
Lecture #04 –Training Deep Neural Networks

visualization of mode connectivity for ResNet-20 with no skip connections on CIFAR-10 dataset, Javier Ideami

Aykut Erdem // Koç University // Fall 2024

COMP541
DEEP LEARNING

Previously on COMP541

• multi-layer perceptrons

• activation functions

• chain rule

• backpropagation algorithm

• computational graph

• distributed word representations

2

Image: Jose-Luis Olivares

Lecture overview

• data preprocessing and normalization

• weight initializations

• ways to improve generalization

• optimization

• babysitting the learning process

• hyperparameter selection

Disclaimer: Much of the material and slides for this lecture were borrowed from
—Fei-Fei Li, Andrej Karpathy and Justin Johnson’s CS231n class
—Roger Grosse’s CSC321 class
—Shubhendu Trivedi and Risi Kondor’s CMSC 35246 class

—Efstratios Gavves and Max Welling’s UvA deep learning class
—Hinton's Neural Networks for Machine Learning class
—Justin Johnson’s EECS 498/598 class

3

Paper presentations start next week

• Paper presentations will
start next week!

44

Activation Functions

5

6

Sigmoid

tanh tanh(x)

ReLU max(0,x)

Leaky ReLU

max(0.1x, x)

Maxout

ELU

Activation Functions

Activation Functions

• Squashes numbers to range [-1,1]

• zero centered (nice)

• still kills gradients when saturated :(

13

tanh(x)

[LeCun et al., 1991]

14

• Computes f(x) = max(0,x)

• Does not saturate (in +region)
• Very computationally efficient
• Converges much faster than sigmoid/tanh

in practice (e.g. 6x)

ReLU
(Rectified Linear Unit)

[Krizhevsky et al., 2012]

Activation Functions

15

• Computes f(x) = max(0,x)

• Does not saturate (in +region)
• Very computationally efficient
• Converges much faster than sigmoid/tanh

in practice (e.g. 6x)

• Not zero-centered output
• An annoyance:

 Hint: what is the gradient when x < 0?

ReLU
[Krizhevsky et al., 2012]

Activation Functions

ReLU
gate

x

16

DATA CLOUD
active ReLU

dead ReLU
will never activate
→ never update

17

DATA CLOUD
active ReLU

dead ReLU
will never activate
→ never update

→ people like to initialize ReLU
neurons with slightly positive
biases (e.g. 0.01)

18

Leaky ReLU

• Does not saturate
• Computationally efficient
• Converges much faster than sigmoid/tanh

in practice! (e.g. 6x)
• will not “die”.

[Mass et al., 2013]
[He et al., 2015]

Activation Functions

19

Leaky ReLU

• Does not saturate
• Computationally efficient
• Converges much faster than sigmoid/tanh

in practice! (e.g. 6x)
• will not “die”.

Activation Functions

Parametric Rectifier (PReLU)

backprop into \alpha
(parameter) [Mass et al., 2013]

[He et al., 2015]

Maxout “Neuron”

• Does not have the basic form of dot product -> nonlinearity

• Generalizes ReLU and Leaky ReLU

• Linear Regime! Does not saturate! Does not die!

20

Problem: doubles the number of parameters/neuron :(

[Goodfellow et al., 2013]

• All benefits of ReLU

• Does not die

• Closer to zero mean outputs

• Computation requires exp()

21

Exponential Linear Units (ELU)

[Clevert et al., 2015]

Activation Functions

23

Data Preprocessing and Normalization

Data preprocessing

• Scale input variables to have similar diagonal covariances

⎯ Similar covariances → more balanced rate of learning for different weights

⎯ Rescaling to 1 is a good choice, unless some dimensions are less important

24

UVA DEEP LEARNING COURSE –EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 22

o Scale input variables to have similar diagonal covariances 𝑐𝑖 = σ𝑗 (𝑥𝑖
(𝑗)
) 2

◦Similar covariances more balanced rate of learning for different weights

◦Rescaling to 1 is a good choice, unless some dimensions are less important

Data pre-processing

𝑥1 , 𝑥2 , 𝑥3 much dif ferent covariances

𝜃1

𝜃2

𝑥 = 𝑥1 , 𝑥2 , 𝑥3 𝑇 , 𝜃 = 𝜃1 ,𝜃2 ,𝜃3 𝑇 ,𝑎 = tanh(𝜃Τ𝑥)

𝜃3
Generated gradients ቚ

dℒ

𝑑𝜃 𝑥1 ,𝑥2 ,𝑥3
: much dif ferent

Gradient update harder: 𝜃(𝑡+ 1) = 𝜃(𝑡) − 𝜂𝑡

𝑑ℒ/𝑑θ1

𝑑ℒ/𝑑θ2

𝑑ℒ/𝑑θ3

→ much different covariances

Generated gradients : much different

Gradient update harder:

Data preprocessing

• Input variables should be as decorrelated as possible
⎯ Input variables are “more independent”

⎯ Network is forced to find non-trivial correlations between inputs

⎯ Decorrelated inputs → Better optimization

⎯ Obviously not the case when inputs are by definition correlated (sequences)

• Extreme case
− Extreme correlation (linear dependency) might cause problems [CAUTION]

25

Data preprocessing

26

(Assume X [NxD] is data matrix, each example in a row)

TLDR: In practice for Images: center only

29

- Subtract the mean image (e.g. AlexNet)

 (mean image = [32,32,3] array)

- Subtract per-channel mean (e.g. VGGNet)

 (mean along each channel = 3 numbers)

e.g. consider CIFAR-10 example with [32,32,3] images

Not common to normalize
variance, to do PCA or
whitening

30

Weight Initialization

Q: what happens when W=0 init is used?

31

First idea: Small random numbers

32

(Gaussian with zero mean and 1e-2 standard deviation)

First idea: Small random numbers

33

(Gaussian with zero mean and 1e-2 standard deviation)

Works ~okay for small networks, but can lead to
non-homogeneous distributions of activations
across the layers of a network.

34

Lets look at
some
activation
statistics

E.g. 10-layer net with 500
neurons on each layer, using
tanh non-linearities, and
initializing as described in last
slide.

36

All activations
become zero!

Q: think about the
backward pass. What
do the gradients look
like?

Hint: think about backward pass
for a W*X gate.

37

Almost all neurons
completely saturated,
either -1 and 1.
Gradients will be all
zero.

*1.0 instead of *0.01

38

“Xavier initialization”
[Glorot et al., 2010]

Reasonable initialization.
(Mathematical derivation
assumes linear activations)

• If a hidden unit has a big fan-in,
small changes on many of its
incoming weights can cause the
learning to overshoot.
⎯ We generally want smaller incoming

weights when the fan-in is big, so
initialize the weights to be
proportional to sqrt(fan-in).

• We can also scale the learning rate
the same way. More on this later!
 (from Hinton’s notes)

Keep the variance the same across
every layer!

39

but when using the ReLU nonlinearity it
breaks.

41

He et al., 2015
(note additional /2)

Proper initialization is an active area of
research…
• Understanding the difficulty of training deep feedforward neural networks. Glorot and Bengio, 2010

• Exact solutions to the nonlinear dynamics of learning in deep linear neural networks. Saxe et al, 2013

• Random walk initialization for training very deep feedforward networks. Sussillo and Abbott, 2014

• Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification. He et al., 2015

• Data-dependent Initializations of Convolutional Neural Networks. Krähenbühl et al., 2015

• All you need is a good init. Mishkin and Matas, 2015

• How to start training: The effect of initialization and architecture. Hanin and Rolnick, 2018

• How to Initialize your Network? Robust Initialization for WeightNorm & ResNets. Arpit et al., 2019

…

42

Batch Normalization

43

“you want unit Gaussian activations? just make them so.”

consider a batch of activations at some layer.
To make each dimension unit gaussian, apply:

this is a vanilla differentiable
function...

[Ioffe and Szegedy, 2015]

Batch Normalization

44

“you want unit gaussian activations? just make them so.”

XN

D

1. compute the empirical mean and variance
independently for each dimension.

2. Normalize

[Ioffe and Szegedy, 2015]

45

FC

BN

tanh

FC

BN

tanh

...

Usually inserted after Fully Connected /
(or Convolutional, as we’ll see soon)
layers, and before nonlinearity.

Problem: do we necessarily
want a unit Gaussian input to
a tanh layer?

Batch Normalization

[Ioffe and Szegedy, 2015]

46

And then allow the network to squash
the range if it wants to:

Note, the network can learn:

to recover the identity mapping.

Normalize:

Batch Normalization

[Ioffe and Szegedy, 2015]

47

• Improves gradient flow through
the network

• Allows higher learning rates

• Reduces the strong dependence
on initialization

• Acts as a form of regularization in
a funny way, and slightly reduces
the need for dropout, maybe

Batch Normalization

[Ioffe and Szegedy, 2015]

48

Note: at test time BatchNorm layer
functions differently:

The mean/std are not computed based
on the batch. Instead, a single fixed
empirical mean of activations during
training is used.

(e.g. can be estimated during training
with running averages)

Batch Normalization

[Ioffe and Szegedy, 2015]

Other normalization schemes

• Layer Normalization
Ba et al., Layer Normalization, arXiv preprint, 2016

• Weight Normalization
Salimans, Weight Normalization: A Simple Reparameterization
to Accelerate Training of Deep Neural Networks, NIPS, 2016

• Instance Normalization
Ulyanov et al., Instance normalization: The missing ingredient
for fast stylization. arXiv preprint, 2016

• Batch Renormalization
Ioffe, Batch Renormalization: Towards Reducing Minibatch
Dependence in Batch-Normalized Models, NIPS 2017

• Group Renormalization
Wu and He, Group Normalization, ECCV 2018

49

H
,

W
H

,
W

H
,

W
H

,
W

C C NN

C C NN

Batch Norm Layer Norm

Instance Norm Group Norm

50

Improving Generalization

Preventing Overfitting

• Approach 1: Get more data!
⎯ Almost always the best bet if you have

enough compute power to train on
more data.

• Approach 2: Use a model that has
the right capacity:
⎯ enough to fit the true regularities.

⎯ not enough to also fit spurious
regularities (if they are weaker).

• Approach 3: Average many different
models.
⎯ Use models with different forms.

⎯ Or train the model on different subsets
of the training data (this is called
“bagging”).

• Approach 4: (Bayesian) Use a single
neural network architecture, but
average the predictions made by
many different weight vectors.

51

Some ways to limit the capacity of a neural net

• The capacity can be controlled in many ways:
• Architecture: Limit the number of hidden layers and the number of units per

layer.

• Early stopping: Start with small weights and stop the learning before it overfits.

• Weight-decay: Penalize large weights using penalties or constraints on their
squared values (L2 penalty) or absolute values (L1 penalty).

• Noise: Add noise to the weights or the activities.

• Typically, a combination of several of these methods is used.

52

Regularization

• Neural networks typically have thousands, if not millions of parameters
⎯ Usually, the dataset size smaller than the number of parameters

• Overfitting is a grave danger

• Proper weight regularization is crucial to avoid overfitting

• Possible regularization methods

⎯ l2-regularization

⎯ l1-regularization

⎯ Dropout
53

l2-regularization

• Most important (or most popular) regularization

• The l2-regularization can pass inside the gradient descend update rule

• 𝜆 is usually about 10−1, 10−2
54

“Weight decay”, because
 weights get smaller

l1-regularization

• l1-regularization is one of the most important techniques

• Also l1-regularization passes inside the gradient descend update rule

• l1-regularization → sparse weights

• 𝜆 ↑ → more weights become 0
55

Sign function

Data augmentation [Krizhevsky2012]

56

Original

Flip

Contrast Tint

Random crop

Noise as a regularizer

• Suppose we add Gaussian noise to the inputs.

⎯ The variance of the noise is amplified by the squared
weight before going into the next layer.

• In a simple net with a linear output unit directly
connected to the inputs, the amplified noise gets
added to the output.

• This makes an additive contribution to the squared
error.
⎯ So minimizing the squared error tends to minimize the

squared weights when the inputs are noisy.

57

Not exactly equivalent to using an L2 weight penalty.

Multi-task Learning

• Improving generalization by pooling the examples arising
out of several tasks.

• Different supervised tasks share the same input x, as
well as some intermediate-level representation
h(shared)
− Task-specific parameters

− Generic parameters (shared across all the tasks)

58

Early stopping

• Start with small weights and stop the learning before it overfits.

• Think early stopping as a very efficient hyperparameter selection.

− The number of training steps is just another hyperparameter.

59

Model Ensembles: The bias-variance trade-off

• When the amount of training data is limited, we get overfitting.
– Averaging the predictions of many different models is a good way to

 reduce overfitting.

– It helps most when the models make very different predictions.

• For regression, the squared error can be decomposed into a “bias” term
and a “variance” term.

– The bias term is big if the model has too little capacity to fit the data.

– The variance term is big if the model has so much capacity that it is good
 at fitting the sampling error in each particular training set.

• By averaging away the variance we can use individual models with high
capacity. These models have high variance but low bias.

60

Model Ensembles

• Train several different models
separately, then have all of the
models vote on the output for
test examples.

• Different models will usually not
make all the same errors on the
test set.

• Usually ~2% gain!

61

Model Ensembles

• We can also get a small boost from averaging multiple model
checkpoints of a single model.

• keep track of (and use at test time) a running average
parameter vector:

62

Dropout

63

[Srivastava et al., 2014]

• “randomly set some neurons to zero in the forward pass”

65

Waaaait a second…
How could this possibly be a good idea?

66

Forces the network to have a redundant representation.

has an ear

has a tail

is furry

has claws

mischievous
look

cat
score

X

X

X

Waaaait a second…
How could this possibly be a good idea?

Waaaait a second…
How could this possibly be a good idea?

67

Another interpretation:
• Dropout is training a large

ensemble of models (that share
parameters).

• Each binary mask is one model,
gets trained on only ~one
datapoint.

68

Ideally:
want to integrate out all the noise

Monte Carlo approximation:
do many forward passes with different
dropout masks, average all predictions

At test time….

At test time….

69

Can in fact do this with a single forward pass! (approximately)

x y

Leave all input neurons turned on (no dropout).

a

w0 w1

At test time….

70

Can in fact do this with a single forward pass! (approximately)

x y

Leave all input neurons turned on (no dropout).

a

w0 w1

(this can be shown to be an
approximation to evaluating the whole
ensemble)

At test time….

73

Can in fact do this with a single forward pass! (approximately)

x y

Leave all input neurons turned on (no dropout).

during test: a = w0*x + w1*y
during train:

E[a] = ¼ * (w0*0 + w1*0
 w0*0 + w1*y

 w0*x + w1*0
 w0*x + w1*y)

 = ¼ * (2 w0*x + 2 w1*y)
 = ½ * (w0*x + w1*y)

a

With p=0.5, using all
inputs in the forward pass
would inflate the
activations by 2x from
what the network was
“used to” during training!
=> Have to compensate
by scaling the activations
back down by ½

w0 w1

We can do something approximate
analytically

74

At test time all neurons are active always
=> We must scale the activations so that for each neuron:
output at test time = expected output at training time

75

drop in forward pass

scale at test time

Dropout Summary

More common: “Inverted dropout”

76

test time is unchanged!

84

Optimization

Training a neural network, main loop:

85

86

simple gradient descent update
now: complicate.

Training a neural network, main loop:

Gradients

87Slide adapted from John Canny

• When we write , we mean the vector of partial derivatives wrt all
coordinates of :

where measures how fast the loss changes

vs. change in

• In figure: loss surface is blue, gradient vectors are red:

• When , it means all the partials are
zero, i.e. the loss is not changing in any direction.

• Note: arrows point out from a minimum, in toward
a maximum

Optimization

• Visualizing gradient descent in one dimension:

• The regions where gradient descent converges to a particular local
minimum are called basins of attraction.

88

Local Minima

• Since the optimization problem is non-convex, it probably has local
minima.

• This kept people from using neural nets for a long time, because they
wanted guarantees they were getting the optimal solution.

• But are local minima really a problem?

− Common view among practitioners: yes, there are local minima, but they’re
probably still pretty good.
• Maybe your network wastes some hidden units, but then you can just make it larger.

− It’s very hard to demonstrate the existence of local minima in practice.

− In any case, other optimization-related issues are much more important.

89

Saddle Points

• At a saddle point, = 0 even though

we are not at a minimum. Some
directions curve upwards, and others
curve downwards.

• When would saddle points be a problem?
− If we’re exactly on the saddle point, then

we’re stuck.

− If we’re slightly to the side, then we can get
unstuck.

90

Saddle points

At a saddle point @C
@✓ = 0, even though we are not at a minimum. Some

directions curve upwards, and others curve downwards.

When would saddle points be a problem?

If we’re exactly on the saddle point, then we’re stuck.

If we’re slightly to the side, then we can get unstuck.

Roger Grosse CSC321 Lecture 7: Opt imizat ion 9 / 25

Saddle Points

• At a saddle point, = 0 even though

we are not at a minimum. Some
directions curve upwards, and others
curve downwards.

• When would saddle points be a problem?
− If we’re exactly on the saddle point, then

we’re stuck.

− If we’re slightly to the side, then we can get
unstuck.

91

Saddle points

At a saddle point @C
@✓ = 0, even though we are not at a minimum. Some

directions curve upwards, and others curve downwards.

When would saddle points be a problem?

If we’re exactly on the saddle point, then we’re stuck.

If we’re slightly to the side, then we can get unstuck.

Roger Grosse CSC321 Lecture 7: Opt imizat ion 9 / 25

Saddle points much more common in high dimensions!
Y. Dauphin et al. Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. In NIPS 2014

Plateaux

• A flat region is called a plateau. (Plural: plateaux)

92

Plateaux

A flat region is called a plateau. (Plural: plateaux)

Can you think of examples?

0–1 loss

hard threshold act ivat ions

logist ic activat ions & least squares

Roger Grosse CSC321 Lecture 7: Opt imizat ion 11 / 25

Plateaux

• An important example of a plateau is a saturated unit. This is when it is
in the flat region of its activation function.

• If φ′(zi) is always close to zero, then the weights
will get stuck.

• If there is a ReLU unit whose input zi is always
negative, the weight derivatives will be exactly 0.
We call this a dead unit.

93

Plateaux

An important example of a plateau is a saturated unit. This is when
it is in the flat region of its activation function. Recall the backprop
equation for the weight derivative:

zi = hi φ
0(z)

wij = zi xj

If φ0(zi) is always close to zero, then the weights will get stuck.

If there is a ReLU unit whose input zi is always negative, the weight
derivat ives will be exactly 0. We call this a dead unit .

Roger Grosse CSC321 Lecture 7: Opt imizat ion 12 / 25

Loss surfaces in high-dimensional problems are
very complicated!

94

Batch Gradient Descent

• Positive: Gradient estimates are stable

• Negative: Need to compute gradients over the entire training for one
update

95

Gradient Descent

96

Gradient Descent

97

Gradient Descent

98

Gradient Descent

99

Gradient Descent

100

Gradient Descent

101

Stochastic Batch Gradient Descent

102

Minibatching

• Potential Problem: Gradient estimates can be very noisy

• Obvious Solution: Use larger mini-batches

• Advantage: Computation time per update does not depend on number
of training examples N

• This allows convergence on extremely large datasets

• See: Large Scale Learning with Stochastic Gradient Descent by Leon
Bottou

103

Stochastic Gradient Descent

104

Stochastic Gradient Descent

105

Stochastic Gradient Descent

106

Stochastic Gradient Descent

107

Stochastic Gradient Descent

108

Stochastic Gradient Descent

109

Stochastic Gradient Descent

110

Stochastic Gradient Descent

111

Stochastic Gradient Descent

112

113
Image credits: Alec Radford

114

Q: What is the trajectory along which we converge towards the
minimum with SGD?

Suppose loss function is steep vertically but shallow
horizontally:

115

Q: What is the trajectory along which we converge towards the
minimum with SGD?

Suppose loss function is steep vertically but shallow
horizontally:

116

Q: What is the trajectory along which we converge towards the
minimum with SGD?
very slow progress along flat direction, jitter along steep one

Suppose loss function is steep vertically but shallow
horizontally:

Momentum update

117

SGD SGD+Momentum

Momentum update

118

SGD SGD+Momentum

• Build up “velocity” as a running mean of gradients

• Rho gives “friction”; typically rho=0.9 or 0.99

119

SGD vs Momentum

notice momentum
overshooting the target, but
overall getting to the
minimum much faster.

120

SGD + Momentum

gradient
step

momentum
step

actual step

Momentum update

121

Nesterov: the only difference...

Nesterov Momentum

gradient
step

momentum
step

actual step

momentum
step

“lookahead” gradient
step (bit different than
original)

actual step

Momentum update Nesterov momentum update

Nesterov Momentum

122

Change of variables and
rearrange:

Nesterov Momentum

123

Annoying, usually we want
update in terms of

124

nag =
Nesterov Accelerated
Gradient

125

AdaGrad update

Added element-wise scaling of the gradient based on the
historical sum of squares in each dimension

[Duchi et al., 2011]

126

Q: What happens with AdaGrad?

AdaGrad update

Weights that receive high gradients will have their effective learning
rate reduced, while weights that receive small updates will have
their effective learning rate increased!

127

Q2: What happens to the step size over long time?

AdaGrad update

The adaptive learning scheme is monotonic, which is usually too
aggressive and stops the learning process too early.

RMSProp

128
[Tieleman and Hinton, 2012]

AdaGrad

RMSProp

129

adagrad
rmsprop

Adaptive Moment Estimation (Adam)
(incomplete, but close)

130

momentum

AdaGrad / RMSProp

Looks a bit like RMSProp with momentum

[Kingma and Ba, 2014]

Adam (full form)

131

momentum

AdaGrad / RMSProp

[Kingma and Ba, 2014]

Bias correction

The bias correction compensates for the fact that m,v are
initialized at zero and need some time to “warm up”.

Adam (full form)

132

momentum

AdaGrad / RMSProp

[Kingma and Ba, 2014]

Bias correction

The bias correction compensates for the fact that m,v are
initialized at zero and need some time to “warm up”.

Adam with beta1 = 0.9,
beta2 = 0.999, and
learning_rate = 1e-3 or 5e-4 is
a great starting point for many
models!

Optimization Algorithm Comparison

133

Algorithm
Tracks first
moments
(Momentum)

Tracks second
moments
(Adaptive
learning rates)

Leaky second
moments

Bias correction for
moment estimates

SGD 𝙭 𝙭 𝙭 𝙭

SGD+Momentum ✓ 𝙭 𝙭 𝙭

Nesterov ✓ 𝙭 𝙭 𝙭

AdaGrad 𝙭 ✓ 𝙭 𝙭

RMSProp 𝙭 ✓ ✓ 𝙭

Adam ✓ ✓ ✓ ✓

L2 Regularization vs Weight Decay

138

L2 Regularization and Weight Decay are
equivalent for SGD, SGD+Momentum so people
often use the terms interchangeably!

But they are not the same for adaptive methods
(AdaGrad, RMSProp, Adam, etc)

[Loshchilov and Hutter, 2019]

Optimization Algorithm L2 Regularization

Weight Decay

AdamW: Decoupled Weight Decay

139
[Loshchilov and Hutter, 2019]

AdamW: Decoupled Weight Decay

140
[Loshchilov and Hutter, 2019]

AdamW should probably be your “default”
optimizer for new problems

141

=> Learning rate decay over time!

step decay:
e.g. decay learning rate by half every few epochs.

exponential decay:

1/t decay:

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all
have learning rate as a hyperparameter.

142

=> Learning rate decay over time!

step decay:
e.g. decay learning rate by half every few epochs.

exponential decay:

1/t decay:

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all
have learning rate as a hyperparameter.

181

Take Home Messages

Optimization Tricks

• SGD with momentum, batch-normalization, and dropout usually works
very well

• Pick learning rate by running on a subset of the data

– Start with large learning rate & divide by 2 until loss does not diverge

– Decay learning rate by a factor of ~100 or more by the end of training

• Use ReLU nonlinearity

• Initialize parameters so that each feature across layers has similar
variance. Avoid units in saturation.

182From Marc'Aurelio Ranzato, CVPR 2014 tutorial

Ways To Improve Generalization

• Weight sharing (greatly reduce the number of parameters)

• Dropout

• Weight decay (L2, L1)

• Sparsity in the hidden units

183From Marc'Aurelio Ranzato, CVPR 2014 tutorial

184

Next lecture:
Convolutional Neural

Networks

	Slide 1: Lecture #04 –Training Deep Neural Networks
	Slide 2: Previously on COMP541
	Slide 3: Lecture overview
	Slide 4: Paper presentations start next week
	Slide 5: Activation Functions
	Slide 6: Activation Functions
	Slide 13: Activation Functions
	Slide 14: Activation Functions
	Slide 15: Activation Functions
	Slide 16
	Slide 17
	Slide 18: Activation Functions
	Slide 19: Activation Functions
	Slide 20: Maxout “Neuron”
	Slide 21: Activation Functions
	Slide 23
	Slide 24: Data preprocessing
	Slide 25: Data preprocessing
	Slide 26: Data preprocessing
	Slide 29: TLDR: In practice for Images: center only
	Slide 30
	Slide 31: Q: what happens when W=0 init is used?
	Slide 32: First idea: Small random numbers
	Slide 33: First idea: Small random numbers
	Slide 34
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 41
	Slide 42: Proper initialization is an active area of research…
	Slide 43: Batch Normalization
	Slide 44: Batch Normalization
	Slide 45: Batch Normalization
	Slide 46: Batch Normalization
	Slide 47: Batch Normalization
	Slide 48: Batch Normalization
	Slide 49: Other normalization schemes
	Slide 50
	Slide 51: Preventing Overfitting
	Slide 52: Some ways to limit the capacity of a neural net
	Slide 53: Regularization
	Slide 54: l2-regularization
	Slide 55: l1-regularization
	Slide 56: Data augmentation [Krizhevsky2012]
	Slide 57: Noise as a regularizer
	Slide 58: Multi-task Learning
	Slide 59: Early stopping
	Slide 60: Model Ensembles: The bias-variance trade-off
	Slide 61: Model Ensembles
	Slide 62: Model Ensembles
	Slide 63: Dropout
	Slide 65: Waaaait a second… How could this possibly be a good idea?
	Slide 66: Waaaait a second… How could this possibly be a good idea?
	Slide 67: Waaaait a second… How could this possibly be a good idea?
	Slide 68: At test time….
	Slide 69: At test time….
	Slide 70: At test time….
	Slide 73: At test time….
	Slide 74: We can do something approximate analytically
	Slide 75: Dropout Summary
	Slide 76: More common: “Inverted dropout”
	Slide 84
	Slide 85: Training a neural network, main loop:
	Slide 86: Training a neural network, main loop:
	Slide 87: Gradients
	Slide 88: Optimization
	Slide 89: Local Minima
	Slide 90: Saddle Points
	Slide 91: Saddle Points
	Slide 92: Plateaux
	Slide 93: Plateaux
	Slide 94: Loss surfaces in high-dimensional problems are very complicated!
	Slide 95: Batch Gradient Descent
	Slide 96: Gradient Descent
	Slide 97: Gradient Descent
	Slide 98: Gradient Descent
	Slide 99: Gradient Descent
	Slide 100: Gradient Descent
	Slide 101: Gradient Descent
	Slide 102: Stochastic Batch Gradient Descent
	Slide 103: Minibatching
	Slide 104: Stochastic Gradient Descent
	Slide 105: Stochastic Gradient Descent
	Slide 106: Stochastic Gradient Descent
	Slide 107: Stochastic Gradient Descent
	Slide 108: Stochastic Gradient Descent
	Slide 109: Stochastic Gradient Descent
	Slide 110: Stochastic Gradient Descent
	Slide 111: Stochastic Gradient Descent
	Slide 112: Stochastic Gradient Descent
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117: Momentum update
	Slide 118: Momentum update
	Slide 119
	Slide 120: SGD + Momentum
	Slide 121: Nesterov Momentum
	Slide 122: Nesterov Momentum
	Slide 123: Nesterov Momentum
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128: RMSProp
	Slide 129
	Slide 130: Adaptive Moment Estimation (Adam) (incomplete, but close)
	Slide 131: Adam (full form)
	Slide 132: Adam (full form)
	Slide 133: Optimization Algorithm Comparison
	Slide 138: L2 Regularization vs Weight Decay
	Slide 139: AdamW: Decoupled Weight Decay
	Slide 140: AdamW: Decoupled Weight Decay
	Slide 141
	Slide 142
	Slide 181
	Slide 182: Optimization Tricks
	Slide 183: Ways To Improve Generalization
	Slide 184: Next lecture: Convolutional Neural Networks

