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Previously on COMP541

* multi-layer perceptrons

e activation functions

* chain rule

* backpropagation algorithm
e computational graph

e distributed word representations

Image: Jose-Luis Oli{af€s




Lecture overview

* data preprocessing and normalization
e weight initializations

* ways to improve generalization

* optimization

* babysitting the learning process

* hyperparameter selection

Disclaimer: Much of the material and slides for this lecture were borrowed from
—Fei-Fei Li, Andrej Karpathy and Justin Johnson’s CS231n class

—Roger Grosse’s CSC321 class

—Shubhendu Trivedi and Risi Kondor’s CMSC 35246 class

—Efstratios Gavves and Max Welling’s UvA deep learning class

—Hinton's Neural Networks for Machine Learning class

—Justin Johnson’s EECS 498/598 class



Paper presentations start next week
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Activation Functions



Activation Functions

Leaky RelLU
max(0.1x, x)
 Paaa P
o(x)=1/(1+€7") . o _j /

Maxout max(wi z + by, wj x + by)
tanh tanh(x)

N = ifx >0
ELU i) = {n (exp(z)—1) ifxz<0

ReLlU max(0,x)




Activation Functions

7 e Squashes numbers to range [-1,1]

e zero centered (nice)

e still kills gradients when saturated :(

[LeCun et al., 1991]



Activation Functions

..........

RelLU
(Rectified Linear Unit)

Computes f(x) = max(0,x)

Does not saturate (in +region)

Very computationally efficient

Converges much faster than sigmoid/tanh
in practice (e.g. 6x)

[Krizhevsky et al., 2012]
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Activation Functions

{O,iffcg()

1, if x>0 * Computes f(x) = max(0,x)

\ e RelU o) = max(0,2
o or\0z gate [T oo * Does not saturate (in +region)
oz 9z 9o 0o  Very computationally efficient
* Converges much faster than sigmoid/tanh
in practice (e.g. 6x)

* Not zero-centered output
* An annoyance:

Hint: what is the gradient when x < 0?

[Krizhevsky et al., 2012]
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active RelLU

\

dead RelLU
will never activate
— never update

16



active RelLU

— people like to initialize ReLU

neurons with slightly positive dead RelLU
biases (e.g. 0.01) will never activate

— never update

17



Activation Functions

10

* Does not saturate

 Computationally efficient

* Converges much faster than sigmoid/tanh
in practice! (e.g. 6x)

.......... * will not “die”.

Leaky RelLU
f(x) = max(0.01x, x)

[Mass et al., 2013]
[He et al., 2015]
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Activation Functions

Leaky RelLU

f(x) = max(0.01z, )

* Does not saturate
e Computationally efficient
* Converges much faster than sigmoid/tanh

in practice! (e.g. 6x)
* will not “die”.

Parametric Rectifier (PReLU)
f(x) = max(ax, x)

backprop into \alpha

(parameter) [Mass et al., 2013]
[He et al., 2015]

19



Maxout “Neuron”

* Does not have the basic form of dot product -> nonlinearity
* Generalizes RelLU and Leaky RelU

* Linear Regime! Does not saturate! Does not die!

max(w] z + by, w, z + bs)

Problem: doubles the number of parameters/neuron :(

[Goodfellow et al., 2013]
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f(x)

Activation Functions
Exponential Linear Units (ELU)

x itz >0
a(exp(x) — 1) if x <0

All benefits of ReLU
Does not die

Closer to zero mean outputs

Computation requires exp()

[Clevert et al., 2015]
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Data Preprocessing and Normalization



Data preprocessing

. . _ . . 3)\2
* Scale input variables to have similar diagonal covariances C; = E (xg )

— Similar covariances — more balanced rate of learning for different weights
— Rescaling to 1 is a good choice, unless some dimensions are less important

_ 1 2 31T _ 1 2 37T o T
z=z,2%27°]7,0=10",0%0"]",a = tanh(0" z) x17 x2, x> — much different covariances
B II.,-"'{I \l-l'\'-.ll x/ e — a :I tanh|x) . a £ .
o J ok e wmm | Generated gradients 20 : much different
A / f I\\ xl y L 2 y L 3
00l — ———-”'81 B
< ;"'; b 52
A / < T oL /061
g b _-;-;/ M | Gradient update harder: @'t = @' —p, |0L/06?
oL/ 003
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Data preprocessing

* Input variables should be as decorrelated as possible
— Input variables are “more independent”
— Network is forced to find non-trivial correlations between inputs
— Decorrelated inputs — Better optimization
— Obviously not the case when inputs are by definition correlated (sequences)
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Data preprocessing

original data zero-centered data normalized data

10 10 . 10

vl': A

3 5

e,
BN

0 — 0 ? - 0
° ...
-5 -5 -5
% ’\'o
A Y
10 -10 -10 ‘
~10 5 1 -10 =5 0 5 19 -10 3 0 5 10

X -= np.mean(X, axis = 0). X /= np.std(X, axis = 0)

(Assume X [NxD] is data matrix, each example in a row)



TLDR: In practice for Images: center only

e.g. consider CIFAR-10 example with [32,32,3] images

Subtract the mean image
(mean image =[32,32,3] array)
Subtract per-channel mean
(mean along each channel = 3 numbers)

Not common to normalize
variance, to do PCA or
whitening

29



Weight Initialization



Q: what happens when W=0 init is used?

output layer
input layer
hidden layer

31



First idea: Small random numbers

(Gaussian with zero mean and le-2 standard deviation)

W= 0.01* np.random.randn(D,H)

32



First idea: Small random numbers

(Gaussian with zero mean and le-2 standard deviation)

W= 0.01* np.random.randn(D,H)

Works ~okay for small networks, but can lead to
non-homogeneous distributions of activations
across the layers of a network.
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Lets look at
some
activation
statistics

E.g. 10-layer net with 500
neurons on each layer, using
tanh non-linearities, and
initializing as described in last
slide.

# assume some unit gaussian 10-D input data

D = np.random.randn(1060, 500)

hidden layer sizes = [500]*10

nonlinearities = ['tanh']*len(hidden layer sizes)

act = {'relu’':lambda x:np.maximum(©,x), 'tanh':lambda x:np.tanh(x)}
Hs = {}
for i in xrange(len(hidden layer sizes)):

X =D if i == 0 else Hs[i-1] # input at this layer

fan_in = X.shape[1]

fan out = hidden layer sizes[i]

W = np.random.randn(fan in, fan out) * 0.01 # layer initialization

np.dot(X, W) # matrix multiply
act[nonlinearities(i]](H) # nonlinearity

H
H
Hs[i] = H # cache result on this layer

~ N

# look at distributions at each layer
print 'input layer had mean %f and std %f' % (np.mean(D), np.std(D))
layer means = [np.mean(H) for i,H in Hs.iteritems()]
layer stds = [np.std(H) for i,H in Hs.iteritems()]
for i,H in Hs.iteritems():
print ‘hidden layer %d had mean %f and std %f' % (i+1, layer means[i], layer stds[i])

# plot the means and standard deviations
plt.figure()

plt.subplot(121)

plt.plot(Hs.keys(), layer means, ‘ob-')
plt.title('layer mean')

plt.subplot(122)

plt.plot(Hs.keys(), layer stds, ‘or-')
plt.title('layer std')

# plot the raw distributions

plt.figure()

for i,H in Hs.iteritems():
plt.subplot(1,len(Hs),i+1)
plt.hist(H.ravel(), 30, range=(-1,1))
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input layer had mean 0.000927 and std 0.998388

hidden layer 1 had mean -0.000117 and std 0.213081
hidden layer 2 had mean -0.000001 and std 0.047551
hidden layer 3 had mean -0.000002 and std ©0.010630
hidden layer 4 had mean 0.000001 and std ©.002378
hidden layer 5 had mean 0.000002 and std 0.000532
hidden layer 6 had mean -0.000000 and std ©.000119
hidden layer 7 had mean 0.000000 and std 0.000026
hidden layer 8 had mean -0.000000 and std ©.000006
hidden layer 9 had mean 0.000000 and std ©.000001
hidden layer 10 had mean -0.000000 and std ©.000000
layer mean
------ e A ==

........

r

— -

-

layer std

All activations
become zero!

Q: think about the
backward pass. What

do the gradients look
like?

Hint: think about backward pass
for a W*X gate.
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W = np.random.randn(fan in, fan out) * 1.0 # layer initialization

input layer had mean ©0.001860 and std 1.001311

hidden layer 1 had mean -0.000430 and std ©.981879
hidden layer 2 had mean -0.000849 and std 0.981649
hidden layer 3 had mean ©.000566 and std ©.981601
hidden layer 4 had mean ©.000483 and std 6.981755 " . %
hidden layer 5 had mean -0.000682 and std 0.981614
hidden layer 6 had mean -0.000401 and std 0.981560 1'0 InStead Of 0'01
hidden layer 7 had mean -0.000237 and std ©.981520
hidden layer 8 had mean -0.000448 and std 0.981913
hidden layer 9 had mean -0.000899 and std ©.981728
hidden layer 10 had mean ©.000584 and std 0.981736
layer mean . ¥9815e~1 layer std
P
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Almost all neurons
completely saturated,
either -1 and 1.
Gradients will be all

Zero.



input layer had mean 0.001800 and std 1.001311

hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden

layer

1

layer 2

layer
layer
layer
layer
layer
layer
layer
layer

3
4
5
6
7
8
9
1

had mean
had mean
had mean
had mean
had mean
had mean
had mean
had mean
had mean

0.001198 and std 0.627953
-0.000175 and std 0.486051
0.000055 and std 0.407723
-0.000306 and std ©0.357108
0.000142 and std 0.320917
-0.000389 and std 0.292116
-0.000228 and std 0.273387
-0.000291 and std 0.254935
0.000361 and std 0.239266

© had mean 0.000139 and std 0.228008

layer mear

W = np.random.randn(fan in, fan out) / np.sqrt(fan in) # layer initialization

Keep the variance the same across
every layer!

ayer st
ayer st

“Xavier initialization”
[Glorot et al., 2010]

Reasonable initialization.
(Mathematical derivation
assumes linear activations)

If a hidden unit has a big fan-in,
small changes on many of its
incoming weights can cause the

learning to overshoot.

— We generally want smaller incoming
weights when the fan-in is big, so
initialize the weights to be
proportional to sqrt(fan-in).

We can also scale the learning rate
the same way. More on this later!

(from Hinton’s notes)
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input layer had mean 6.000501 and std 0.999444

W

= np.random.randn(fan in, fan out) / np.sqrt(fan in) # layer initialization

but when using the ReLU nonlinearity it

hidden layer 1 had mean ©0.398623 and std ©.582273
hidden layer 2 had mean ©0.272352 and std ©.403795
hidden layer 3 had mean ©.186076 and std ©.276912
hidden layer 4 had mean ©0.136442 and std ©.198685
hidden layer 5 had mean 6.099568 and std 6.1406299
hidden layer 6 had mean 0.072234 and std ©.103280
hidden layer 7 had mean 0.049775 and std ©.072748 b Fed kS .
hidden layer 8 had mean 0.035138 and std 0.051572
hidden layer 9 had mean ©0.025404 and std ©.038583
hidden layer 10 had mean ©.018408 and std ©0.026076
~—— layer mean . layer std
-y \ ve
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030 :
. \ : .
20 \\ 03
015 \\ st .
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input layer had mean ©.000501 and std 0.999444

W

= np.random.randn(fan in, fan out) / np.sqrt(fan in/2) # layer initialization

hidden layer 1 had mean 0.562488 and std 0.825232
hidden layer 2 had mean 0.553614 and std ©0.827835
hidden layer 3 had mean 0.545867 and std 0.813855
hidden layer 4 had mean ©.565396 and std ©.826902
hidden layer 5 had mean ©.547678 and std 0.834092
hidden layer 6 had mean ©.587103 and std 0.860035
hidden layer 7 had mean 0.596867 and std ©.870610
hidden layer 8 had mean 0.623214 and std ©0.889348
hidden layer 9 had mean 0.567498 and std 0.845357
hidden layer 10 had mean ©0.552531 and std ©.844523

Loz layer mean - layer std
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He et al., 2015
(note additional /2)

1
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Epoch
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Proper initialization is an active area of
research...

* Understanding the difficulty of training deep feedforward neural networks. Glorot and Bengio, 2010

* Exact solutions to the nonlinear dynamics of learning in deep linear neural networks. Saxe et al, 2013

* Random walk initialization for training very deep feedforward networks. Sussillo and Abbott, 2014

* Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification. He et al., 2015
* Data-dependent Initializations of Convolutional Neural Networks. Krahenbuhl et al., 2015

* All you need is a good init. Mishkin and Matas, 2015

* How to start training: The effect of initialization and architecture. Hanin and Rolnick, 2018

* How to Initialize your Network? Robust Initialization for WeightNorm & ResNets. Arpit et al., 2019
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Batch Normalization

“you want unit Gaussian activations? just make them so.”

consider a batch of activations at some layer.
To make each dimension unit gaussian, apply:

\/Var[:c(k)] this is a vanilla differentiable
function...

[loffe and Szegedy, 2015]
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Batch Normalization

“you want unit gaussian activations? just make them so.”

A

v

A

v

1. compute the empirical mean and variance
independently for each dimension.

2. Normalize
\/Var[x(k)]

[loffe and Szegedy, 2015]
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Batch Normalization

l

FC

v

BN

v

tanh

v

FC

v

BN

v

tanh

v

Usually inserted after Fully Connected /
(or Convolutional, as we’ll see soon)
layers, and before nonlinearity.

Problem: do we necessarily (k) (k)
want a unit Gaussian input to Zg(k) . —E[:E ]

a tanh layer? \/Va,r[x(k)]

[loffe and Szegedy, 2015]
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Batch Normalization

Normalize:
\/Var[x(k)]

And then allow the network to squash
the range if it wants to:

(k) — ~R) (k) 4 g(k)

Y

Note, the network can learn:

1 J

to recover the identity mapping.




Batch Normalization

Input: Values of x over a mini-batch: B = {1, };
Parameters to be learned: ~, 3

Output: {y; = BN, z(z;)}

§ m
“B(_E;xz

1 m
B = Y (i — pg)?
=1

// mini-batch mean

// mini-batch variance

Li — UB
Vop +€

Y; +— 7Z; + B = BN, g(z;)

// normalize

5/13\1;<—

// scale and shift

Improves gradient flow through
the network

Allows higher learning rates
Reduces the strong dependence
on initialization

Acts as a form of regularization in

a funny way, and slightly reduces
the need for dropout, maybe

[loffe and Szegedy, 2015]
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Batch Normalization

Input: Values of z over a mini-batch: B = {x1. . };
Parameters to be learned: ~, 3

Output: {y; = BN, sg(z;)}

m

1

B < — 4%

H m “ =
1=1

1 m
2 : 2
O'B(-—E E (ILZ'—/LB)
i=1
Li — 1B

Y; — 9%+ B = BN, 5(x:)

. &
l-i\

// mini-batch mean

// mini-batch variance

// normalize

// scale and shift

Note: at test time BatchNorm layer
functions differently:

The mean/std are not computed based
on the batch. Instead, a single fixed
empirical mean of activations during
training is used.

(e.g. can be estimated during training
with running averages)

[loffe and Szegedy, 2015]
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Other normalization schemes

Batch Norm Layer Norm

* Layer Normalization
Ba et al., Layer Normalization, arXiv preprint, 2016

* Weight Normalization
Salimans, Weight Normalization: A Simple Reparameterization
to Accelerate Training of Deep Neural Networks, NIPS, 2016

H, W
H, W

* |nstance Normalization C N C N

Ulyanov et al., Instance normalization: The missing ingredient
for fast stylization. arXiv preprint, 2016

Instance Norm Group Norm

e Batch Renormalization
loffe, Batch Renormalization: Towards Reducing Minibatch
Dependence in Batch-Normalized Models, NIPS 2017

H, W

* Group Renormalization
Wu and He, Group Normalization, ECCV 2018
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Improving Generalization



Preventing Overfitting

* Approach 1: Get more data! * Approach 3: Average many different
— Almost always the best bet if you have  models.
enough compute power to train on — Use models with different forms.
more data.

— Or train the model on different subsets

- Approach 2: Use a model that has of the training data (this is called

the right capacity: bagging”).
— enough to fit the true regularities. * Approach 4: (Bayesian) Use a single
— not enough to also fit spurious neural network architecture, but
regularities (if they are weaker). average the predictions made by

many different weight vectors.
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Some ways to limit the capacity of a neural net

* The capacity can be controlled in many ways:

* Architecture: Limit the number of hidden layers and the number of units per
layer.

» Early stopping: Start with small weights and stop the learning before it overfits.

* Weight-decay: Penalize large weights using penalties or constraints on their
squared values (L2 penalty) or absolute values (L1 penalty).

* Noise: Add noise to the weights or the activities.

e Typically, a combination of several of these methods is used.
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Regularization

* Neural networks typically have thousands, if not millions of parameters
— Usually, the dataset size smaller than the number of parameters

* Overfitting is a grave danger

* Proper weight regularization is crucial to avoid overfitting

0% o a,rgmein Z U(y,ar(x;01,...0))+2Q2(0)

(z,y)C(X,Y)

* Possible regularization methods
— | -regularization
— |,-regularization
— Dropout

53



|,-regularization

* Most important (or most popular) regularization

* . : A 2
0" < arg min Z Uy, ar(x;61,...0))+ 5 Z 16|
(z,y) S(X,Y) l

* The l,-regularization can pass inside the gradient descend update rule

0D = ) — (VoL + Ny) =
ALY =@ =X )0') — n, VoL

* 1is usually about 1071, 1072



|,-regularization

* |;-regularization is one of the most important techniques

X : . )\
0" < arg min Z Uy, ar(x;61,...0))+ 5 Z 160]]
(z,y) S(X,Y) l

* Also |,-regularization passes inside the gradient descend update rule
H(t)
6]

o+l — g(t) _ \p, VoL

* |;-regularization - sparse weights

* 1> more weights become 0
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Data augmentation [Krizhevsky2012]

Flip Random crop

Original

Contrast




Noise as a regularizer

» Suppose we add Gaussian noise to the inputs.

— The variance of the noise is amplified by the squared
weight before going into the next layer.

* In a simple net with a linear output unit directly
connected to the inputs, the amplified noise gets
added to the output.

* This makes an additive contribution to the squared
error.

— So minimizing the squared error tends to minimize the
squared weights when the inputs are noisy.

Not exactly equivalent to using an L2 weight penalty.

y; +N(O,wi26i2)

W;

X; +];7(O,O'i2)

Gaussian noise
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Multi-task Learning

* Improving generalization by pooling the examples arising e e
out of several tasks.

 Different supervised tasks share the same input x, as
well as some intermediate-level representation A"
h(shared)

— Task-specific parameters

h(2) h(3)

— Generic parameters (shared across all the tasks) jy (shared)
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Early stopping

e Start with small weights and stop the learning before it overfits.

* Think early stopping as a very efficient hyperparameter selection.
—The number of training steps is just another hyperparameter.

— - Training error

Underfitting zone| Overfitting zone . :
— Generalization error

\ g

Error

eneralization gap

0 Optimal Capacity
Capacity



Model Ensembles: The bias-variance trade-off

* When the amount of training data is limited, we get overfitting.
— Averaging the predictions of many different models is a good way to
reduce overfitting.
— |t helps most when the models make very different predictions.

* For regression, the squared error can be decomposed into a “bias” term
and a “variance” term.
— The bias term is big if the model has too little capacity to fit the data.

— The variance term is big if the model has so much capacity that it is good
at fitting the sampling error in each particular training set.

* By averaging away the variance we can use individual models with high
capacity. These models have high variance but low bias.
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Model Ensembles

* Train several different models
separately, then have all of the
models vote on the output for
test examples.

 Different models will usually not
make all the same errors on the
test set.

e Usually ~2% gain!

Original dataset

@DEe®

First resampled dataset

2e®>C

Second resampled dataset

@@ >

Second ensemble member
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Model Ensembles

* We can also get a small boost from averaging multiple model
checkpoints of a single model.

e keep track of (and use at test time) a running average
parameter vector:

e True:
data batch = dataset.sample data batch()
loss = network.forward(data batch)

dx = network.backward()
X += - learnlng rate * dx
X test = 0.995%x test + 0.005%X
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* “randomly set some neurons to zero in the forward pass”

Dropout

[Srivastava et al., 2014]

(b) After applying dropout.

a) Standard Neural Net
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Waaaait a second...
How could this possibly be a good idea?




Waaaait a second...
How could this possibly be a good idea?

Forces the network to have a redundant representation.

has an ear Vi
has a tail s
is furry X ——» Cat

1T

has claws /
mischievous X

look




Waaaait a second...

How could this possibly be a good idea?

Another interpretation:

* Dropoutis training a large
ensemble of models (that share
parameters).

 Each binary mask is one model,
gets trained on only ~one
datapoint.

Y6
OLC I

()
=) 9@9
S 9\}@

©,
©,

aﬁ%g,
ojo

Base network

Ploe®

o O oy ®

Ol e

oo

Ensemble of Sub-Networks
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At test time....

Ideally:
want to integrate out all the noise

Monte Carlo approximation:
do many forward passes with different
dropout masks, average all predictions
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At test time....

Can in fact do this with a single forward pass! (approximately)
Leave all input neurons turned on (no dropout).

wO wl
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At test time....

Can in fact do this with a single forward pass! (approximately)
Leave all input neurons turned on (no dropout).

(this can be shown to be an
approximation to evaluating the whole

WO wi ensemble)
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At test time....

Can in fact do this with a single forward pass! (approximately)

wO

wl

Leave all input neurons turned on (no dropout).

during test: a = wO*x + wl*y
during train:
E[a] =% * (WwO*0 + w1*0
wO0*0 + wl*y
wO*x + wl1*0
wO*x + wl*y)
=% * (2w0*x + 2 wl*y)
=% * (WO*x + wl*y)

With p=0.5, using all
inputs in the forward pass
would inflate the
activations by 2x from
what the network was
“used to” during training!
=> Have to compensate
by scaling the activations
back down by %
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We can do something approximate
analytically

def predict(X):

H1 = np.maximum(©, np.dot(Wl, X) + bl) * p
H2 = np.maximum(©, np.dot(W2, H1) + b2) * p
out = np.dot(W3, H2) + b3

At test time all neurons are active always
=> We must scale the activations so that for each neuron:
output at test time = expected output at training time
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Dropout Summary

""" Vanilla Dropout: Not recommended implementation (see notes below) """
p=20.5# probability of keeping a unit active. higher = less dropout

def train_step(X):
"X contains the data

# forward pass for example 3-layer neural network

H1 = np.maximum(©, np.dot(Wl, X) + bl)

Ul = np.random.rand(*Hl.shape) < p # 7irst dropout mask
Hl *= Ul # drop!

H2Z = np.maximum(©, np.dot(WZ, HI) + b2)

U2 = np.random.rand(*H2.shape) < p # second dropout mask
H2 *= U2 # drop!

out = np.dot(W3, H2) + b3

# Dackward pass: compute gradients... (not shown)
# perform parameter update... (not shown)

def predict(X):

# ensembled forward pass
Hl1 = np.maximum(0, np.dot(Wl, X) + bl)|* p # NOTE: scale the activations
H2 = np.maximum(®, np.dot(W2, Hl1) + b2) * p # NOTE: scale the activations

out = np.dot(W3, H2) + b3

drop in forward pass

scale at test time
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More common: “Inverted dropout”

def train_step(X):

# forward pass for example 3-layer neural network
H1 = np.maximum(©, np.dot(Wl, X) + bl)

Ul = (np.random.rand(*Hl.shape) < p) / p # first dropout mask. Notice /p!

Hl *= Ul # drop!

H2 = np.maximum(©, np.dot(W2, H1l) + b2)

U2 = (np.random.rand(*H2.shape) < p) / p # second dropout mask. Notice /p!

H2 *= U2 # drop!

out = np.dot(W3, H2) + b3

i1 U | v A

SIHIUWI

perform parameter update. .. (nof test time is unchanged!
def predict(X) . /
# ensembled forward pass

H1 = np.maximum(©, np.dot(Wl, X) + bl) # no scaling necessary
H2 = np.maximum(©, np.dot(W2, H1l) + b2)
out = np.dot(W3, H2) + b3



Optimization



Training a neural network, main loop:

while True:
weights grad = evaluate gradient(loss_fun, data, weights)
weights += - step size * weights grad # perform [ .
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Training a neural network, main loop:

while True:
weights grad = evaluate gradient(loss fun, data, weights)

simple gradient descent update
now: complicate.

weights += - step size * weights grad |# perform parameter upd
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Gradients

* When we write  Vyy L(JME mean the vector of partial derivatives wrt all
coordinates of W

dL OL oL 1"
Vw L(W) = e, ————
wlW) =50 awy ’an]
0L
where Wmeasures how fast the loss changes

| ,.;323\,
NN S e
N

vs. change in W,

* In figure: loss surface is blue, gradient vectors are red:

//

(A'X)}

X / &7
S

« - ol e G )

« When Vw L(W) =tdmeans all the partials are
zero, i.e. the loss is not changing in any direction.

* Note: arrows point out from a minimum, in toward
a maximum

Slide adapted from John Canny
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Optimization

* Visualizing gradient descent in one dimension:
C(w>

ped i Aiahon

300(1 Mt\’l.'c‘\llq'{(av\
1 OCq\
MU Mum

globa)
WM n i vuung
W/

>
* The regions where gradient descent converges to a particular local

minimum are called basins of attraction.
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Local Minima

* Since the optimization problem is non-convey, it probably has local
minima.

* This kept people from using neural nets for a long time, because they
wanted guarantees they were getting the optimal solution.

* But are local minima really a problem?

— Common view among practitioners: yes, there are local minima, but they’re
probably still pretty good.

* Maybe your network wastes some hidden units, but then you can just make it larger.
— It’s very hard to demonstrate the existence of local minima in practice.
— In any case, other optimization-related issues are much more important.

89



Saddle Points

oL
* At a saddle point, m@ even though

we are not at a minimum. Some
directions curve upwards, and others
curve downwards.

* When would saddle points be a problem?

— If we're exactly on the saddle point, then
we’re stuck.

— If we’re slightly to the side, then we can get
unstuck.
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Saddle Points

oL
* At a saddle point, ﬁvﬁ even though

we are not at a minimum. Some
directions curve upwards, and others
curve downwards.

* When would saddle points be a problem?

— If we're exactly on the saddle point, then
we’re stuck.

— If we’re slightly to the side, then we can get
unstuck.

Saddle points much more common in high dimensions!

Y. Dauphin et al. Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. In NIPS 2014
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Plateaux

A flat region is called a plateau. (Plural: plateaux)

| QA;,\‘,,QA.\N%&%A;@IMI

-

o
N
A\e®, ¢/
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Plateaux

* An important example of a plateau is a saturated unit. This is when it is
in the flat region of its activation function.

1.0

* If ¢'(z) is always close to zero, then the weights
will get stuck.

* If there is a ReLU unit whose input z is always 04
negative, the weight derivatives will be exactly O. 02
We call this a dead unit. ook
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Batch Gradient Descent

Algorithm 1 Batch Gradient Descent at lteration &
Require: Learning rate ¢,
Require: Initial Parameter 6
1: while stopping criteria not met do
2: Compute gradient estimate over NV examples:
5 g AV Y, L(f(x1;6),y0)
4: Apply Update: 0 < 0 — eg
5. end while

e Positive: Gradient estimates are stable

* Negative: Need to compute gradients over the entire training for one
update
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Gradient Descent
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Stochastic Batch Gradient Descent

Algorithm 2 Stochastic Gradient Descent at lteration k
Require: Learning rate ¢,
Require: Initial Parameter 6

1: while stopping criteria not met do

2: Sample example (x("), y(")) from training set

3 Compute gradient estimate:
4 g +VoL(f(x;0),y")
5
6:

Apply Update: 0 < 0 — €g
end while
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Minibatching

* Potential Problem: Gradient estimates can be very noisy

* Obvious Solution: Use larger mini-batches

* Advantage: Computation time per update does not depend on number
of training examples N

* This allows convergence on extremely large datasets

e See: Large Scale Learning with Stochastic Gradient Descent by Leon
Bottou
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Stochastic Gradient Descent
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Stochastic Gradient Descent
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Stochastic Gradient Descent
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Stochastic Gradient Descent
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Stochastic Gradient Descent
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Stochastic Gradient Descent
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7/ Z - momentum |]
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Image credits: Alec Radford "



Suppose loss function is steep vertically but shallow

Q: What is the trajectory along which we converge towards the
minimum with SGD?
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Suppose loss function is steep vertically but shallow
horizontally:

Q: What is the trajectory along which we converge towards the
minimum with SGD?
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Suppose loss function is steep vertically but shallow
horizontally:

Q: What is the trajectory along which we converge towards the
minimum with SGD?
very slow progress along flat direction, jitter along steep one
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Momentum update

SGD

Lir1 — Tt — OéVf(CEt)

while True:
dx = compute_gradient(x)
X += learning_rate * dx

SGD+Momentum
Vip1 = pv + V f(x4)

Lir1 — Lt — AUt

VX = 0

while True:

dx = compute_gradient(x)
vX = rho * vx + dx
X += learning_rate * vX
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Momentum update

SGD

Lir1 — Tt — OéVf(CEt>

while True:
dx = compute_gradient(x)
X += learning_rate * dx

SGD+Momentum
Vi1 = pug + V f(x)

Lt41 — Tt — QU4

VX = 0

while True:

dx = compute_gradient(x)
vX = rho * vx + dx
X += learning_rate * vx

* Build up “velocity” as a running mean of gradients

* Rho gives “friction”; typically rho=0.9 or 0.99
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SGD vs Momentum

] — sgd

- momentum

= Nag

- adagrad
adadelta
rmsprop

notice momentum
\SX\\\\\ overshooting the target, but

— overall getting to the
\\ minimum much faster.

|,-"f.r1".-"f’e"|-'
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SGD + Momentum

Momentum update

momentum

step
actual step

>

gradient
step
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Nesterov Momentum

Momentum update

momentum

step
actual step

gradient
step

momentum
step

vy = pvi—1 — €V f(0i—1 - pog_1))

Nesterov momentum update

“lookahead” gradient

step (bit different than

original)

actual step

Nesterov: the only difference...

0 = 0:1 + ve
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Nesterov Momentum

vir1 = pvy — aV f(xy + pvy)

Ti+1 = T¢ + Vg1
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Nesterov Momentum

Ut4+1

Lt+1

= pvy — aV f(xy + pvg

Tt + Vg1

Change of variables fit — Ty + o0

rearrange:
Ut—l—l — PU — QVf(jt)
Tep1 = Tp — pve + (1 + p)vgsa

Tt + Ver1 + p(Ver1 — Vy)

Annoying, usually we want
update in terms of Xy, V f(xy)

dx = compute_gradient(x)

old_ v = v

v = rho * v - learning_rate * dx
X += -rho * old_v + (1 + rho) * v
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sqgd
momentum

nag
adagrad
adadelta
rmsprop

BTN

100

nag =
Nesterov Accelerate
Gradient

|,,f,-’,1",—",-’




AdaGrad update

grad_squared = 0

while True:
dx = compute_gradient(x)
[grad_squared += dx * dx
X -= learning_rate * dx / (np.sqrt(grad_squared) + 1le-7)

Added element-wise scaling of the gradient based on the
historical sum of squares in each dimension

[Duchi et al., 2011]
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AdaGrad update

grad_squared = 0

while True:

dx = compute_gradient(x)
grad_squared += dx * dx
X -= learning_rate * dx / (np.sqgrt(grad_squared) + 1le-7)

Q: What happens with AdaGrad?

Weights that receive high gradients will have their effective learning
rate reduced, while weights that receive small updates will have
their effective learning rate increased! 126




AdaGrad update

grad_squared = 0

while True:
dx = compute_gradient(x)
[grad_squared += dx * dx
X -= learning_rate * dx / (np.sqrt(grad_squared) + 1le-7)

Q2: What happens to the step size over long time?

The adaptive learning scheme is monotonic, which is usually too
aggressive and stops the learning process too early.
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RMSProp

grad_squared = 0
while True:

AdaGrad dx = compute_gradient(x)
grad_squared += dx * dx
X -= learning_rate * dx / (np.sqrt(grad_squared) + 1le-7)

'

grad_squared = 0
while True:

RMSProp dx = compute_gradient(x)
grad_squared = decay_rate * grad_squared + (1 - decay_rate) * dx * dx
X -= learning_rate * dx / (np.sqrt(grad_squared) + 1le-7)

[Tieleman and Hinton, 2012]
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sgd
momentum
nag
adagrad
adadelta
rmsprop
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adagrad
rmsprop
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Adaptive Moment Estimation (Adam)
(incomplete, but close)

first moment = 0
second_moment = 0
while True:

dx = compute_gradient(x)

first_moment = betal * first_moment + (1
second_moment = beta

- betal) * dx momentum
secona_moment + - eta X ax

X -= learning_rate * first_moment / (np.sqrt(second_moment) + 1e-7)) AdaGrad/RI\/ISProp

Looks a bit like RMSProp with momentum

[Kingma and Ba, 2014]
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Adam (full form)

first_moment = ©

second_moment = 0

for t in range(num_iterations):
dx = compute_gradient(x)

first_moment = betal * first_moment + (1 - betal) * dx

momentum

second_moment = beta2 * second_moment + (1 - beta2) * dx * dx

first_unbias = first_moment / (1 - betal ** t)

second_unbias = second_moment / (1 - beta2 ** t)

X -= learning_rate * first_unbias / (np.sqrt(second_unbias) + 1e-7))

Bias correction
AdaGrad / RMSProp

The bias correction compensates for the fact that m,v are
initialized at zero and need some time to “warm up”.

[Kingma and Ba, 2014]
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Adam (full form)

first_moment = 0O

second_moment = 0

for t in range(num_iterations):
dx = compute gradient(x)

first_moment = betal * first_moment + (1 - betal) * dx

second_moment = beta2 * second_moment + (1 - beta2) * dx * dx

first_unbias = first_moment / (1 - betal ** t)
second_unbias = second_moment / (1 - beta2 ** t)

X -= learning_rate * first_unbias / (np.sqrt(second_unbias) + 1e-7))

The bias correction compensates for the fact that m,v are
initialized at zero and need some time to “warm up”.

momentum

Bias correction
AdaGrad / RMSProp

Adam with betal = 0.9,

beta2 = 0.999, and

learning _rate =1e-3 or 5e-4 is
a great starting point for many
models!

[Kingma and Ba, 2014]
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Optimization Algorithm Comparison

Tracks second

Tracks first . .
. moments Leaky second | Bias correction for
Algorithm moments . .
(Adaptive moments moment estimates
(Momentum) .
learning rates)
SGD X X X X
SGD+Momentum v X X X
Nesterov v X X X
AdaGrad X v X X
RMSProp X v V4 X
Adam v v v v
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L2 Regularization vs Weight Decay

Optimization Algorithm L2 Regularization

L(w) = Lagra(w) + Lieg (w) LWw) = Lagea(w) + A|w|*

g = VL(wy) g: = VL(Wy) = Vigara(We) + 24w,
sy = optimizer(g;) s¢ = optimizer(g;)

Wiyr1 = We — St Wiy1 = We — A5

L2 Regularization and Weight Decay are Weight Decay

equivalent for SGD, SGD+Momentum so people L(W) — Ldata (W)

often use the terms interchangeably!

9t = VLigaea(wy)

S = optimizer +
But they are not the same for adaptive methods t _p (gt)
(AdaGrad, RMSProp, Adam, etc) Wiy1 — Wy — ASt

[Loshchilov and Hutter, 2019]
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AdamW: Decoupled Weight Decay

Algorithm 2 Adam with L, regularization and Adam with decoupled weight decay (AdamW)

l: given o = 0.001, 5, = 0.9, 85 =0.999,e =10 >, A € R

2: initialize time step ¢ <— 0, parameter vector 8;—o € IR", first moment vector m;—o <— 0, second moment

vector v,—g <— 0, schedule multiplier n,.—¢ € IR

3: repeat

4. t4— -1

5. Vfi(60i—1) < SelectBatch(6;_1) > select batch and return the corresponding gradient
6: g, < Vfi(0i—1) [ +A0:=1

7. my < Bumi—1+ (1 — B1)g, > here and below all operations are element-wise
8 v < Bavi—1+ (1 — B2)g;

9:  my +—m/(1—p3%) > f31 is taken to the power of ¢
10: by < ve/(1— f35) > [z is taken to the power of ¢
11z ne < SetScheduleMultiplier(t) > can be fixed, decay, or also be used for warm restarts

12: 6« 00y —n, (o / (Vi + ) 201 )

13: until stopping criterion is met
14: return optimized parameters 6

[Loshchilov and Hutter, 2019]
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AdamW: Decoupled Weight Decay

Algorithm 2 ' Adam with L regularization and Adam with decoupled weight decay (AdamW)

[: given o = 0.001, 31 = 0.9,8, =0.999.¢e =10 > A € R

2: initialize time step ¢ <— 0, parameter vector 8;—o € IR", first moment vector m;—o <— 0, second moment
vector v,—qg < 0, schedule multiplier n;—¢ € IR

AdamW should probably be your “default”

optimizer for new problems

8: v Bavi—1+ (1— B2)g;

9:  my +—m/(1—p3%) > [ is taken to the power of ¢
10: Py v /(1 — f3%) > [32 is taken to the power of ¢
11z ne < SetScheduleMultiplier(t) > can be fixed, decay, or also be used for warm restarts
12:

0, < 01— (Otﬁit/(\/f’—tJr €) +A0; 1 )

13: until stopping criterion is met
14: return optimized parameters 6
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SGD, SGD+Momentum, Adagrad, RMSProp, Adam all

have learning rate as a hyperparameter.

loss

low learning rate

high learning rate

good learning rate

=> Learning rate decay over time!

step decay:

e.g. decay learning rate by half every few epochs.

exponential decay:

o= Qo et

1/t decay:
a=og/(1+ kt)
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SGD, SGD+Momentum, Adagrad, RMSProp, Adam all
have learning rate as a hyperparameter.

loss

low learning rate

high learning rate

good learning rate

4 |oss

Learning rate decay!

Epoch
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Take Home Messages



Optimization Tricks

e SGD with momentum, batch-normalization, and dropout usually works
very well

* Pick learning rate by running on a subset of the data

— Start with large learning rate & divide by 2 until loss does not diverge
— Decay learning rate by a factor of ~100 or more by the end of training

* Use RelLU nonlinearity

* Initialize parameters so that each feature across layers has similar
variance. Avoid units in saturation.

From Marc'Aurelio Ranzato, CVPR 2014 tutorial
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Ways To Improve Generalization

* Weight sharing (greatly reduce the number of parameters)

* Dropout
* Weight decay (L2, L1)

e Sparsity in the hidden units

From Marc'Aurelio Ranzato, CVPR 2014 tutorial 183



Next lecture:
Convolutional Neural
Networks
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