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Previously on COMP541

• multi-layer perceptrons

• activation functions

• chain rule

• backpropagation algorithm

• computational graph

• distributed word representations
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Lecture overview

• data preprocessing and normalization

• weight initializations

• ways to improve generalization

• optimization 

• babysitting the learning process

• hyperparameter selection

Disclaimer: Much of the material and slides for this lecture were borrowed from 
—Fei-Fei Li, Andrej Karpathy and Justin Johnson’s CS231n class
—Roger Grosse’s CSC321 class
—Shubhendu Trivedi and Risi Kondor’s CMSC 35246 class 

—Efstratios Gavves and Max Welling’s UvA deep learning class
—Hinton's Neural Networks for Machine Learning class
—Justin Johnson’s EECS 498/598 class
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Paper presentations start next week

• Paper presentations will 
start next week!

44



Activation Functions
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Sigmoid

tanh    tanh(x)

ReLU    max(0,x)

Leaky ReLU

max(0.1x, x)

Maxout

ELU

Activation Functions



Activation Functions

• Squashes numbers to range [-1,1]

• zero centered (nice)

• still kills gradients when saturated :(
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tanh(x)

[LeCun et al., 1991]
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• Computes f(x) = max(0,x)

• Does not saturate (in +region)
• Very computationally efficient
• Converges much faster than sigmoid/tanh 

in practice (e.g. 6x)

ReLU
(Rectified Linear Unit)

[Krizhevsky et al., 2012]

Activation Functions



15

• Computes f(x) = max(0,x)

• Does not saturate (in +region)
• Very computationally efficient
• Converges much faster than sigmoid/tanh 

in practice (e.g. 6x)

• Not zero-centered output
• An annoyance:

 Hint: what is the gradient when x < 0?

ReLU
[Krizhevsky et al., 2012]

Activation Functions

ReLU 
gate

x
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DATA CLOUD
active ReLU

dead ReLU
will never activate 
→ never update
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DATA CLOUD
active ReLU

dead ReLU
will never activate 
→ never update

→ people like to initialize ReLU 
neurons with slightly positive 
biases (e.g. 0.01)
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Leaky ReLU

• Does not saturate
• Computationally efficient
• Converges much faster than sigmoid/tanh 

in practice! (e.g. 6x)
• will not “die”.

[Mass et al., 2013]
[He et al., 2015]

Activation Functions
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Leaky ReLU

• Does not saturate
• Computationally efficient
• Converges much faster than sigmoid/tanh 

in practice! (e.g. 6x)
• will not “die”.

Activation Functions

Parametric Rectifier (PReLU)

backprop into \alpha
(parameter) [Mass et al., 2013]

[He et al., 2015]



Maxout “Neuron”

• Does not have the basic form of dot product -> nonlinearity

• Generalizes ReLU and Leaky ReLU 

• Linear Regime! Does not saturate! Does not die!
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Problem: doubles the number of parameters/neuron :(

[Goodfellow et al., 2013]



• All benefits of ReLU

• Does not die

• Closer to zero mean outputs

• Computation requires exp()

21

Exponential Linear Units (ELU)

[Clevert et al., 2015]

Activation Functions
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Data Preprocessing and Normalization



Data preprocessing

• Scale input variables to have similar diagonal covariances

⎯ Similar covariances → more balanced rate of learning for different weights 

⎯ Rescaling to 1 is a good choice, unless some dimensions are less important 

24

UVA DEEP LEARNING COURSE –EFSTRATIOS GAVVES & MAX WELLING - DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 22

o Scale input variables to have similar diagonal covariances 𝑐𝑖 = σ𝑗 (𝑥𝑖
( 𝑗 )
) 2

◦Similar covariances more balanced rate of learning for different weights

◦Rescaling to 1 is a good choice, unless some dimensions are less important

Data pre-processing

𝑥1 , 𝑥2 , 𝑥3 much dif ferent covariances

𝜃1

𝜃2

𝑥 = 𝑥1 , 𝑥2 , 𝑥3 𝑇 , 𝜃 = 𝜃1 ,𝜃2 ,𝜃3 𝑇 ,𝑎 = tanh(𝜃Τ𝑥)

𝜃3
Generated gradients ቚ

dℒ

𝑑𝜃 𝑥1 ,𝑥2 ,𝑥3
: much dif ferent

Gradient update harder: 𝜃(𝑡+ 1) = 𝜃(𝑡) − 𝜂𝑡

𝑑ℒ/𝑑θ1

𝑑ℒ/𝑑θ2

𝑑ℒ/𝑑θ3

→ much different covariances 

Generated gradients                        : much different

Gradient update harder: 



Data preprocessing

• Input variables should be as decorrelated as possible
⎯ Input variables are “more independent”

⎯ Network is forced to find non-trivial correlations between inputs

⎯ Decorrelated inputs → Better optimization

⎯ Obviously not the case when inputs are by definition correlated (sequences) 

• Extreme case
− Extreme correlation (linear dependency) might cause problems [CAUTION] 
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Data preprocessing
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(Assume X [NxD] is data matrix, each example in a row)



TLDR: In practice for Images: center only
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- Subtract the mean image (e.g. AlexNet)

 (mean image = [32,32,3] array)

- Subtract per-channel mean (e.g. VGGNet)

 (mean along each channel = 3 numbers)

e.g. consider CIFAR-10 example with [32,32,3] images

Not common to normalize 
variance, to do PCA or 
whitening
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Weight Initialization



Q: what happens when W=0 init is used?

31



First idea: Small random numbers 
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(Gaussian with zero mean and 1e-2 standard deviation)



First idea: Small random numbers 
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(Gaussian with zero mean and 1e-2 standard deviation)

Works ~okay for small networks, but can lead to 
non-homogeneous distributions of activations 
across the layers of a network.
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Lets look at 
some 
activation 
statistics

E.g. 10-layer net with 500 
neurons on each layer, using 
tanh non-linearities, and 
initializing as described in last 
slide.
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All activations 
become zero!

Q: think about the 
backward pass. What 
do the gradients look 
like?

Hint: think about backward pass 
for a W*X gate.
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Almost all neurons 
completely saturated, 
either -1 and 1. 
Gradients will be all 
zero.

*1.0 instead of *0.01
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“Xavier initialization”
[Glorot et al., 2010]

Reasonable initialization.
(Mathematical derivation 
assumes linear activations)

• If a hidden unit has a big fan-in, 
small changes on many of its 
incoming weights can cause the 
learning to overshoot. 
⎯ We generally want smaller incoming 

weights when the fan-in is big, so 
initialize the weights to be 
proportional to sqrt(fan-in). 

• We can also scale the learning rate 
the same way. More on this later!
               (from Hinton’s notes)

Keep the variance the same across
every layer!
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but when using the ReLU nonlinearity it 
breaks.
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He et al., 2015
(note additional /2)



Proper initialization is an active area of 
research…
• Understanding the difficulty of training deep feedforward neural networks. Glorot and Bengio, 2010

• Exact solutions to the nonlinear dynamics of learning in deep linear neural networks. Saxe et al, 2013

• Random walk initialization for training very deep feedforward networks. Sussillo and Abbott, 2014

• Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification. He et al., 2015

• Data-dependent Initializations of Convolutional Neural Networks. Krähenbühl et al., 2015

• All you need is a good init. Mishkin and Matas, 2015

• How to start training: The effect of initialization and architecture. Hanin and Rolnick, 2018

• How to Initialize your Network? Robust Initialization for WeightNorm & ResNets. Arpit et al., 2019

…
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Batch Normalization

43

“you want unit Gaussian activations? just make them so.”

consider a batch of activations at some layer. 
To make each dimension unit gaussian, apply:

this is a vanilla differentiable 
function...

[Ioffe and Szegedy, 2015]



Batch Normalization

44

“you want unit gaussian activations? just make them so.”

XN

D

1. compute the empirical mean and variance 
independently for each dimension.

2. Normalize

[Ioffe and Szegedy, 2015]
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FC

BN

tanh

FC

BN

tanh

...

Usually inserted after Fully Connected / 
(or Convolutional, as we’ll see soon) 
layers, and before nonlinearity.

Problem: do we necessarily 
want a unit Gaussian input to 
a tanh layer?

Batch Normalization

[Ioffe and Szegedy, 2015]
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And then allow the network to squash 
the range if it wants to:

Note, the network can learn:

to recover the identity mapping.

Normalize:

Batch Normalization

[Ioffe and Szegedy, 2015]
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• Improves gradient flow through 
the network

• Allows higher learning rates

• Reduces the strong dependence 
on initialization

• Acts as a form of regularization in 
a funny way, and slightly reduces 
the need for dropout, maybe

Batch Normalization

[Ioffe and Szegedy, 2015]



48

Note: at test time BatchNorm layer 
functions differently:

The mean/std are not computed based 
on the batch. Instead, a single fixed 
empirical mean of activations during 
training is used.

(e.g. can be estimated during training 
with running averages)

Batch Normalization

[Ioffe and Szegedy, 2015]



Other normalization schemes

• Layer Normalization
Ba et al., Layer Normalization, arXiv preprint, 2016 

• Weight Normalization 
Salimans, Weight Normalization: A Simple Reparameterization 
to Accelerate Training of Deep Neural Networks, NIPS, 2016 

• Instance Normalization
Ulyanov et al., Instance normalization: The missing ingredient
for fast stylization. arXiv preprint, 2016

• Batch Renormalization
Ioffe, Batch Renormalization: Towards Reducing Minibatch 
Dependence in Batch-Normalized Models, NIPS 2017

• Group Renormalization
Wu and He, Group Normalization, ECCV 2018
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Improving Generalization



Preventing Overfitting

• Approach 1: Get more data!
⎯ Almost always the best bet if you have 

enough compute power to train on 
more data. 

• Approach 2: Use a model that has 
the right capacity: 
⎯ enough to fit the true regularities. 

⎯ not enough to also fit spurious 
regularities (if they are weaker). 

• Approach 3: Average many different 
models. 
⎯ Use models with different forms. 

⎯ Or train the model on different subsets 
of the training data (this is called 
“bagging”). 

• Approach 4: (Bayesian) Use a single 
neural network architecture, but 
average the predictions made by 
many different weight vectors. 
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Some ways to limit the capacity of a neural net 

• The capacity can be controlled in many ways:
• Architecture: Limit the number of hidden layers and the number of units per 

layer. 

• Early stopping: Start with small weights and stop the learning before it overfits. 

• Weight-decay: Penalize large weights using penalties or constraints on their 
squared values (L2 penalty) or absolute values (L1 penalty). 

• Noise: Add noise to the weights or the activities. 

• Typically, a combination of several of these methods is used. 
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Regularization

• Neural networks typically have thousands, if not millions of parameters 
⎯ Usually, the dataset size smaller than the number of parameters 

• Overfitting is a grave danger

• Proper weight regularization is crucial to avoid overfitting 

• Possible regularization methods 

⎯ l2-regularization

⎯ l1-regularization

⎯ Dropout 
53



l2-regularization

• Most important (or most popular) regularization

• The l2-regularization can pass inside the gradient descend update rule 

• 𝜆 is usually about 10−1, 10−2 
54

“Weight decay”, because 
  weights get smaller 



l1-regularization

• l1-regularization is one of the most important techniques

• Also l1-regularization passes inside the gradient descend update rule 

• l1-regularization → sparse weights

• 𝜆 ↑ → more weights become 0
55

Sign function



Data augmentation [Krizhevsky2012]
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Original 

Flip    

Contrast Tint  

Random crop



Noise as a regularizer 

• Suppose we add Gaussian noise to the inputs. 

⎯ The variance of the noise is amplified by the squared 
weight before going into the next layer. 

• In a simple net with a linear output unit directly 
connected to the inputs, the amplified noise gets 
added to the output. 

• This makes an additive contribution to the squared 
error. 
⎯ So minimizing the squared error tends to minimize the 

squared weights when the inputs are noisy. 
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Not exactly equivalent to using an L2 weight penalty. 



Multi-task Learning

• Improving generalization by pooling the examples arising 
out of several tasks. 

• Different supervised tasks share the same input x, as 
well as some intermediate-level representation 
h(shared)
− Task-specific parameters 

− Generic parameters (shared across all the tasks)
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Early stopping

• Start with small weights and stop the learning before it overfits. 

• Think early stopping as a very efficient hyperparameter selection. 

− The number of training steps is just another hyperparameter. 
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Model Ensembles: The bias-variance trade-off

• When the amount of training data is limited, we get overfitting. 
– Averaging the predictions of many different models is a good way to 

    reduce overfitting. 

– It helps most when the models make very different predictions. 

• For regression, the squared error can be decomposed into a “bias” term 
and a “variance” term. 

– The bias term is big if the model has too little capacity to fit the data. 

– The variance term is big if the model has so much capacity that it is good  
    at fitting the sampling error in each particular training set. 

• By averaging away the variance we can use individual models with high 
capacity. These models have high variance but low bias. 
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Model Ensembles

• Train several different models 
separately, then have all of the 
models vote on the output for 
test examples. 

• Different models will usually not 
make all the same errors on the 
test set.

• Usually ~2% gain!

61



Model Ensembles

• We can also get a small boost from averaging multiple model 
checkpoints of a single model.

• keep track of (and use at test time) a running average 
parameter vector:
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Dropout
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[Srivastava et al., 2014]

• “randomly set some neurons to zero in the forward pass”
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Waaaait a second… 
How could this possibly be a good idea?
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Forces the network to have a redundant representation.

has an ear

has a tail

is furry

has claws

mischievous 
look

cat 
score

X

X

X

Waaaait a second… 
How could this possibly be a good idea?



Waaaait a second… 
How could this possibly be a good idea?
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Another interpretation:
• Dropout is training a large 

ensemble of models (that share 
parameters).

• Each binary mask is one model, 
gets trained on only ~one 
datapoint.
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Ideally: 
want to integrate out all the noise

Monte Carlo approximation:
do many forward passes with different 
dropout masks, average all predictions

At test time….



At test time….
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Can in fact do this with a single forward pass! (approximately)

x y

Leave all input neurons turned on (no dropout).

a

w0 w1



At test time….
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Can in fact do this with a single forward pass! (approximately)

x y

Leave all input neurons turned on (no dropout).

a

w0 w1

(this can be shown to be an 
approximation to evaluating the whole 
ensemble)



At test time….
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Can in fact do this with a single forward pass! (approximately)

x y

Leave all input neurons turned on (no dropout).

during test: a = w0*x + w1*y
during train:

E[a] = ¼ * (w0*0 + w1*0
  w0*0 + w1*y

     w0*x + w1*0
  w0*x + w1*y)

       = ¼ * (2 w0*x + 2 w1*y)
   = ½ * (w0*x + w1*y)

a

With p=0.5, using all 
inputs in the forward pass 
would inflate the 
activations by 2x from 
what the network was 
“used to” during training!
=> Have to compensate 
by scaling the activations 
back down by ½ 

w0 w1



We can do something approximate 
analytically
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At test time all neurons are active always
=> We must scale the activations so that for each neuron:
output at test time = expected output at training time
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drop in forward pass

scale at test time

Dropout Summary



More common: “Inverted dropout”

76

test time is unchanged!
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Optimization



Training a neural network, main loop:

85
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simple gradient descent update
now: complicate.

Training a neural network, main loop:



Gradients

87Slide adapted from John Canny

• When we write , we mean the vector of partial derivatives wrt all
coordinates of     : 

where measures how fast the loss changes

vs. change in 

• In figure: loss surface is blue, gradient vectors are red: 

• When , it means all the partials are
zero, i.e. the loss is not changing in any direction.

• Note: arrows point out from a minimum, in toward
a maximum



Optimization

• Visualizing gradient descent in one dimension: 

• The regions where gradient descent converges to a particular local
minimum are called basins of attraction. 
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Local Minima

• Since the optimization problem is non-convex, it probably has local
minima. 

• This kept people from using neural nets for a long time, because they
wanted guarantees they were getting the optimal solution.

• But are local minima really a problem? 

− Common view among practitioners: yes, there are local minima, but they’re
probably still pretty good. 
• Maybe your network wastes some hidden units, but then you can just make it larger. 

− It’s very hard to demonstrate the existence of local minima in practice. 

− In any case, other optimization-related issues are much more important. 
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Saddle Points

• At a saddle point,        = 0 even though

we are not at a minimum. Some
directions curve upwards, and others
curve downwards. 

• When would saddle points be a problem? 
− If we’re exactly on the saddle point, then

we’re stuck. 

− If we’re slightly to the side, then we can get
unstuck. 

90

Saddle points

At a saddle point @C
@✓ = 0, even though we are not at a minimum. Some

directions curve upwards, and others curve downwards.

When would saddle points be a problem?

If we’re exactly on the saddle point, then we’re stuck.

If we’re slightly to the side, then we can get unstuck.

Roger Grosse CSC321 Lecture 7: Opt imizat ion 9 / 25
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Saddle points

At a saddle point @C
@✓ = 0, even though we are not at a minimum. Some

directions curve upwards, and others curve downwards.

When would saddle points be a problem?

If we’re exactly on the saddle point, then we’re stuck.

If we’re slightly to the side, then we can get unstuck.

Roger Grosse CSC321 Lecture 7: Opt imizat ion 9 / 25

Saddle points much more common in high dimensions!
Y. Dauphin et al. Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. In NIPS 2014



Plateaux

• A flat region is called a plateau. (Plural: plateaux) 
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Plateaux

A flat region is called a plateau. (Plural: plateaux)

Can you think of examples?

0–1 loss

hard threshold act ivat ions

logist ic activat ions & least squares

Roger Grosse CSC321 Lecture 7: Opt imizat ion 11 / 25



Plateaux

• An important example of a plateau is a saturated unit. This is when it is 
in the flat region of its activation function. 

• If φ′(zi) is always close to zero, then the weights
will get stuck.

• If there is a ReLU unit whose input zi is always
negative, the weight derivatives will be exactly 0.
We call this a dead unit. 
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Plateaux

An important example of a plateau is a saturated unit. This is when
it is in the flat region of its activation function. Recall the backprop
equation for the weight derivative:

zi = hi φ
0(z)

wij = zi xj

If φ0(zi ) is always close to zero, then the weights will get stuck.

If there is a ReLU unit whose input zi is always negative, the weight
derivat ives will be exactly 0. We call this a dead unit .

Roger Grosse CSC321 Lecture 7: Opt imizat ion 12 / 25



Loss surfaces in high-dimensional problems are 
very complicated!
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Batch Gradient Descent

• Positive: Gradient estimates are stable

• Negative: Need to compute gradients over the entire training for one
update
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Gradient Descent
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Gradient Descent
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Gradient Descent
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Gradient Descent
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Gradient Descent
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Gradient Descent
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Stochastic Batch Gradient Descent
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Minibatching

• Potential Problem: Gradient estimates can be very noisy

• Obvious Solution: Use larger mini-batches

• Advantage: Computation time per update does not depend on number
of training examples N 

• This allows convergence on extremely large datasets

• See: Large Scale Learning with Stochastic Gradient Descent by Leon
Bottou
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Stochastic Gradient Descent
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Stochastic Gradient Descent

105



Stochastic Gradient Descent
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Stochastic Gradient Descent
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Stochastic Gradient Descent
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Stochastic Gradient Descent
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Stochastic Gradient Descent
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Stochastic Gradient Descent
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Stochastic Gradient Descent

112



113
Image credits: Alec Radford
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Q: What is the trajectory along which we converge towards the 
minimum with SGD?

Suppose loss function is steep vertically but shallow 
horizontally:
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Q: What is the trajectory along which we converge towards the 
minimum with SGD?

Suppose loss function is steep vertically but shallow 
horizontally:
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Q: What is the trajectory along which we converge towards the 
minimum with SGD? 
very slow progress along flat direction, jitter along steep one

Suppose loss function is steep vertically but shallow 
horizontally:



Momentum update
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SGD SGD+Momentum



Momentum update
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SGD SGD+Momentum

• Build up “velocity” as a running mean of gradients

• Rho gives “friction”; typically rho=0.9 or 0.99
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SGD vs Momentum

notice momentum
overshooting the target, but 
overall getting to the 
minimum much faster.
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SGD + Momentum

gradient
step

momentum
step

actual step

Momentum update
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Nesterov: the only difference...

Nesterov Momentum

gradient
step

momentum
step

actual step

momentum
step

“lookahead” gradient 
step (bit different than 
original)

actual step

Momentum update Nesterov momentum update



Nesterov Momentum
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Change of variables and
rearrange:

Nesterov Momentum

123

Annoying, usually we want
update in terms of
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nag = 
Nesterov Accelerated 
Gradient
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AdaGrad update

Added element-wise scaling of the gradient based on the 
historical sum of squares in each dimension

[Duchi et al., 2011]
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Q: What happens with AdaGrad?

AdaGrad update

Weights that receive high gradients will have their effective learning
rate reduced, while weights that receive small updates will have
their effective learning rate increased!
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Q2: What happens to the step size over long time?

AdaGrad update

The adaptive learning scheme is monotonic, which is usually too
aggressive and stops the learning process too early.



RMSProp
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[Tieleman and Hinton, 2012]

AdaGrad

RMSProp
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adagrad
rmsprop



Adaptive Moment Estimation (Adam) 
(incomplete, but close)
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momentum

AdaGrad / RMSProp

Looks a bit like RMSProp with momentum

[Kingma and Ba, 2014]



Adam (full form)
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momentum

AdaGrad / RMSProp

[Kingma and Ba, 2014]

Bias correction

The bias correction compensates for the fact that m,v are 
initialized at zero and need some time to “warm up”.



Adam (full form)
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momentum

AdaGrad / RMSProp

[Kingma and Ba, 2014]

Bias correction

The bias correction compensates for the fact that m,v are 
initialized at zero and need some time to “warm up”.

Adam with beta1 = 0.9,
beta2 = 0.999, and
learning_rate = 1e-3 or 5e-4 is 
a great starting point for many
models! 



Optimization Algorithm Comparison
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Algorithm 
Tracks first 
moments 
(Momentum) 

Tracks second 
moments 
(Adaptive 
learning rates) 

Leaky second 
moments 

Bias correction for 
moment estimates 

SGD 𝙭 𝙭 𝙭 𝙭 

SGD+Momentum ✓ 𝙭 𝙭 𝙭 

Nesterov ✓ 𝙭 𝙭 𝙭 

AdaGrad 𝙭 ✓ 𝙭 𝙭 

RMSProp 𝙭 ✓ ✓ 𝙭 

Adam ✓ ✓ ✓ ✓ 



L2 Regularization vs Weight Decay

138

L2 Regularization and Weight Decay are 
equivalent for SGD, SGD+Momentum so people 
often use the terms interchangeably!

But they are not the same for adaptive methods 
(AdaGrad, RMSProp, Adam, etc) 

[Loshchilov and Hutter, 2019]

Optimization Algorithm L2 Regularization

Weight Decay 



AdamW: Decoupled Weight Decay

139
[Loshchilov and Hutter, 2019]



AdamW: Decoupled Weight Decay

140
[Loshchilov and Hutter, 2019]

AdamW should probably be your “default” 
optimizer for new problems 
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=> Learning rate decay over time!

step decay: 
e.g. decay learning rate by half every few epochs.

exponential decay:

1/t decay:

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all 
have learning rate as a hyperparameter.
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=> Learning rate decay over time!

step decay: 
e.g. decay learning rate by half every few epochs.

exponential decay:

1/t decay:

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all 
have learning rate as a hyperparameter.
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Take Home Messages



Optimization Tricks

• SGD with momentum, batch-normalization, and dropout usually works 
very well 

• Pick learning rate by running on a subset of the data 

– Start with large learning rate & divide by 2 until loss does not diverge 

– Decay learning rate by a factor of ~100 or more by the end of training 

• Use ReLU nonlinearity

• Initialize parameters so that each feature across layers has similar 
variance. Avoid units in saturation. 

182From Marc'Aurelio Ranzato, CVPR 2014 tutorial 



Ways To Improve Generalization

• Weight sharing (greatly reduce the number of parameters) 

• Dropout

• Weight decay (L2, L1)

• Sparsity in the hidden units 

183From Marc'Aurelio Ranzato, CVPR 2014 tutorial 
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Next lecture: 
Convolutional Neural 

Networks
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