Answer: Yes c
opy Sum
-
I 0t

slide adopted from Marc'Aurelio Ranzato 149

emo time

b lterations Learning rate Activation Regularization Regularization rate Problem type
4
OO0,000 0.03 v Tanh v None v 0 v Classification v

DATA FEATURES + — 2 HIDDEN LAYERS OUTPUT
Which dataset do Which properties Test loss 0.519
you want to use? do you want to Training loss 0.502
feed in? 5 S o = \
.3' 4 neurons 2 neurons

Ratio of training to
test data: 50%

L3
D &

xed wit
weights.

oy It

Noise: 0

of the lines % S . ° 3

Batch size: 10

. from one neuron

REGENERATE
Colors shows : o

data, neuronand |
weight values.

[C] Showtestdata [T] Discretize output

http://playground.tensorflow.org

150

http://playground.tensorflow.org/

Shallow yet very powerful:
word2vec

From symbolic to distributed word
representations

* The vast majority of rule-based or statistical NLP and IR work regarded words
as atomic symbols: hotel, conference, walk

 [n vector space terms, this is a vector with one 1 and a lot of zeroes

“hotel”

1

O 0O00O00O0O0O0OOO0O1TO0O0OO0OO

* \We now call this a one-hot representation.

152

From symbolic to distributed word
representations

* The size of word vectors are equal to the number of words in the dictionary

— Vector size is proportional to the size of the dictionary
20K (speech) — 50K (Pen Treebank) — 500K (A large dictionary) — 13M (Google 1T)

« One-hot vectors vectors are orthogonal

* There Is no natural notion of similarity in a set of one-hot vectors

T
“‘mote” 0 0 0 0O OOOOO1TO0OOOO

“hote” 0 0 0O OOOOOO0O1TO0OOO =0

153

Distributional similarity-based
representations

* You can get a lot of value by representing a word
by means of its neighbors

* “You shall know a word by the company it keeps”
(J. R. Firth 1957:11)

* One of the most successful ideas of modern NLP

government debt problems turning into banking crises as has happened in

saying that Europe needs unified banking regulation to replace the hodgepodge

\ These words will represent /

“banking”

154

Distributional hypothesis

* The meaning of a word Is (can be approximated by, derived from) the
set of contexts in which it occurs In texts

He filled the wampimuk, passed it around and we all drunk some

We found a little, hairy wampimuk sleeping behind the tree

Testing the distributional hypothesis: The influence of context on judgements of semantic similarity
[McDonald & Ramscar'01] Slide credit: Marco Baroni 155

Distributional semantics

he curtains open and the moon shining in on the barely
ars and the cold , close moon " . And neither of the w
rough the night with the moon shining so brightly , it
made in the light of the moon . It all boils down , wr
surely under a crescent moon , thrilled by ice-white
sun , the seasons of the moon ? Home , alone , Jay pla
m 1s dazzling snow , the moon has risen full and cold
un and the temple of the moon , driving out of the hug
in the dark and now the moon rises , full and amber a
bird on the shape of the moon over the trees in front
But I could n’t see the moon or the stars , only the
rning , with a sliver of moon hangling among the stars
they love the sun , the moon and the stars . None of
the light of an enormous moon . The plash of flowing w
man ‘s first step on the moon ; various exhibits , aer
the inevitable piece of moon rock . Housing The Airsh
oud obscured part of the moon . The Allied guns behind

A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge [Landauer and Dumais’97]
From frequency to meaning: Vector space models of semantics [Turney ve Pantel'10]

Slide credit: Marco Baroni 156

Window based co-occurence matrix
counts |1 |like |enjoy |deep |
0

« Example corpus:

— | like deep learning.
— | like NLP.
— | enjoy flying.

enjoy
deep
learning
NLP
flying

0
2
1
0
0
0
0
0

* [ncrease In size with vocabulary

o O Br O B O O N

o r»r O O O O O B

* Very high dimensional: require a lot of storage

o O O »r O O Bk

« Subseqguent classification models have sparsity issues

 Models are less robust

0 0

O O O » O O O

R O O O O O =

r O O O O +» O

SO B = B O O O O

157

Three methods for getting short dense
vectors

» Singular Value Decomposition of co-occurrence Comexts
matrix X E < e
— A special case of this is called LSA — Latent Semantic
Analysis o

* Neural Language Model-inspired predictive models
— skip-grams and CBOW

* Brown clustering

Skip-gram
model

Wi

158

Three methods for getting short dense
vectors

» Singular Value Decomposition of co-occurrence Comexts -
matrix X 1A BRE
— A special case of this is called LSA — Latent Semantic mxm mxe
Analysis wxc wxm

* Neural Language Model-inspired predictive models
— skip-grams and CBOW

* Brown clustering

Skip-gram
model

159

Prediction-based models:
An alternative way to get dense vectors

« Skip-gram (Mikolov et al. 2013a), CBOW (Mikolov et al. 2013b)
* Learn embeddings as part of the process of word prediction.

* Train a neural network to predict neighboring words
— Inspired by neural net language models.
— In so doing, learn dense embeddings for the words in the training corpus.

* Advantages:

— Fast, easy to train (much faster than SVD)
— Avallable online in the word2vec package

— Including sets of pretrained embeddings!

160

Basic idea of learning neural network
word embeddings

* \We define some model that aims to predict a word based on other
words in Its context

argmax,,w - ((w;_1 +wj11) /2)

which has a loss function, e.g.,

J(@) —]_ — wj . ((wj—l _|_ wj—l—l) /2) Unit norm

vectors

* \We look at many samples from a big language corpus

* \We keep adjusting the vector representations of words to minimize
this loss

161

Neural Embedding Models (Mikolov et al. 2013)

ID(Wnlwn-2:n+2)
QOO0
Transform
Softd:nax
® e 8 s
/ :)\ i=[n-2u:§-({!¥i|w“)
+ ©000)
8 6 6 6 Transform
Ol |O O O Soft+max
Ol 1O Q| 1O
dd bk 8.2 2
Wh-2 Wn-1 Wi+t Wha2 Wn
CBoW model Skip-gram model

Distributed representations of words and phrases and their compositionality [Mikolov vd.'13] Image credit: Ed Grefenstette 162

Details of word2vec

* Predict surrounding words in a window of length m of every word.

* Objective function: Maximize the log probability of any context word given
the current center word:

J(H)z%z > logp(wisj|we)

t=1 —m<j<m,j#0

where 0 represents all variables we optimize

Distributed representations of words and phrases and their compositionality [Mikolov vd.'13] 163

Details of word2vec

* Predict surrounding words in a window of length m of every word.

* For p(wy4j|w;) the simplest first formulation is

exp(u?;vc)

W
szl eXp(ug UC)

p(olc) =

where o Is the outside (or output) word id,
c 1S the center word id,
u and v are “center” and “outside” vectors of o and ¢

« Every word has two vectors!

* This 1s essentially “dynamic” logistic regression

Distributed representations of words and phrases and their compositionality [Mikolov vd."13] 164

Intuition: similarity as dot-product
between a target vector and context vector

W C * Similarity(j,k) = ¢ - Vi
target embeddings context embeddings
target embedding _.--=""" N 1. . . d « We use softmax to
forwordj .- 1.2 - V . -y
Lo Vil . turn into probabilities
1 @
/ . '
.. . /./ ' ; I S— p(Wk|W’): exp(ck-vj)
Similarity(j , k) : : "/ ‘k[ee-o- 0] / Dilv| €xp(ci* Vi)
\\ d ! \ .
Vi,

-~
-
-
- -
—_——— e —-— T

context embedding
for word k

165

Details of word2vec

Predict surrounding words in a window of length m of every word.

For p(w¢4j|w;) the simplest first formulation is

exp(u?;vc)

W
szl eXp(ug UC)

p(olc) =

Every word has two vectors!

We can either:
— Just use v,
— Sum them
— Concatenate them to make a double-length embedding

Distributed representations of words and phrases and their compositionality [Mikolov vd."13]

166

Learning

» Start with some initial embeddings
(e.g., random)

o iteratively make the embeddings for a
word
—more like the embeddings of its neighbors
— less like the embeddings of other words.

Vaardvark
Vg

Uzebra

Ugardvark
Ugq,

Uzebra

167

Visualizing W and C as a network for
doing error backprop

Input layer Projection layer Output layer
. _ probabilities of
1-hot input vector embedding for Wi context words
oy — oy
X, |® S O
Dol @) .2
Wi W . :
LR VIxd . C ax vy oy, Wi+l
: ,,E : .
e ——— I o
x|V 1xd x|V

168

Problem with the softmax

* The denominator: have to compute over every word In vocabulary

exp(cy-v;)
ic|V]| exp(ci-vj)

 |nstead: just sample a few of those negative words

169

Goal in learning

 Make the word like the context words

lemon, a [tablespoon of apricot preserves or] jam G(x) — I
l+e*
cl c2 W c3 c4
* \\e want this to be high:
o(cl-w)+0o(c2-w)+0(c3-w)+ o(cd-w)
* And not like k randomly selected “noise words”
[cement metaphysical dear coaxial apricot attendant whence forever puddle]
nl n2 n3 n4 nb5 no6 n7 ng8

A

* We want this to be low: oml-w)+o(n2-w)+...+0(n8-w)

170

Skipgram with negative sampling:
Loss function

K

logo(c-w)+ Z i p(w) 10O (—w; - w)]
i=1

Stochastic gradients with word vectors!

* But In each window, we only have at most 2¢ -1 words, so

VoJi(0) 1S very sparsel

VoJi(6) =

0

Vo,

ike

172

Stochastic gradients with word vectors!

* \We may as well only update the word vectors that actually appear!

« Solution: either keep around hash for word vectors or only update certain
columns of full embedding matrix U and V

VI
o o o ® o
q o o o ® O
o o o ® O
® ® ® ® O

* I[mportant if you have millions of word vectors and do distributed computing
to not have to send gigantic updates around.

173

Embeddings capture semantics!

* Words similar to “frog”
1. frogs

toad

litoria

leptodactylidae

rana

lizard

eleutherodactylus

~N o ok W

o S

“rana” “eletherodactylu”

GloVe: Global Vectors for Word Representation [Pennington vd.'14] 7

Embeddings capture relational meaning!

vector(‘king’) - vector(‘man’) + vector(woman’) = vector(‘queen’)

vector(‘Paris’) - vector(‘France’) + vector(‘Italy’) = vector(‘Rome’)

WOMAN

UNCLE

KING

MAN/ /

QUEEN

AUNT

QUEENS

KINGS \
\ QUEEN

KING

175

Demo time

Embedding Projector

DATA

Word2Vec 5K

Label by

word

No color map

Sphereize data @

Load data Publish

Checkpoint: Demo datasets

Mlarmdata. aan daba ionedDoan EAAN ANNA

PCA

Component #1 ~ Component #2

Component #3

Total variance described: 9.4%.

)] | Points: 5000 | Dimension: 200 | Selected 101 points

blues
Scrum
for
& bass
ol B tracks’s metal
hockey
£ guitar ol
hasis .
football gl grolifipiono
singles 4 §
e s &
asketbal 'gcl-:xs‘th'blueS recording
Jbasketdall " 8 ook
G SR o
® omusic Boig
; o ‘_‘J-‘a?a.\d a1 ¥ musical
B guitarist P & folk N 4 p @lytics
chris _al s dancing P
» g olling TR OaVIS g MR nlaving
@ johnnyacolli .si‘ 3 ." ¥ Ol Wplaying
. % B ‘4‘ od instrumental
musician §°‘-‘ TR Bois
¥ jeck g omericon # S -
5 . o LR . N ! featuring
Singer bilt . N \e/
Wiy @ songiwhite NS
| N olay
' dance X
got N
played

http://projector.tensorflow.org

Show All Isolate 101 Clear
Data points selection
Search » word ~
neighbors @ @ 100
distance COSINE EUCLIDIAN

Nearest points in the original space:

BOOKMARKS (0) @ A

176

http://projector.tensorflow.org/

Next Lecture:
Training Deep Neural Networks

