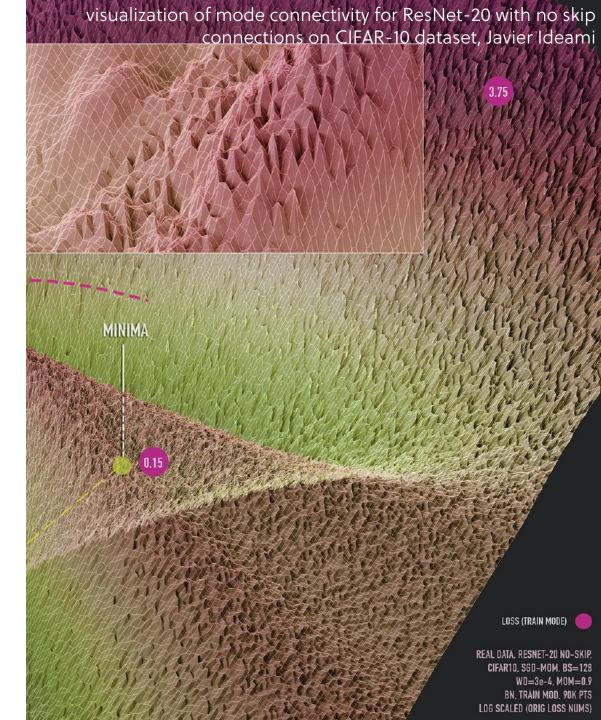


Previously on COMP541

- data preprocessing and normalization
- weight initializations
- ways to improve generalization
- optimization



Lecture Overview

- convolution layer
- pooling layer
- cnn architectures
- design guidelines
- residual connections
- semantic segmentation networks
- addressing other tasks

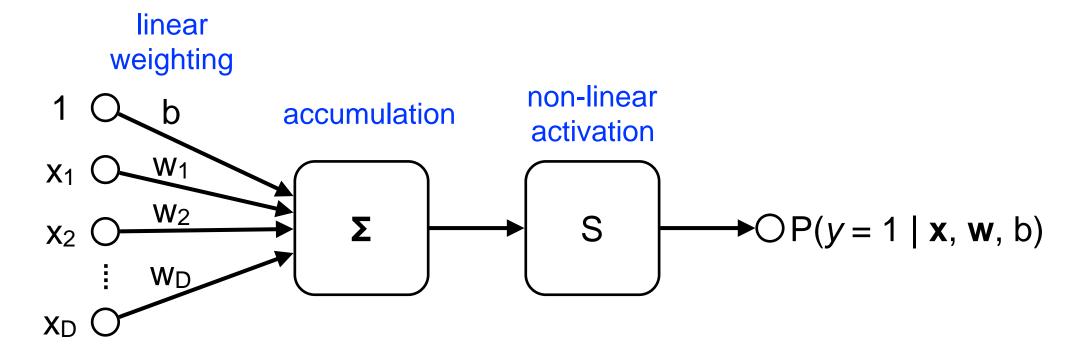
Disclaimer: Much of the material and slides for this lecture were borrowed from

- Andrea Vedaldi's tutorial on Convolutional Networks for Computer Vision Applications
- Kaiming He's ICML 2016 tutorial on Deep Residual Networks: Deep Learning Gets Way Deeper
- Fei-Fei Li, Andrej Karpathy and Justin Johnson's CS231n class
- Justin Johnson's EECS 498/598 class

Perceptron

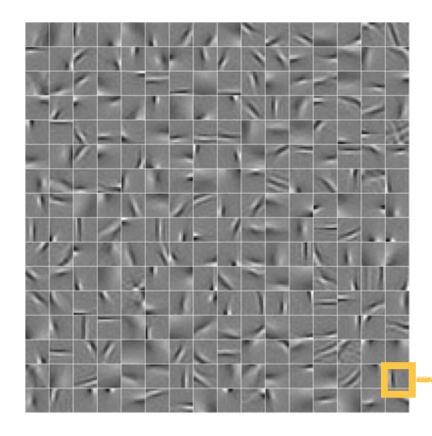
[Rosenblatt 57]

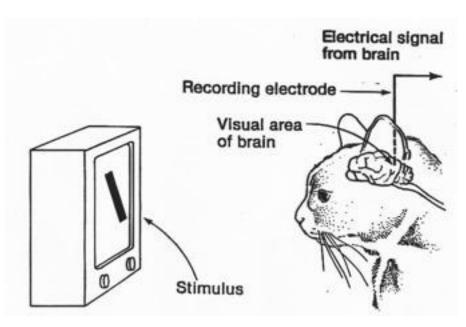
 The goal is estimating the posterior probability of the binary label y of a vector x:

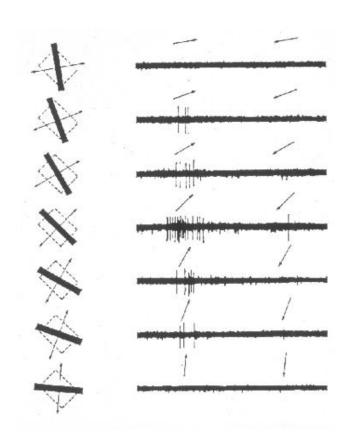


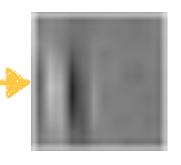
Discovery of oriented cells in the visual cortex

[Hubel and Wiesel 59]









oriented filter

Convolution

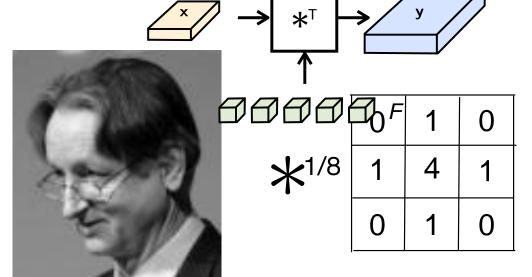
• Convolution = Spatial filt

Banded matrix equivalent to F

$$(a \star b)[i,j] = \sum_{i',j'} a[i',j']b[i-i',j-j']$$
 Convolution transpose

Transposed

Different filters (weights) reveal a different characteristics of the input.



Convolution

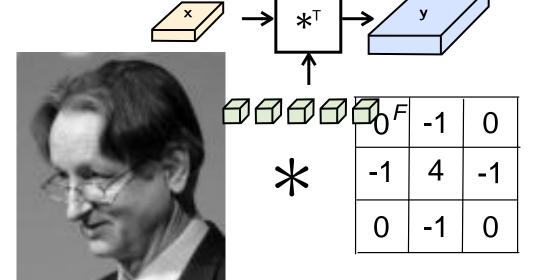
• Convolution = Spatial filt

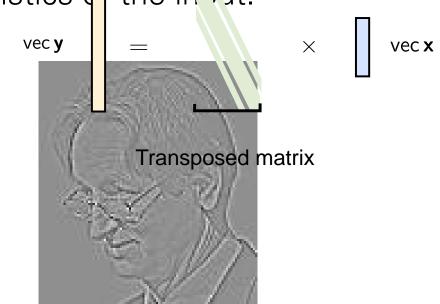
Banded matrix equivalent to F

$$(a\star b)[i,j] = \sum_{i',j'} a[i',j']b[i-i',j-j']$$
 Convolution transpose

Transposed

• Different filters (weights) reveal a different characteristics of the input.





Convolution

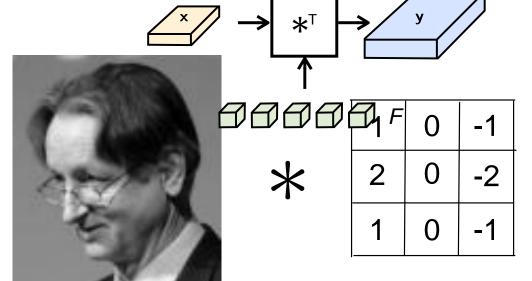
• Convolution = Spatial filt

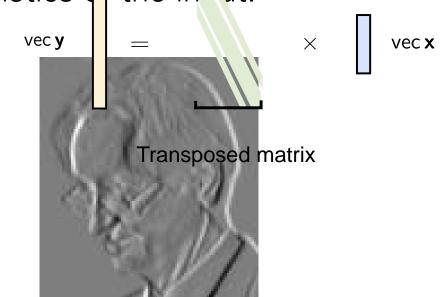
Banded matrix equivalent to F

$$(a\star b)[i,j] = \sum_{i',j'} a[i',j']b[i-i',j-j']$$
 Convolution transpose

Transposed

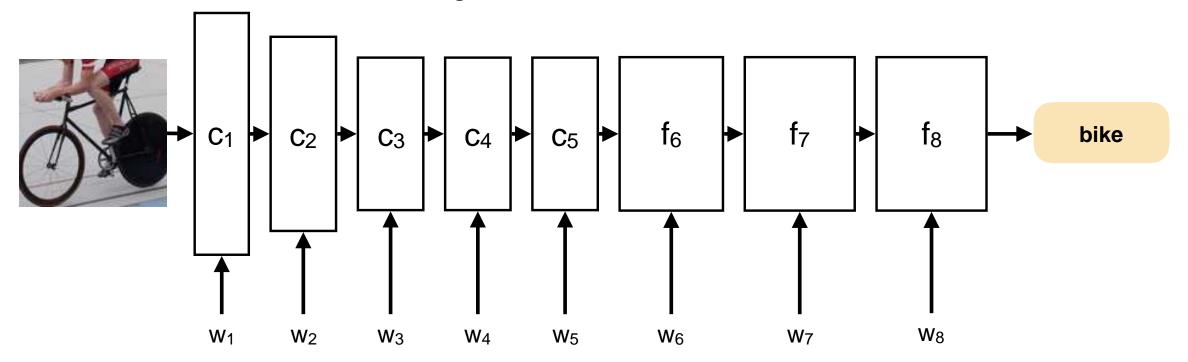
• Different filters (weights) reveal a different characteristics of the input.





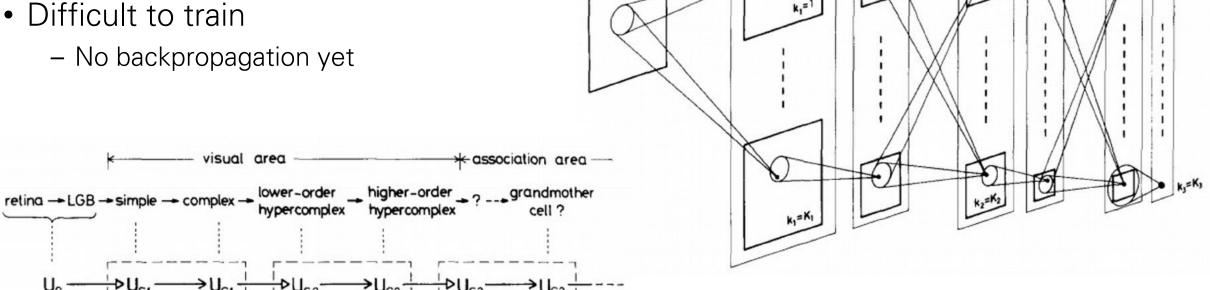
Convolutional Neural Networks in a Nutshell

- A neural network model that consists of a sequence of local & translation-invariant layers
 - Many identical copies of the same neuron: Weight/parameter sharing
 - Hierarchical feature learning



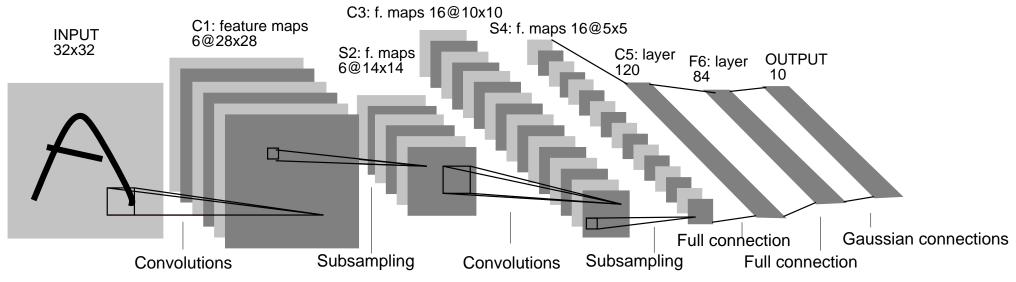
A bit of history

- Neocognitron model by Fukushima (1980)
- The first convolutional neural network (CNN) model
- so-called "sandwich" architecture
 - simple cells act like filters
 - complex cells perform pooling



A bit of history

LeNet-5 model

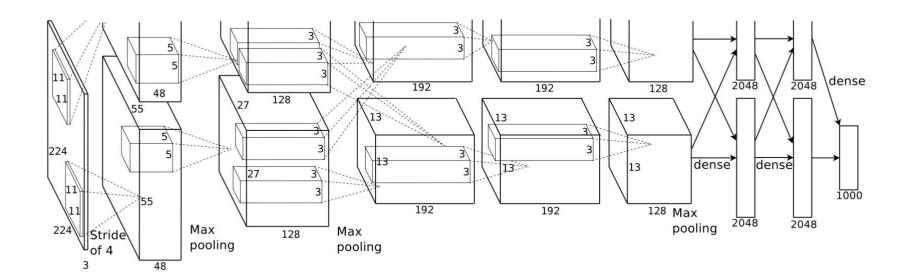


Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. **Gradient-based learning applied to document recognition**. Proceedings of the IEEE. **86** (11): 2278–2324, 1998.

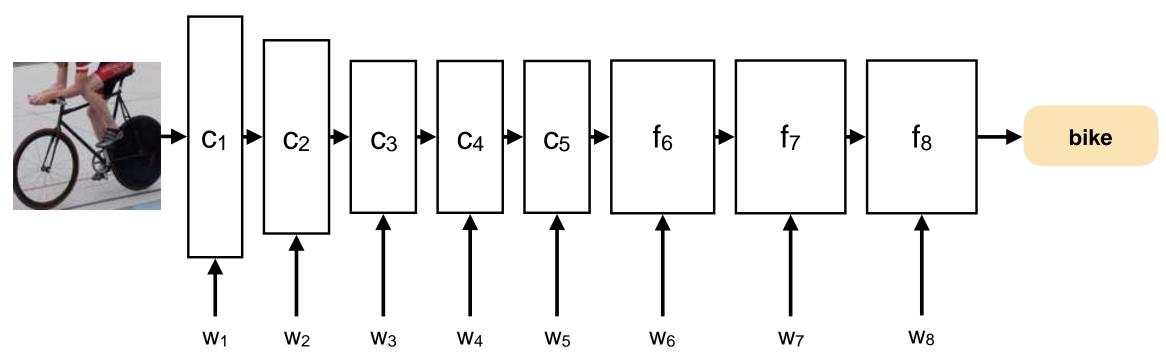
13

A bit of history

AlexNet model



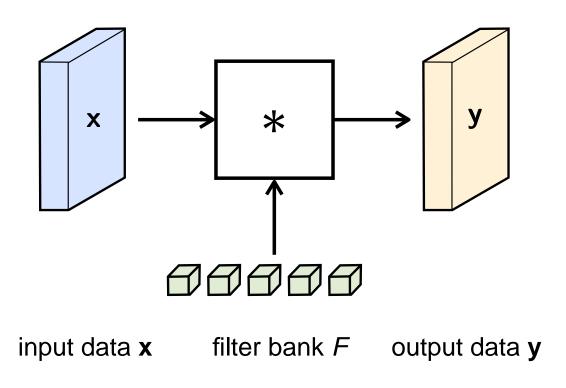
Convolutional Neural Network



A. Krizhevsky, I. Sutskever, and G. E. Hinton. **Imagenet classification with deep convolutional neural networks**. In NIPS 2012.

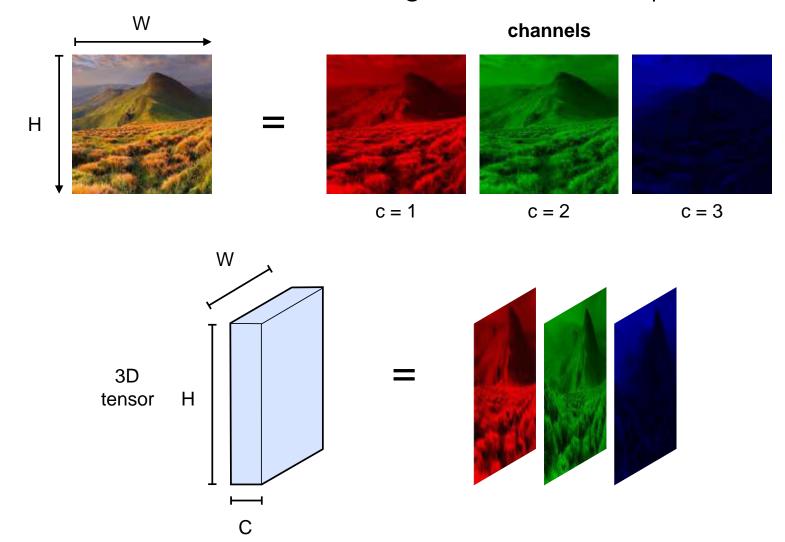
- Learn a filter bank (a set of filters) once
- Use them over the input data to extract features

$$\mathbf{y} = F * \mathbf{x} + b$$



Data = 3D Tensors

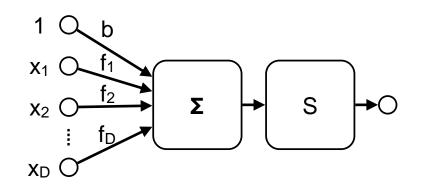
• There is a vector of feature channels (e.g. RGB) at each spatial location (pixel).

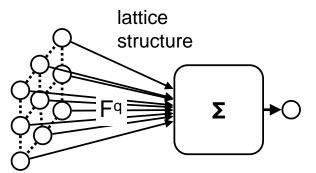


Convolutions with 3D Filters

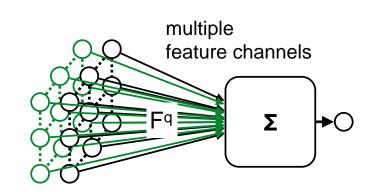
• Each filter acts on multiple input channels

- LocalFilters look locally
- **Translation invariant** x1 ଠି -Filters act the same everywhae





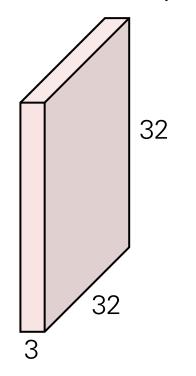
S



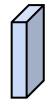
Fq

 X_1

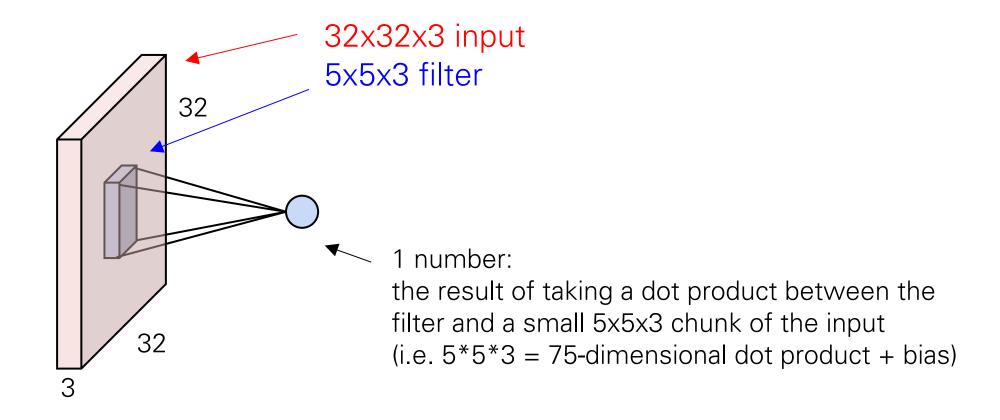
32x32x3 input

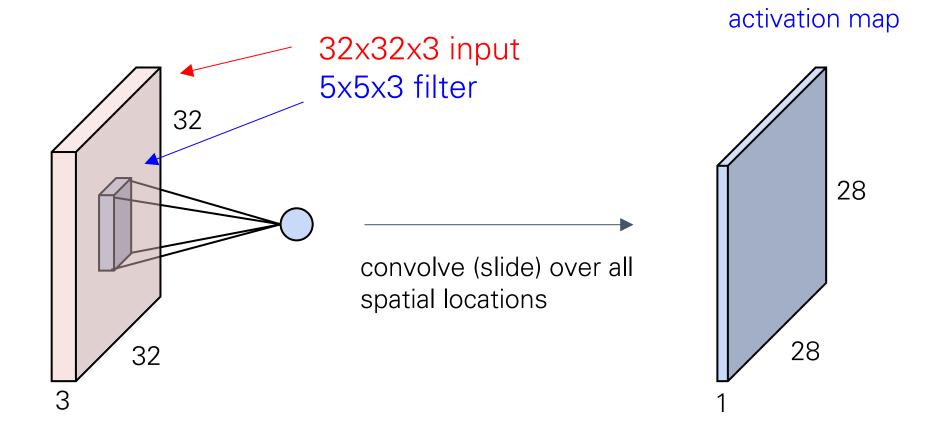


5x5x3 filter

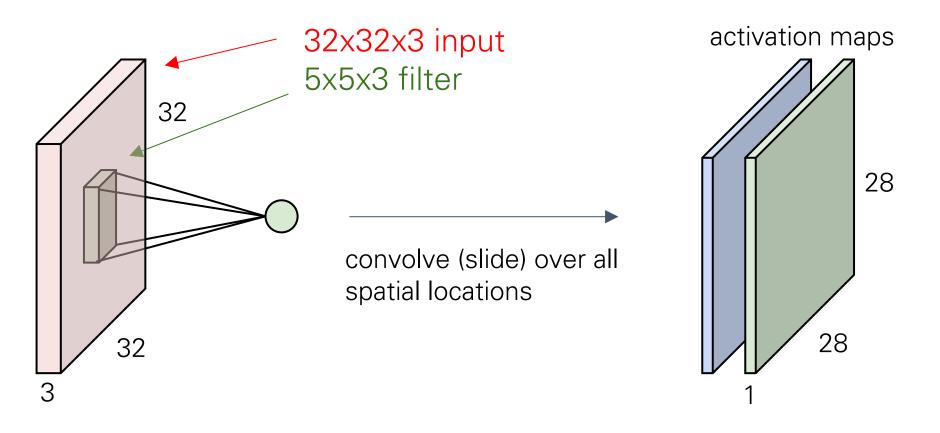


Convolve the filter with the input i.e. "slide over the image spatially, computing dot products"

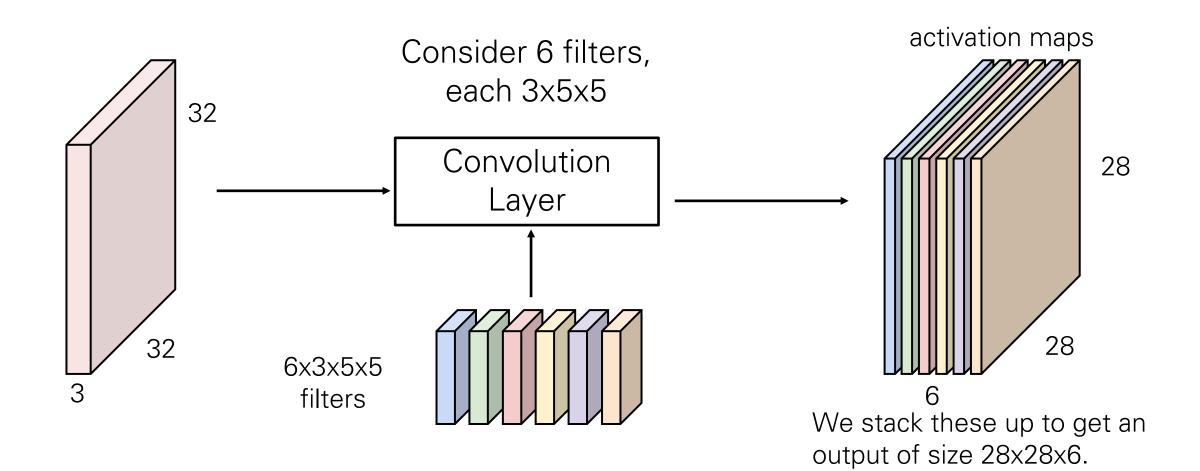




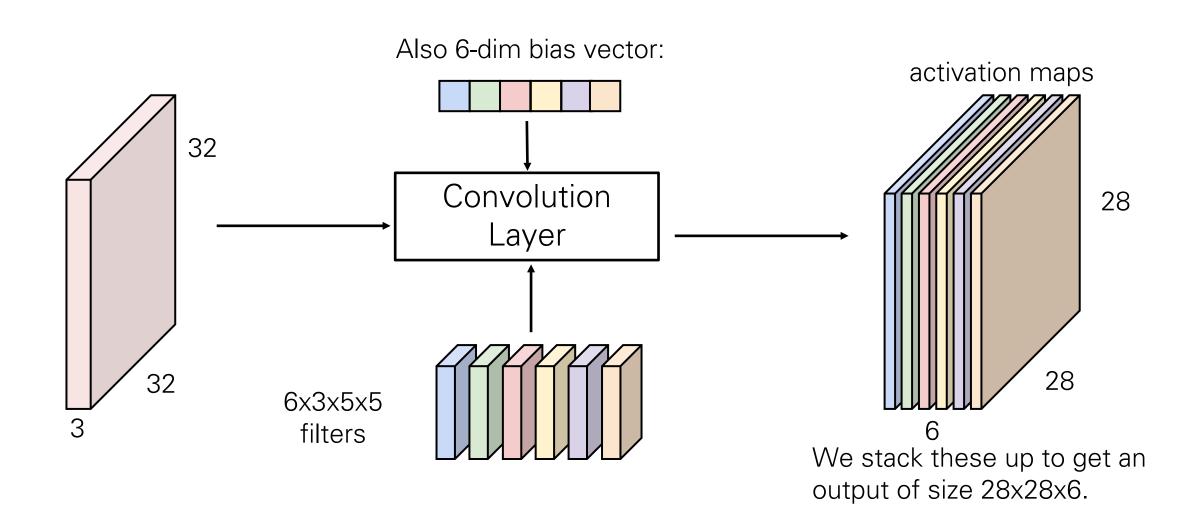
consider a second, green filter



Multiple filters produce multiple output channels

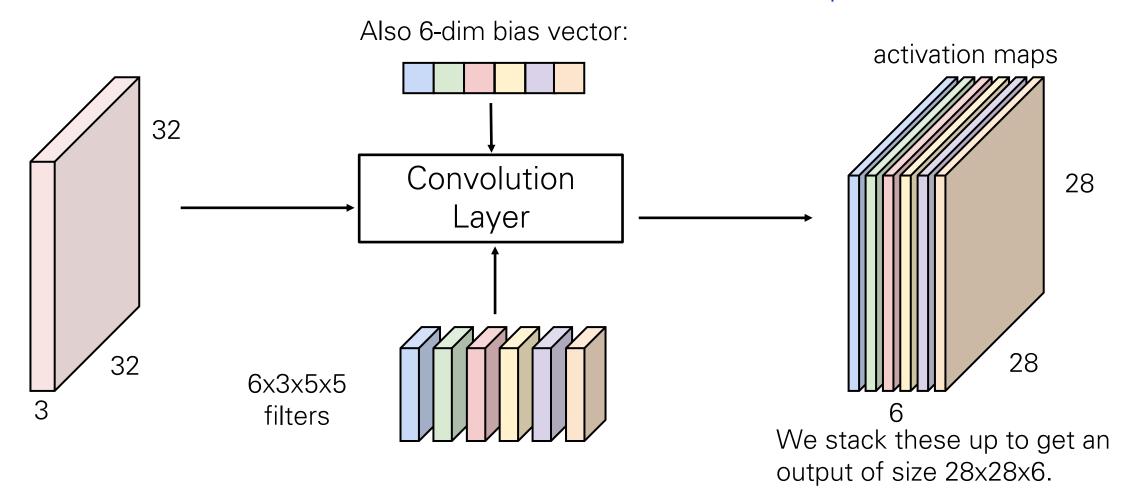


Multiple filters produce multiple output channels

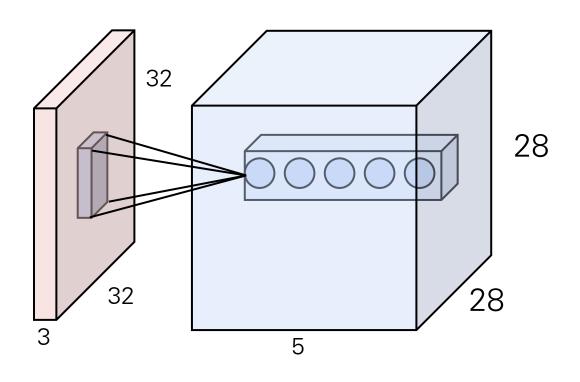


Multiple filters produce multiple output channels

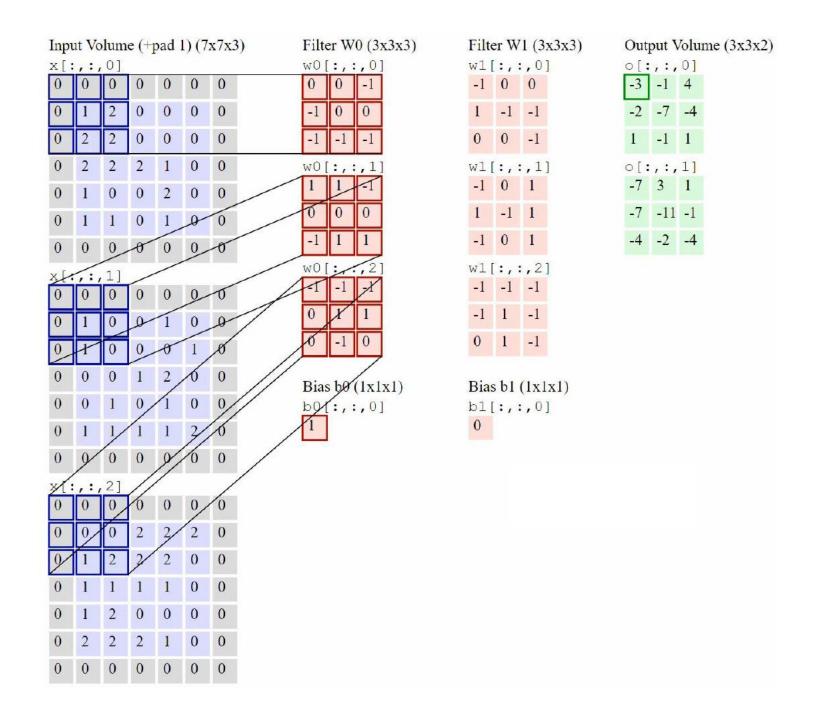
28x28 grid, at each point a 6-dim vector

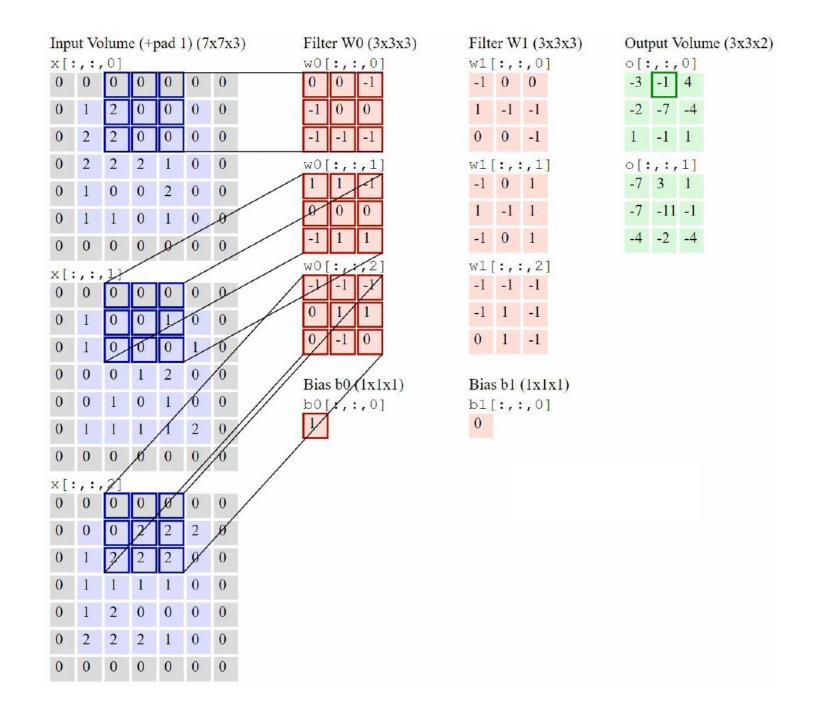


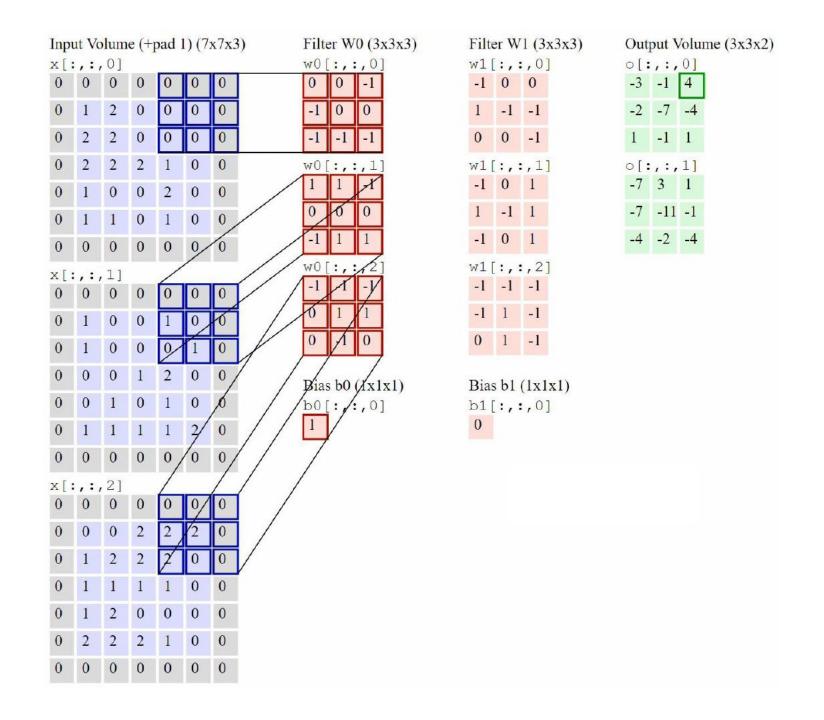
Spatial Arrangement of Output Volume

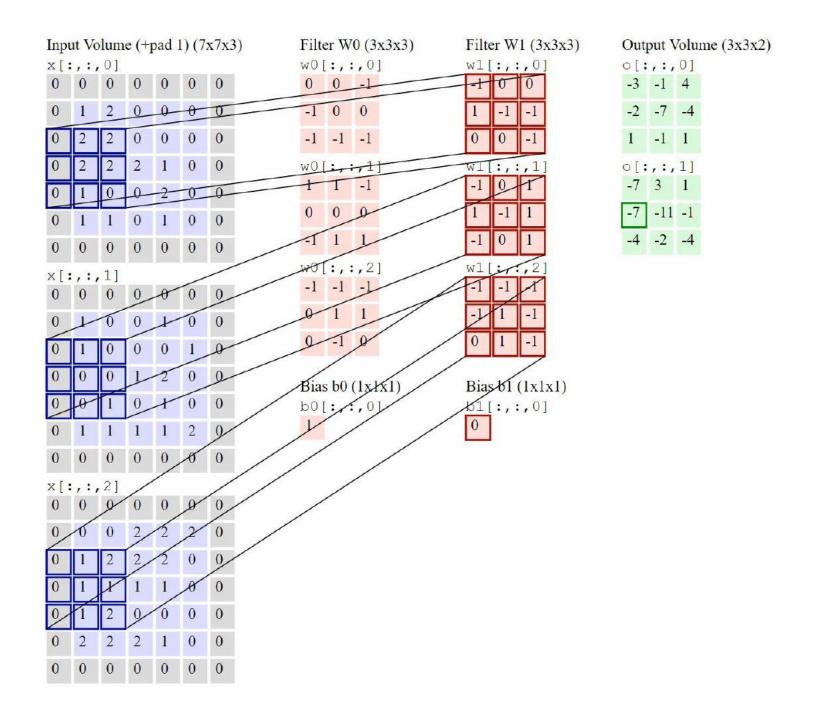


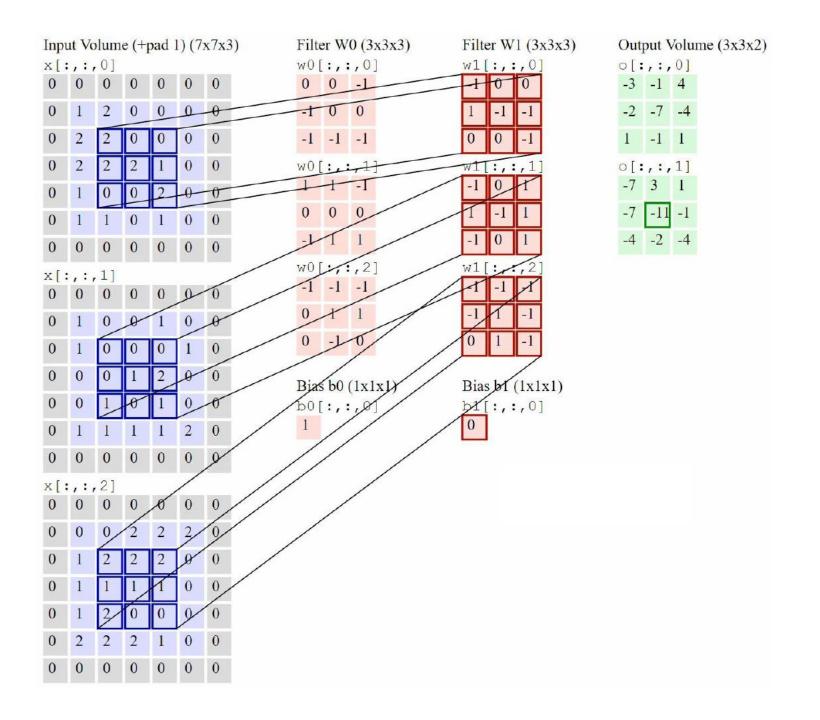
- **Depth:** number of filters
- **Stride:** filter step size (when we "slide" it)
- Padding: zero-pad the input

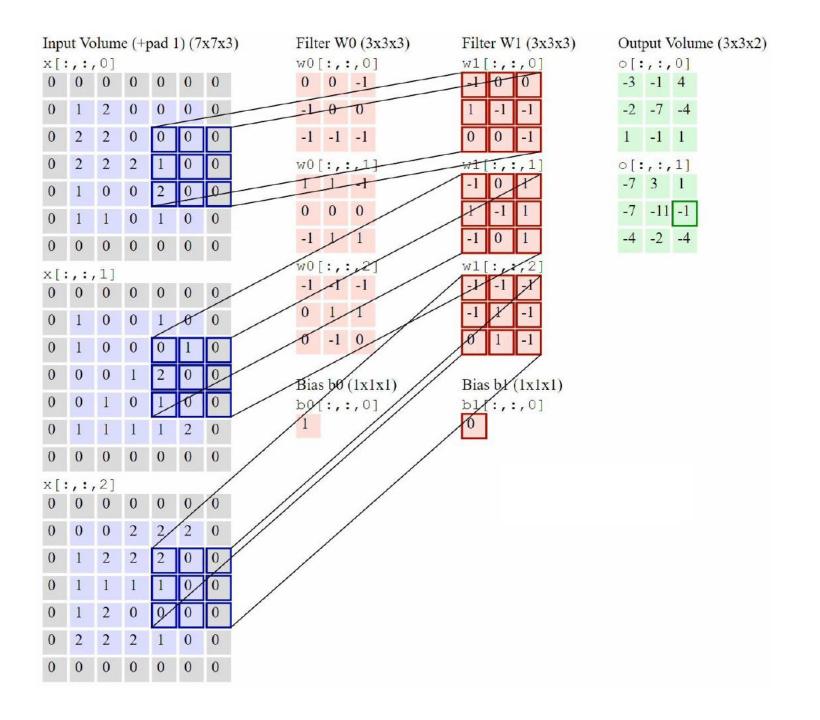


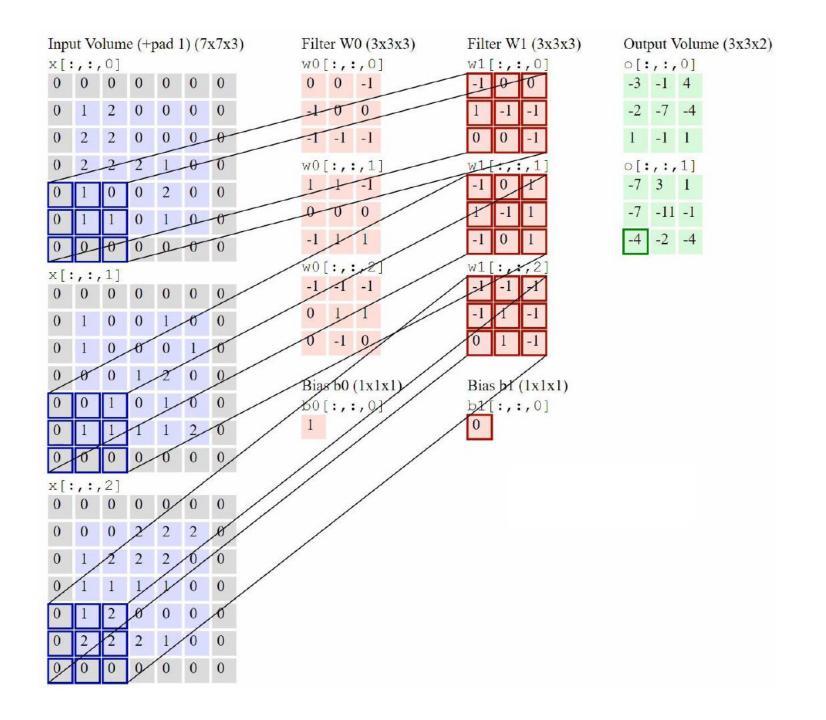


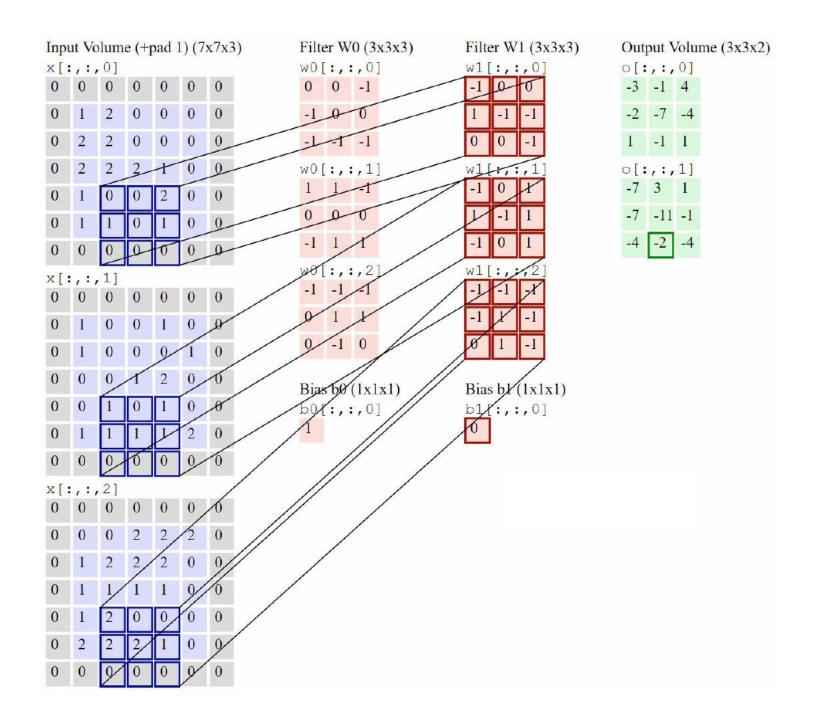


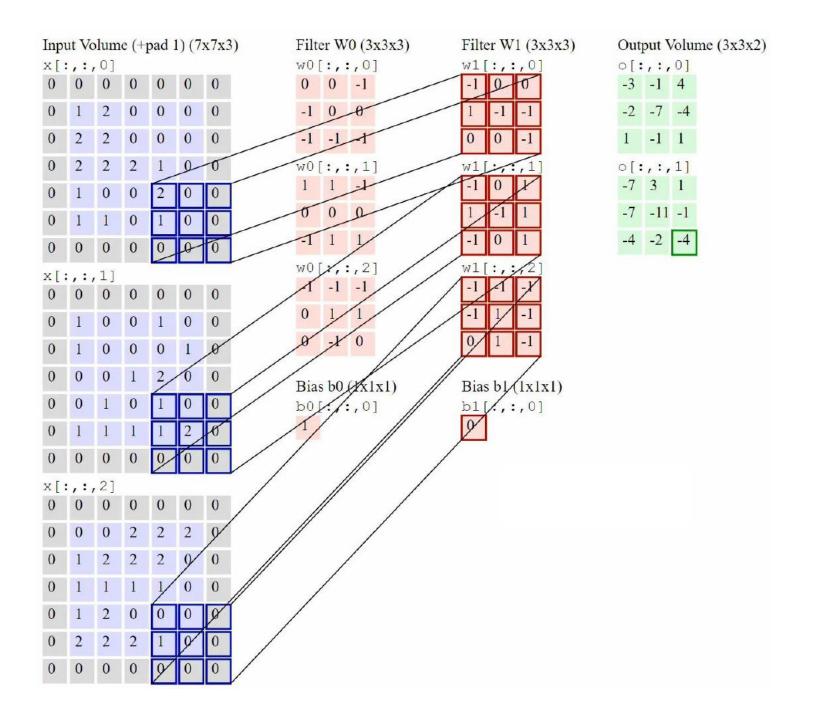




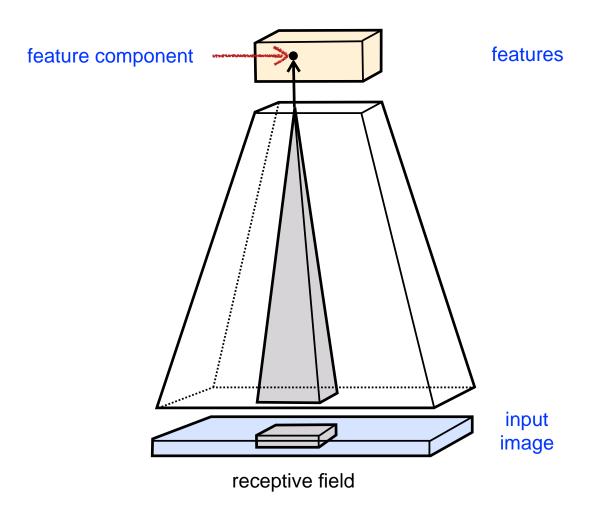




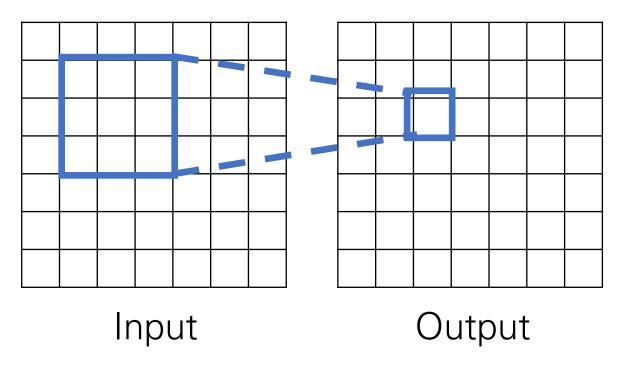




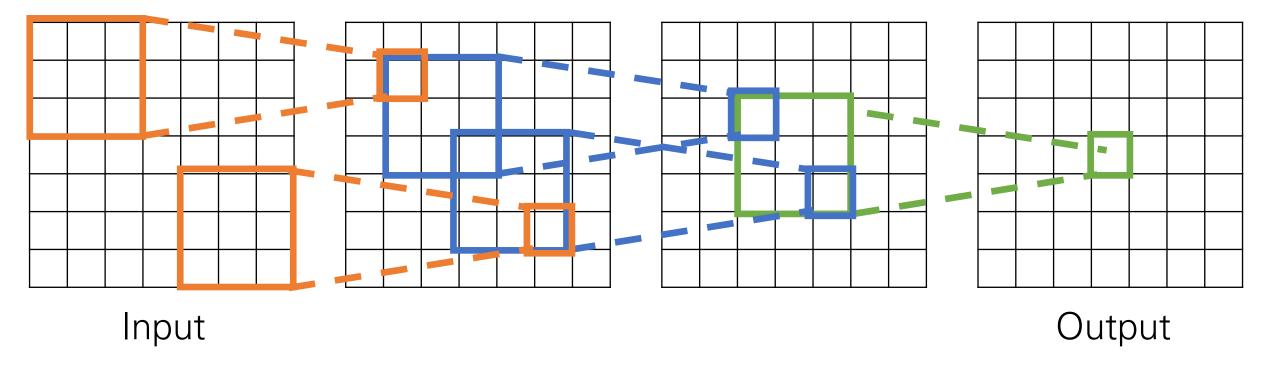
- Local receptive field
- Each column of hidden units looks at a different input patch



For convolution with kernel size K, each element in the output depends on a K x K **receptive field** in the input



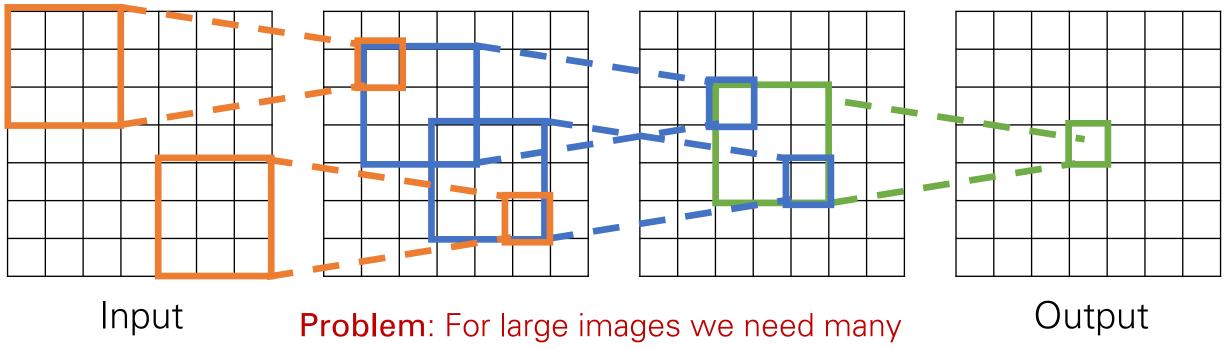
Each successive convolution adds K-1 to the receptive field size With L layers the receptive field size is 1 + L * (K-1)



Be careful – "receptive field in the input" vs "receptive field in the previous layer"

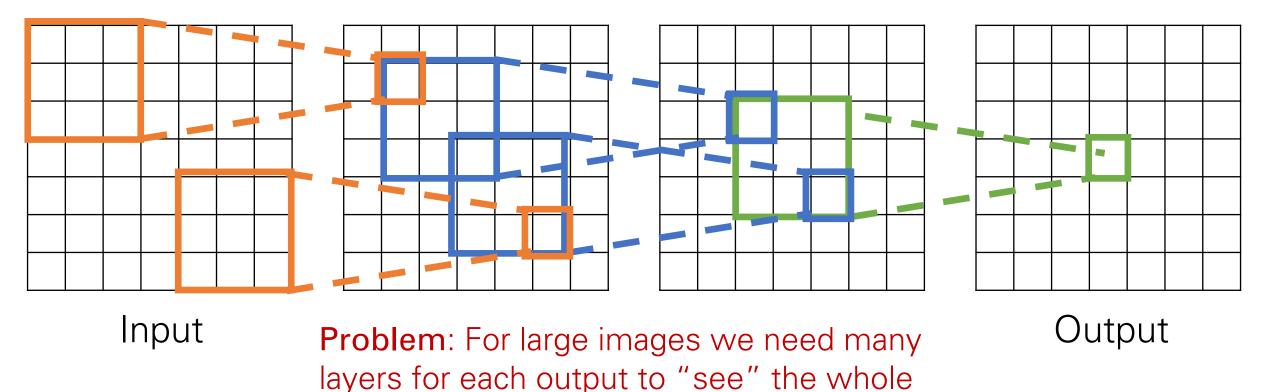
Hopefully clear from context!

Each successive convolution adds K-1 to the receptive field size With L layers the receptive field size is 1 + L * (K-1)



Problem: For large images we need many layers for each output to "see" the whole image image

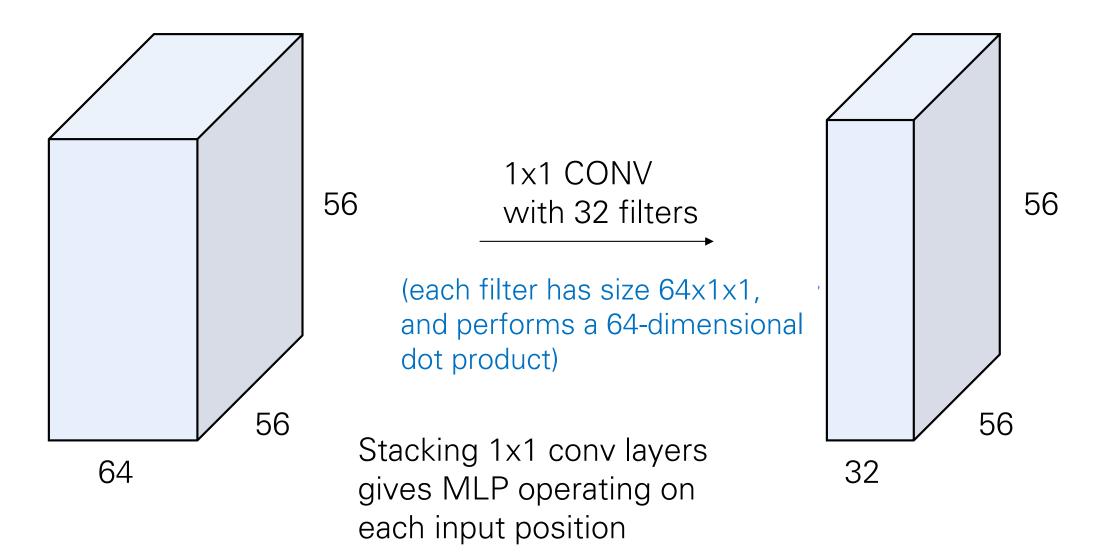
Each successive convolution adds K - 1 to the receptive field size With L layers the receptive field size is 1 + L * (K - 1)



Solution: Downsample inside the network

image image

1x1 Convolution



Other types of convolution

So far: 2D Convolution

1D Convolution

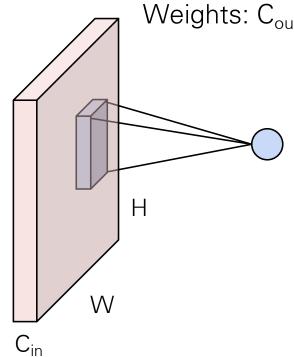
3D Convolution

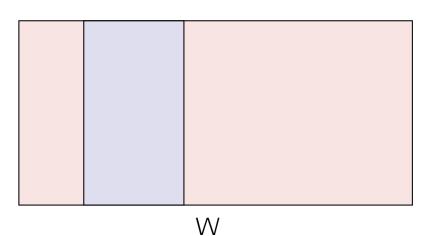
Input: $C_{in} \times H \times W$ Weights: C_{out} x C_{in} x K x K Weights: C_{out} x C_{in} x K

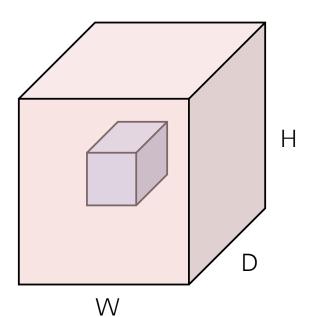
Input: C_{in} x W

Input: $C_{in} x H x W x D$

Weights: C_{out} x C_{in} x K x K x K

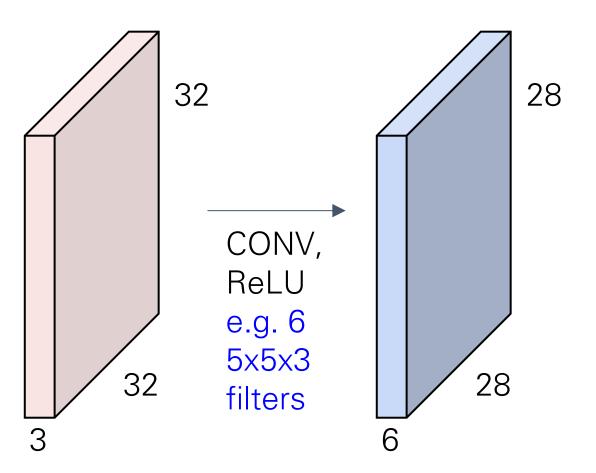




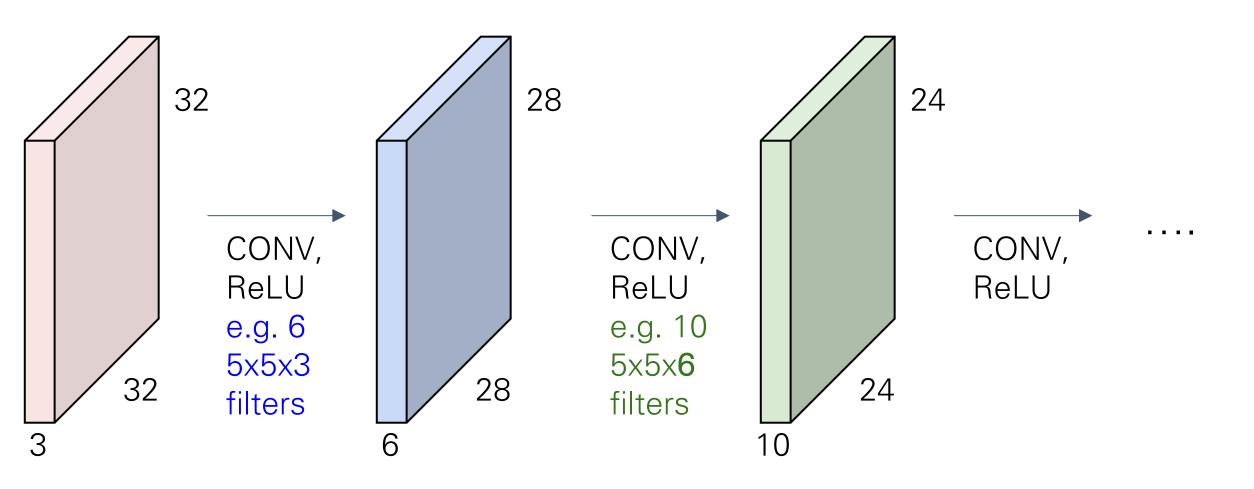


C_{in}-dim vector at each point in the volume

Convolutional layers

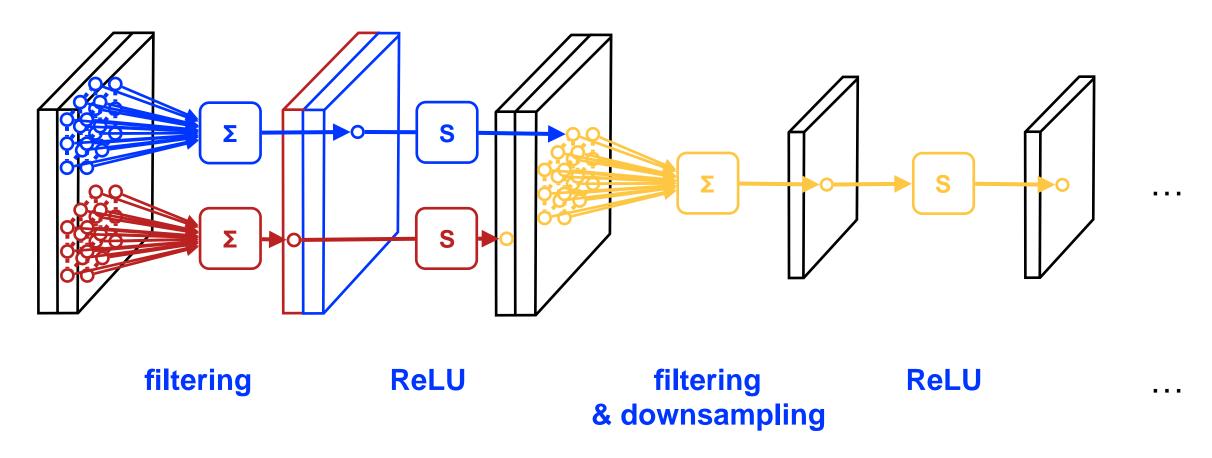


Stacking Convolutions



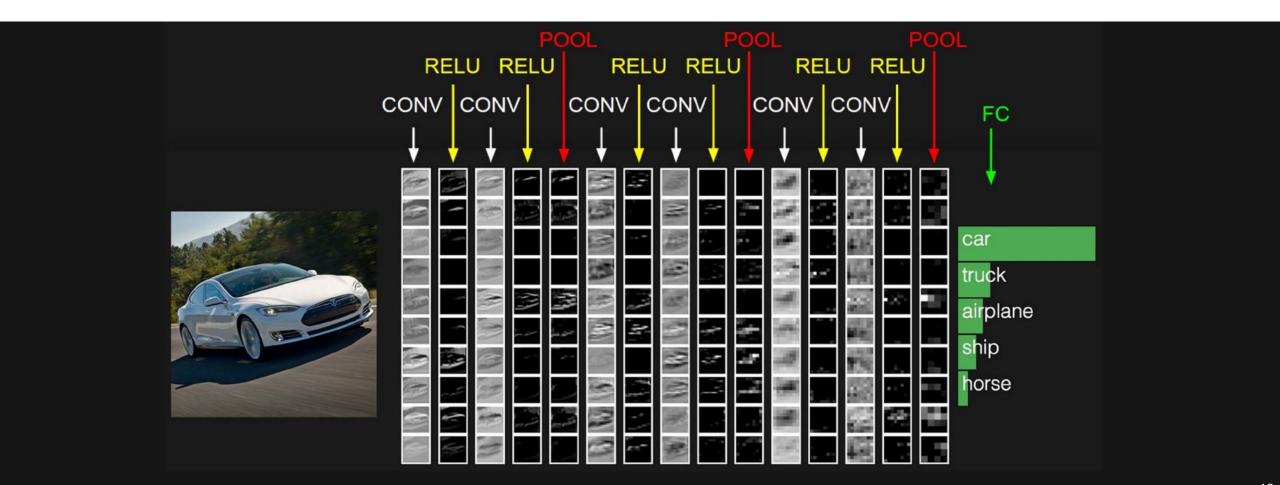
Linear/Non-linear Chains

- The basic blueprint of most architectures
- Stack multiple layers of convolutions



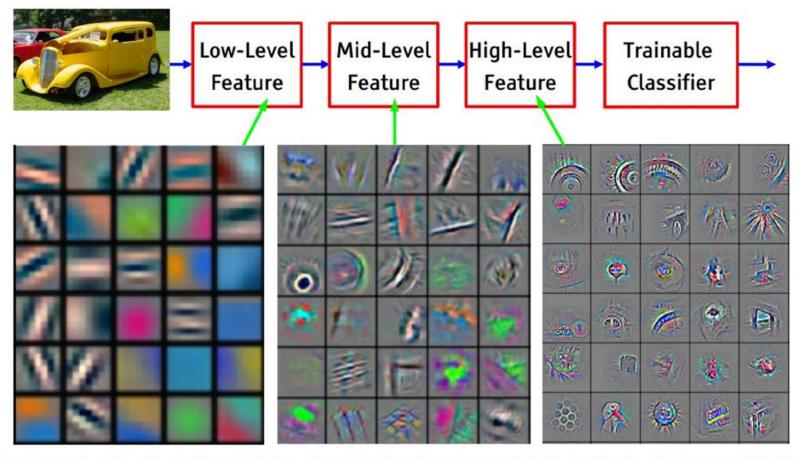
Feature Learning

• Hierarchical layer structure allows to learn hierarchical filters (features).



Feature Learning

Hierarchical layer structure allows to learn hierarchical filters (features).



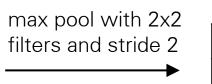
Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

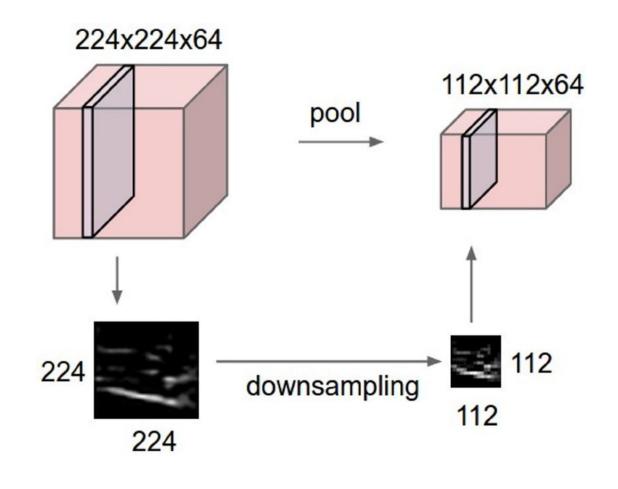
Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:
- Max pooling, average pooling, etc.

Single depth slice

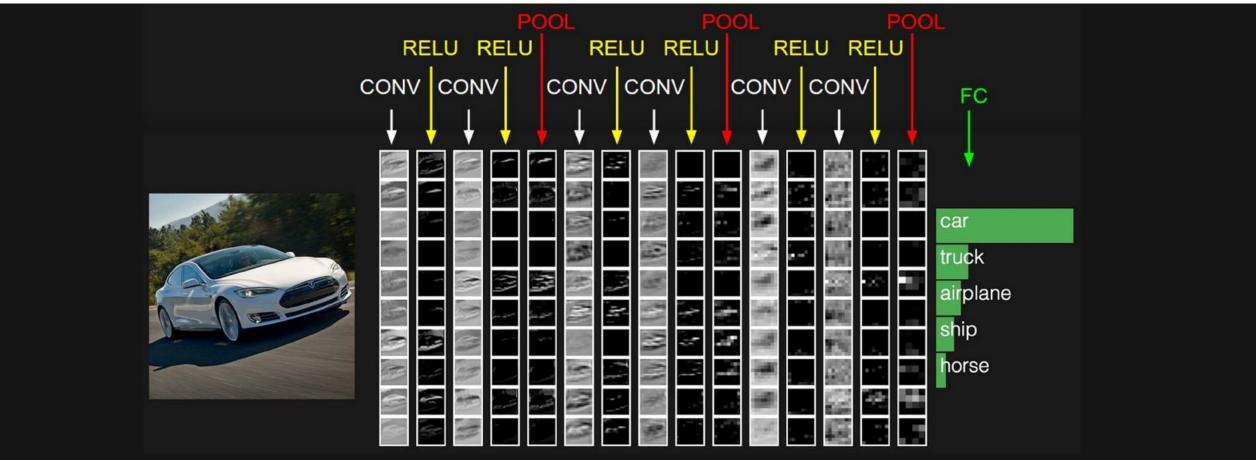
X A		1	1	2	4
		5	6	7	8
		3	2	1	0
		1	2	3	4
	·				





Fully connected layer

 contains neurons that connect to the entire input volume, as in ordinary Neural Networks



Case Study: AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

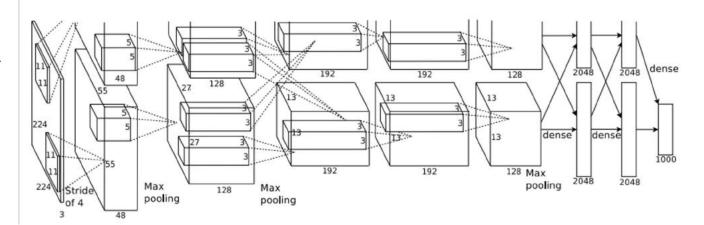
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)



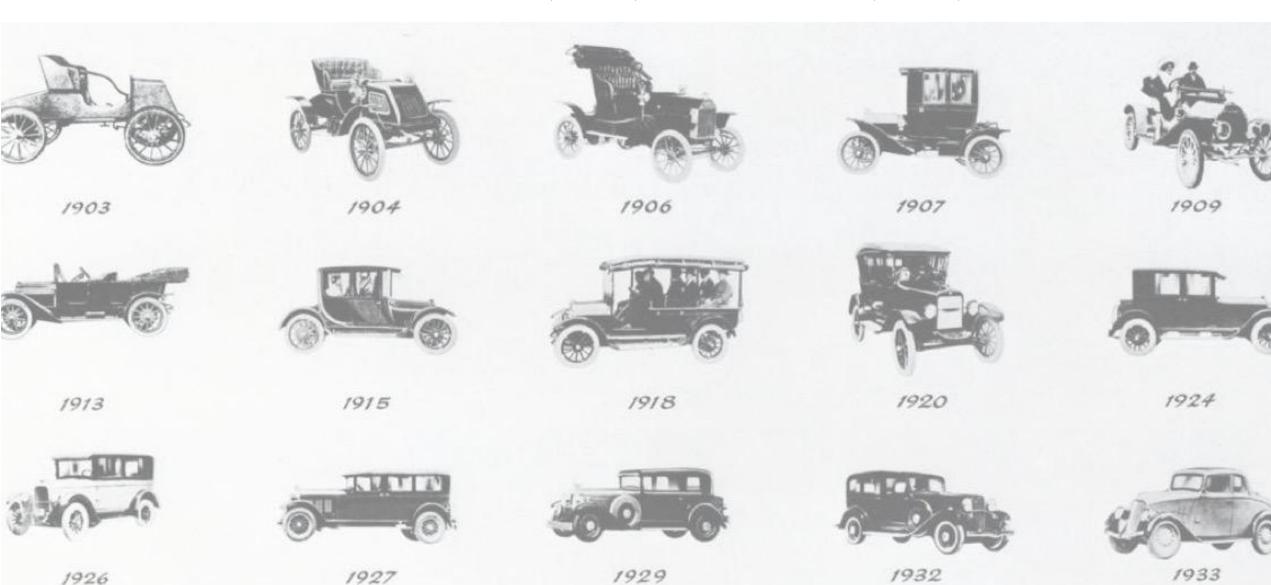
Details/Retrospectives:

- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10 manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4%

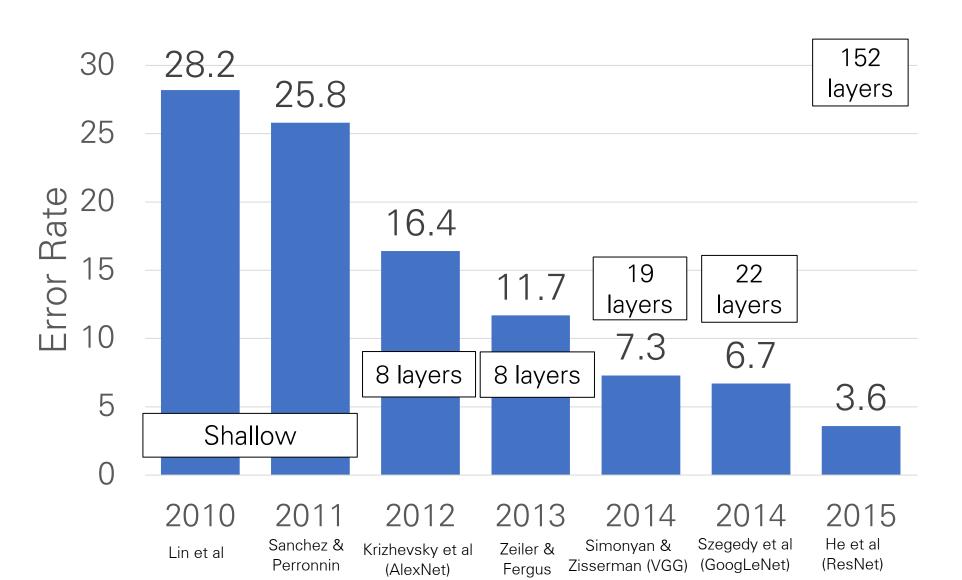
Convolutional Neural Network Demo

- ConvNetJS demo: training on CIFAR-10
- https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

Three Years of Progress From AlexNet (2012) to ResNet (2015)

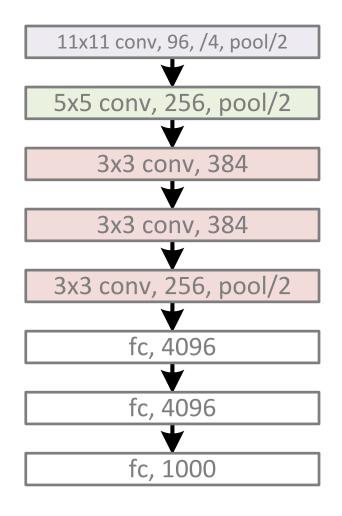


ImageNet Classification Challenge



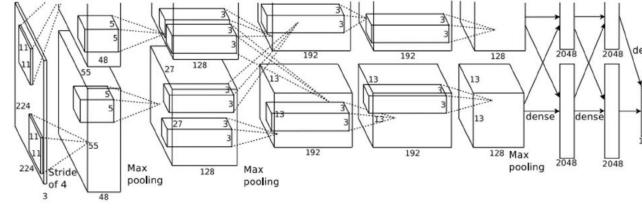
Revolution of Depth

AlexNet, 8 layers (ILSVRC 2012)



- 5 convolutional layers
- 3 fully connected layers
- ReLU
- End-to-end (no pre-training)
- Data augmentation

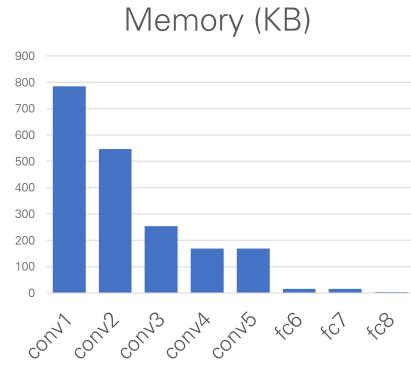
AlexNet

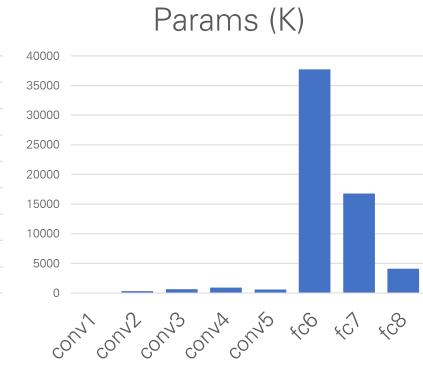


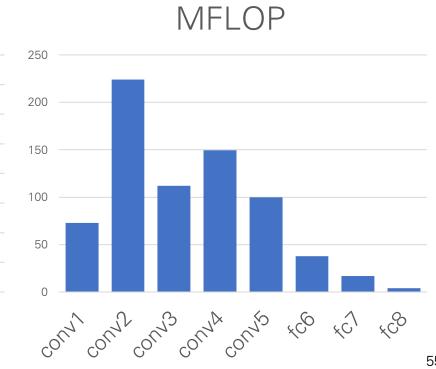
Most of the **memory usage** is in the early convolution layers

Nearly all **parameters** are in the fully-connected layers

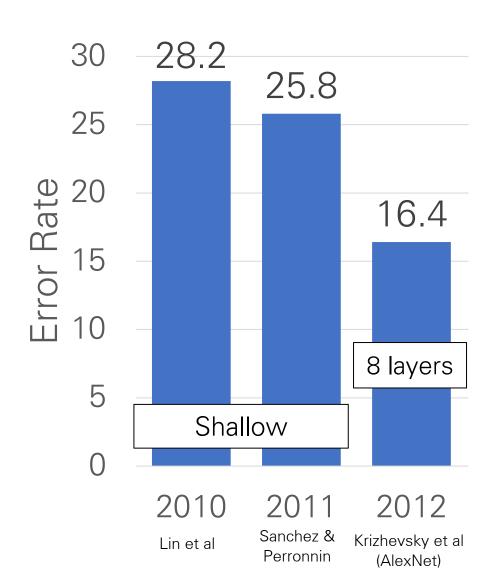
Most **floating-point ops** occur in the convolution layers



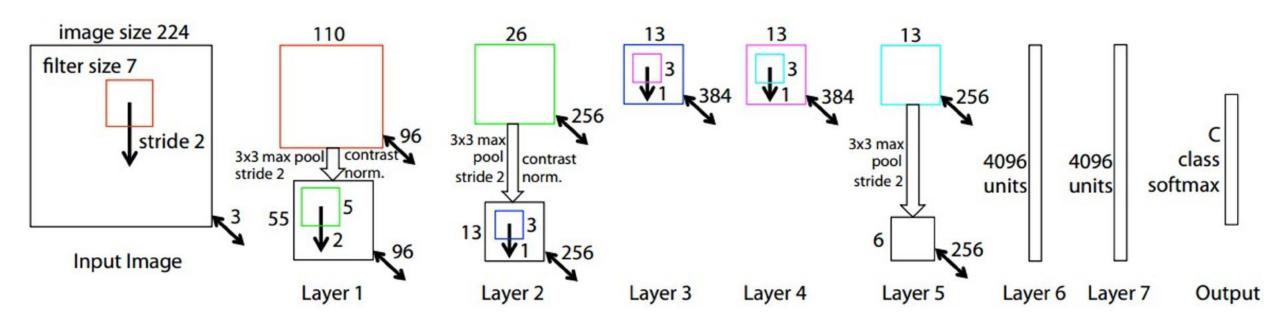




ImageNet Classification Challenge



ZFNet: A Bigger AlexNet



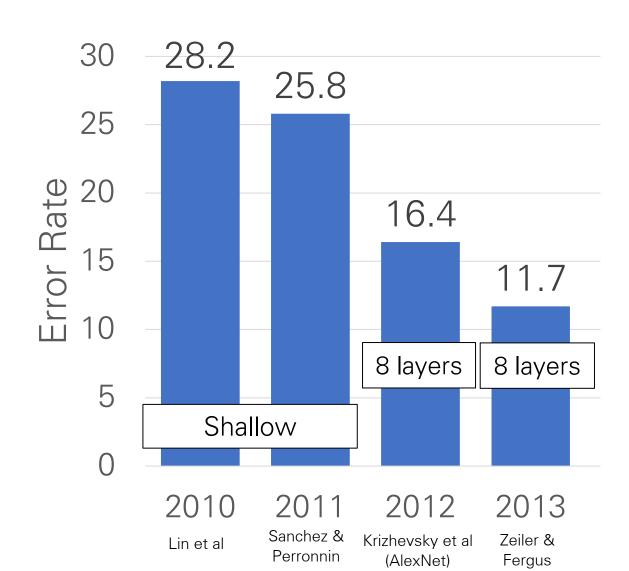
AlexNet but:

CONV1: change from (11x11 stride 4) to (7x7 stride 2)

CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

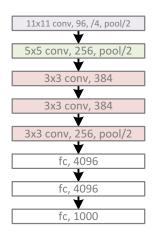
More trial and error

ImageNet Classification Challenge

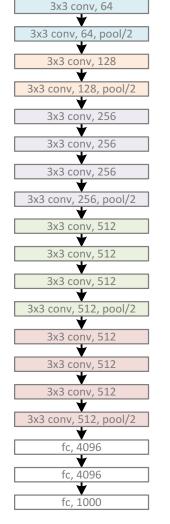


Revolution of Depth

AlexNet, 8 layers (ILSVRC 2012)



VGG, 19 layers (ILSVRC 2014)



VGG Design rules:
All conv are 3x3 stride 1 pad 1
All max pool are 2x2 stride 2
After pool, double #channels

Network has 5 convolutional stages:

Stage 1: conv-conv-pool

Stage 2: conv-conv-pool

Stage 3: conv-conv-pool

Stage 4: conv-conv-conv-[conv]-pool

Stage 5: conv-conv-conv-[conv]-pool

(VGG-19 has 4 conv in stages 4 and 5

- Very deep
- Simply deep

VGG: Deeper Networks, Regular Design

VGG Design rules:

All conv are 3x3 stride 1 pad 1 All max pool are 2x2 stride 2 After pool, double #channels Two 3x3 conv has same receptive field as a single 5x5 conv, but has fewer parameters and takes less computation!

Option 1:

 $Conv(5x5, C \rightarrow C)$

Option 2:

 $Conv(3x3, C \rightarrow C)$

 $Conv(3x3, C \rightarrow C)$

Params: 25C²

FLOPs: 25C²HW

Params: 18C²

FLOPs: 18C²HW

Softmax

FC 1000

FC 4096

FC 4096

Pool

3x3 conv, 256

3x3 conv, 384

Pool

5x5 conv, 256

11x11 conv, 96

Input

AlexNet

FC 1000 Softmax FC 4096 FC 1000 FC 4096 FC 4096 FC 4096 Pool Pool Pool Pool Pool Input Input VGG16 VGG19

VGG: Deeper Networks, Regular Design

VGG Design rules:

All conv are 3x3 stride 1 pad 1 All max pool are 2x2 stride 2 After pool, double #channels Conv layers at each spatial resolution take the same amount of computation!

Input: C x 2H x 2W

Layer: Conv(3x3, C->C)

Memory: 4HWC

Params: 9C²

FLOPs: 36HWC²

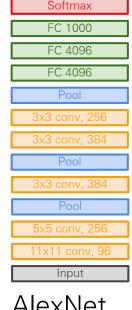
Input: $2C \times H \times W$

Conv(3x3, 2C -> 2C)

Memory: 2HWC

Params: 36C²

FLOPs: 36HWC²



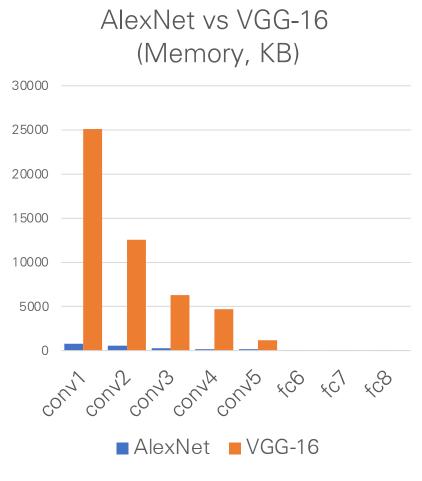
FC 1000 FC 4096 Softmax FC 1000 FC 4096 FC 4096 Pool FC 4096 Pool Pool Pool Pool Pool Pool Pool Input Input

AlexNet

VGG16

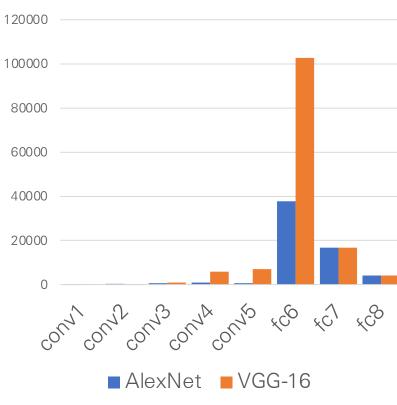
VGG19

AlexNet vs VGG-16: Much bigger network!



AlexNet total: 1.9 MB

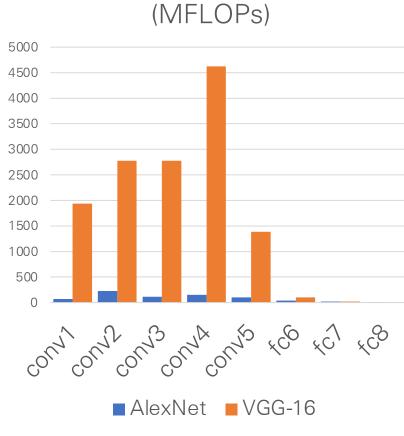
VGG-16 total: 48.6 MB (25x)



AlexNet total: 61M

VGG-16 total: 138M (2.3x)

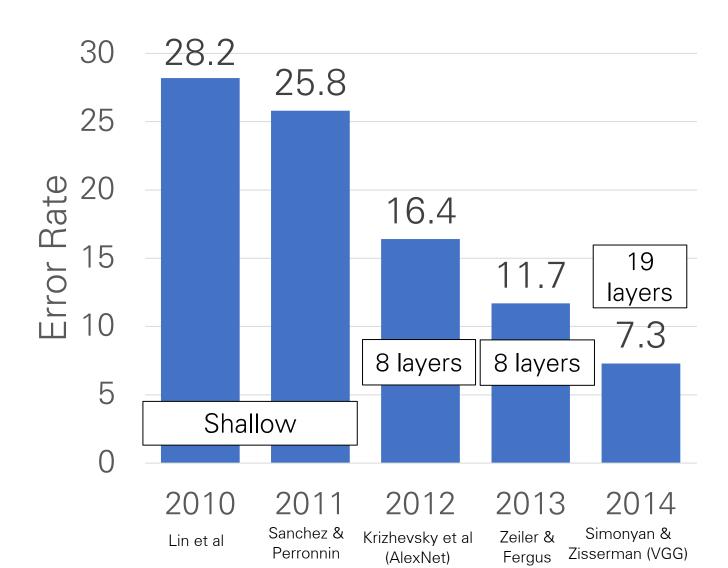
AlexNet vs VGG-16 (MFLOPs)



AlexNet total: 0.7 GFLOP

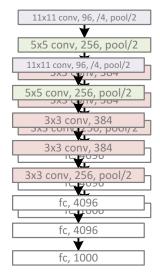
VGG-16 total: 13.6 GFLOP (19.4x)

ImageNet Classification Challenge



Revolution of Depth

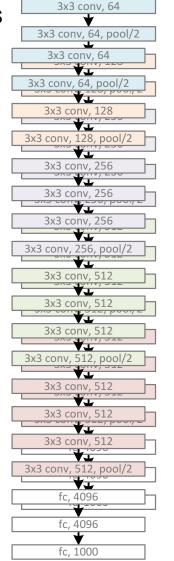
AlexNet, 8 layers (ILSVRC 2012)



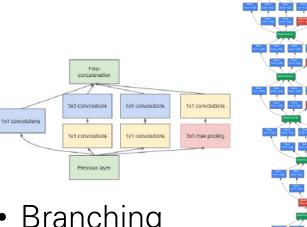
VGG, 19 layers (ILSVRC 2014)

Very deep

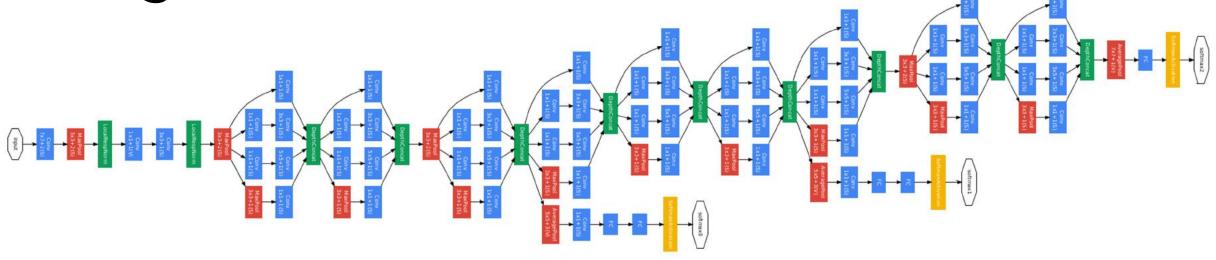
• Simply deep



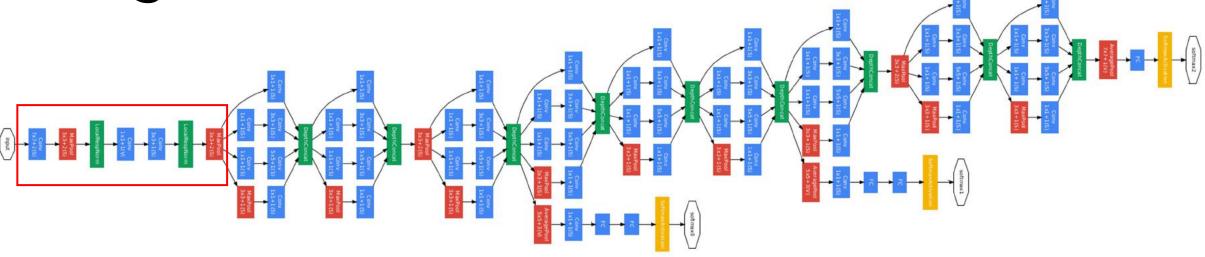
GoogLeNet, 22 layers (ILSVRC 2014)



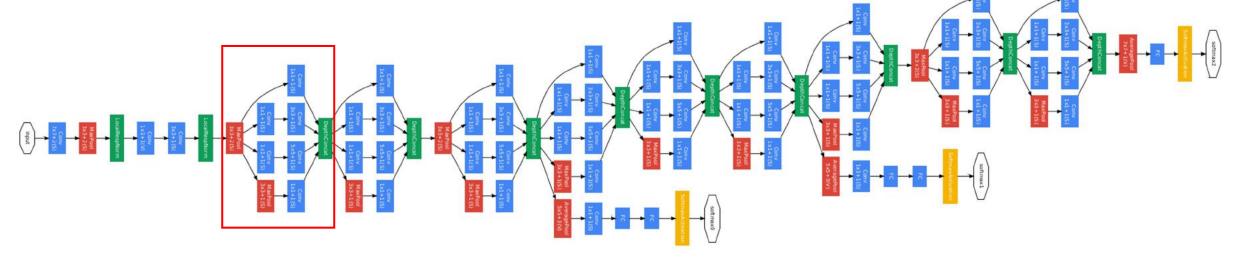
- Branching
- Bootleneck
- Skip connection

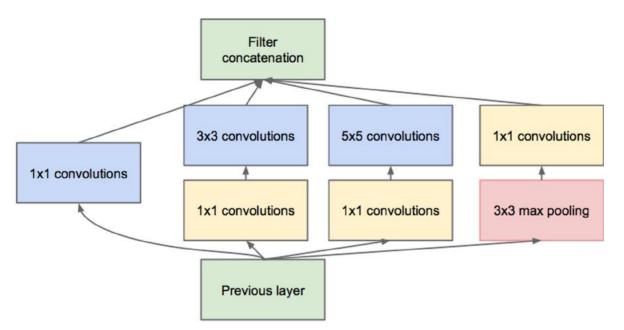


Many innovations for efficiency: reduce parameter count, memory usage, and computation



Stem network at the start aggressively downsamples input (Recall in VGG-16: Most of the compute was at the start)





Inception module

Local unit with parallel branches

Local structure repeated many times throughout the network

Uses 1x1 "Bottleneck" layers to reduce channel dimension before expensive conv

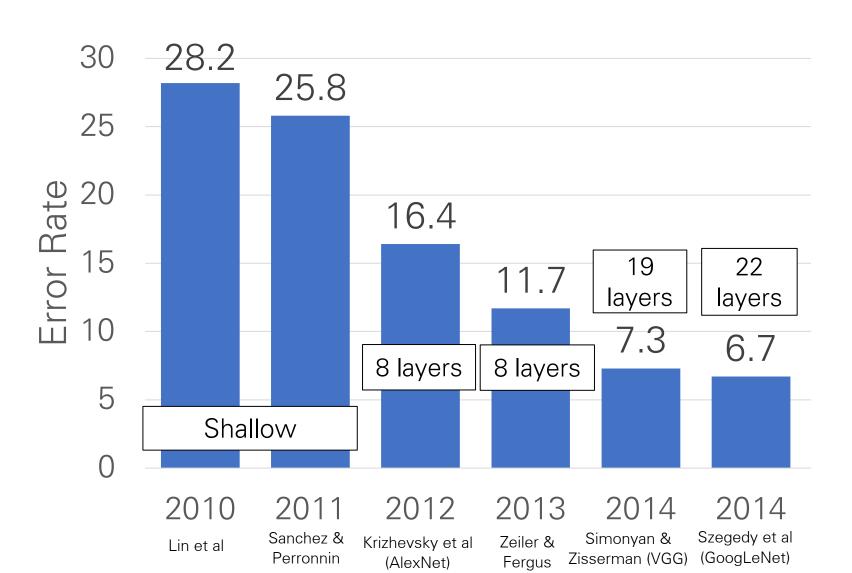
Auxiliary Classifiers

Training using loss at the end of the network didn't work well: Network is too deep, gradients don't propagate cleanly

As a hack, attach "auxiliary classifiers" at several intermediate points in the network that also try to classify the image and receive loss

GoogLeNet was before batch normalization! With BatchNorm no longer need to use this trick

ImageNet Classification Challenge



type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution	7×7/2	112×112×64	1							2.7K	34M
max pool	3×3/2	56×56×64	0								
convolution	3×3/1	$56 \times 56 \times 192$	2		64	192				112K	360M
max pool	3×3/2	28×28×192	0								
inception (3a)		28×28×256	2	64	96	128	16	32	32	159K	128M
inception (3b)		28×28×480	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	14×14×480	0								
inception (4a)		14×14×512	2	192	96	208	16	48	64	364K	73M
inception (4b)		14×14×512	2	160	112	224	24	64	64	437K	88M
inception (4c)		14×14×512	2	128	128	256	24	64	64	463K	100M
inception (4d)		14×14×528	2	112	144	288	32	64	64	580K	119M
inception (4e)		14×14×832	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	7×7×832	0								
inception (5a)		7×7×832	2	256	160	320	32	128	128	1072K	54M
inception (5b)		7×7×1024	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	1×1×1024	0								
dropout (40%)		1×1×1024	0								
linear		1×1×1000	1							1000K	1M
softmax		1×1×1000	0								

Fun features:

- Only 5 million params! (Removes FC layers completely)

Compared to AlexNet:

- 12X less params
- 2x more compute
- -6.67% (vs. 16.4%)

Revolution of Depth

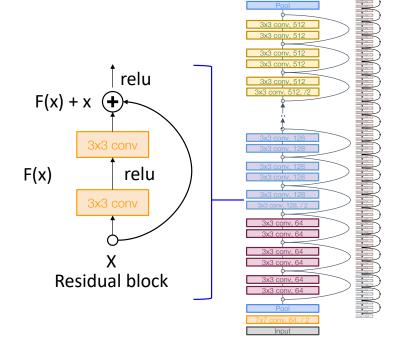
AlexNet, 8 layers (ILSVRC 2012)

ResNet, 152 layers (ILSVRC 2015)

A residual network is a stack of many residual blocks

Regular design, like VGG: each residual block has two 3x3 conv

Network is divided into **stages**: the first block of each stage halves the resolution (with stride-2 conv) and doubles the number of channels

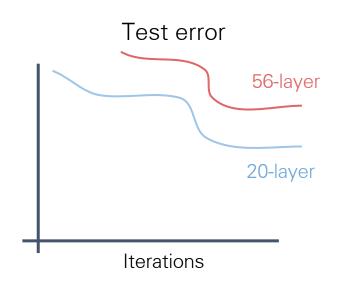


Residual Networks (ResNet)

Once we have Batch Normalization, we can train networks with 10+ layers. What happens as we go deeper?

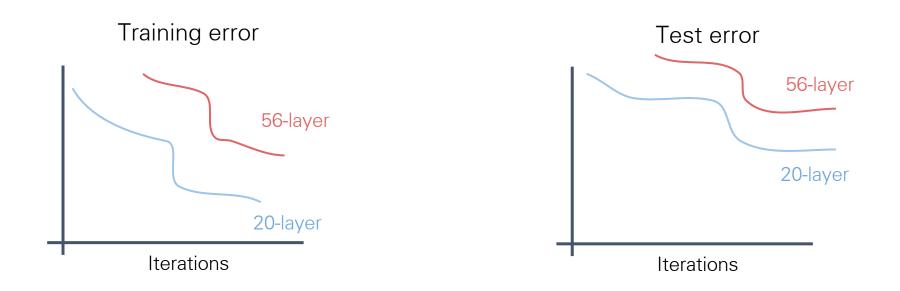
Deeper model does worse than shallow model!

Initial guess: Deep model is **overfitting** since it is much bigger than the other model



Residual Networks (ResNet)

Once we have Batch Normalization, we can train networks with 10+ layers. What happens as we go deeper?



In fact, the deep model seems to be **underfitting** since it also performs worse than the shallow model on the training set! It is actually **underfitting**

[He et al., 2015]

• A deeper model can <u>emulate</u> a shallower model: copy layers from shallower model, set extra layers to identity

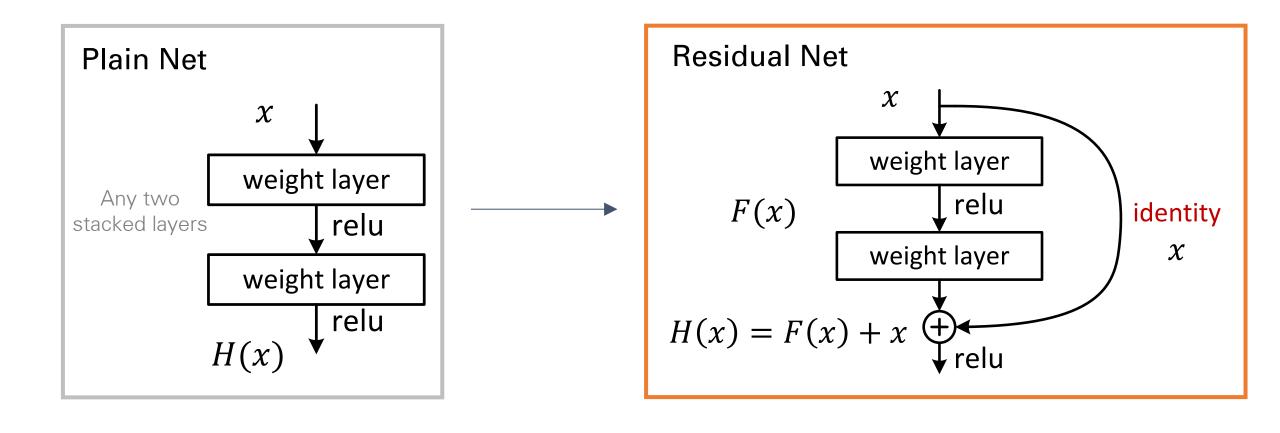
Thus deeper models should do at least as good as shallow models

• **Hypothesis**: This is an <u>optimization</u> problem. Deeper models are harder to optimize, and in particular don't learn identity functions to emulate shallow models

Solution: Change the network so learning identity functions with extra layers is easy!

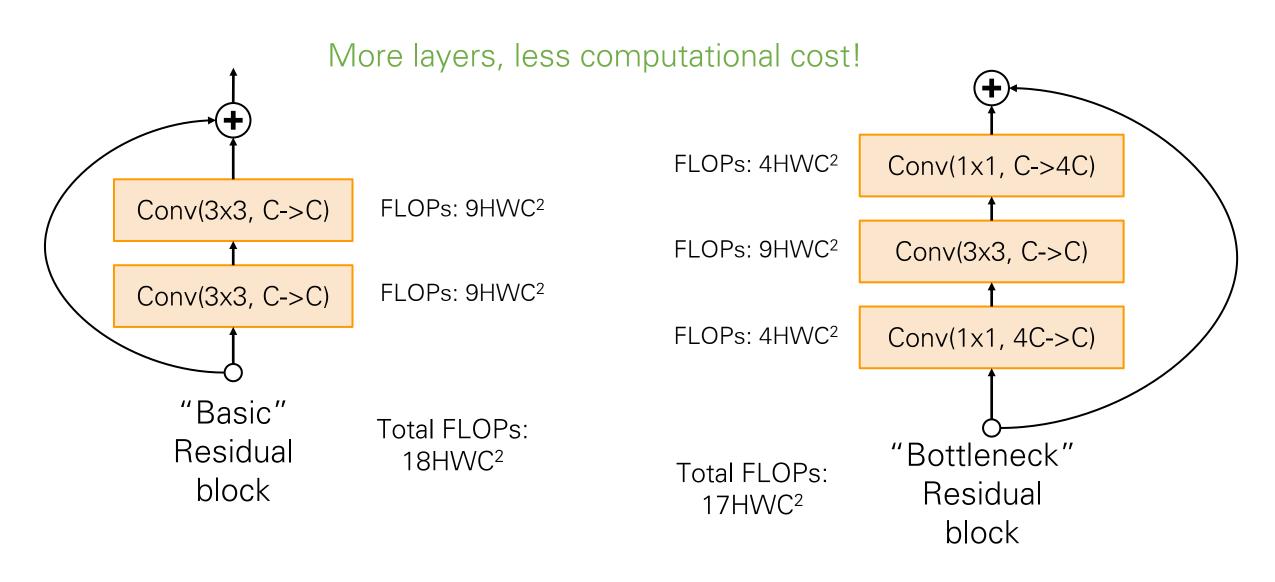
[He et al., 2015]

Residual Networks (ResNet)



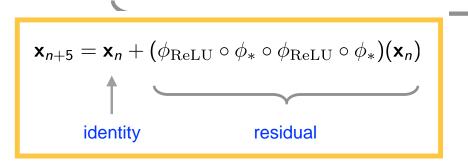
Residual Networks (ResNet)

[He et al., 2015]

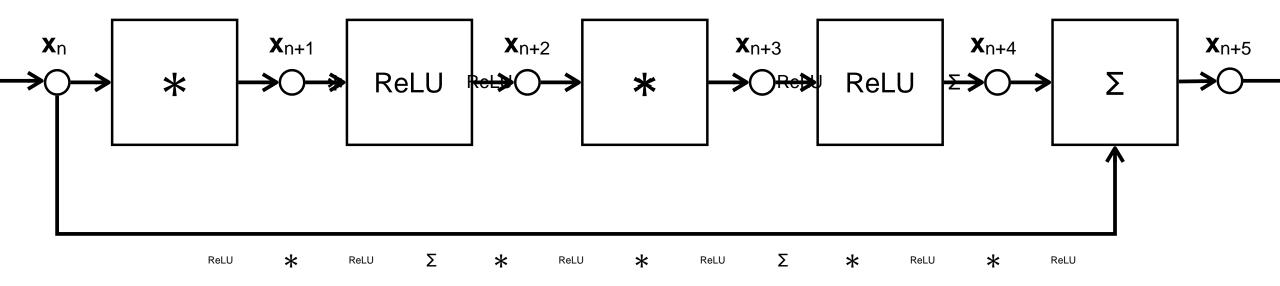


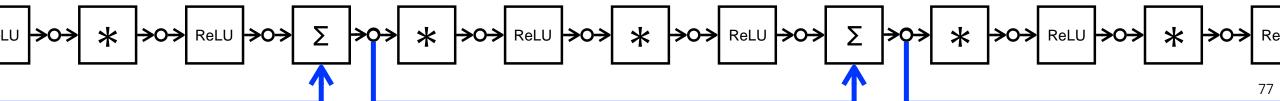
Residual Learning $\phi_{\text{ReLU}} \circ \phi_* \circ \phi_{\text{ReLU}} \circ \phi_*)(x_n)$

Fixed identity // learned residual

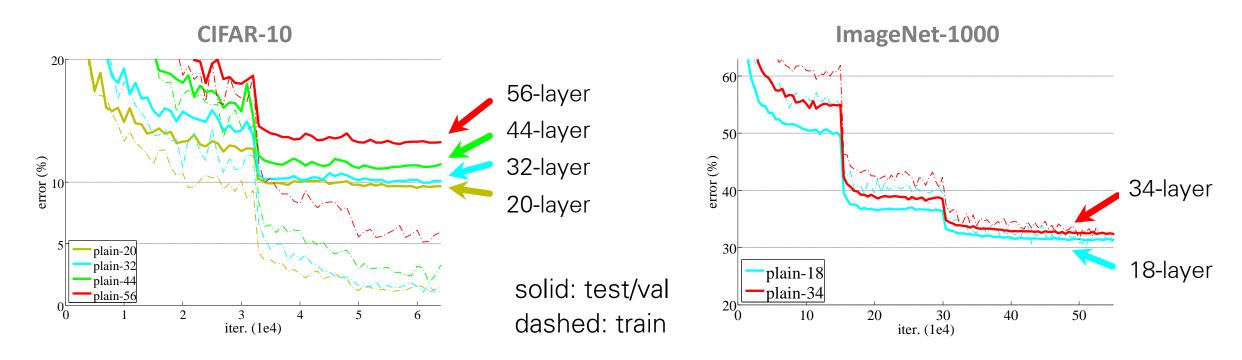


K. He, X. Zhang, S. Ren, and J. Sun. **Deep residual learning for image recognition**. In CVPR 2016.





Residual Learning

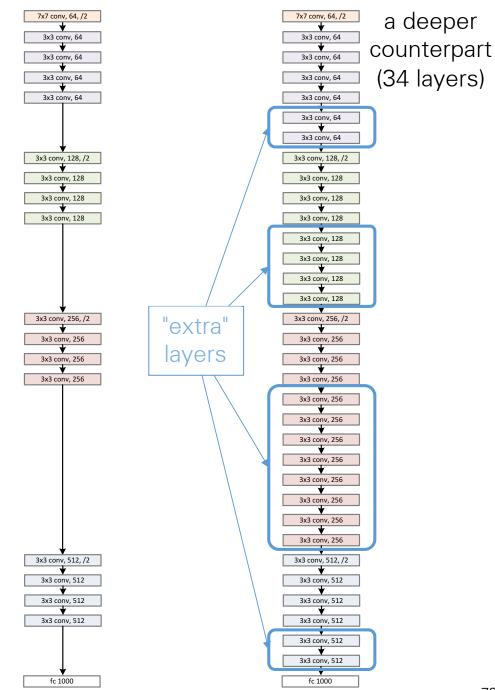


- "Overly deep" plain nets have higher training error
- A general phenomenon, observed in many datasets
- This is optimization issue, deeper models are harder to optimize

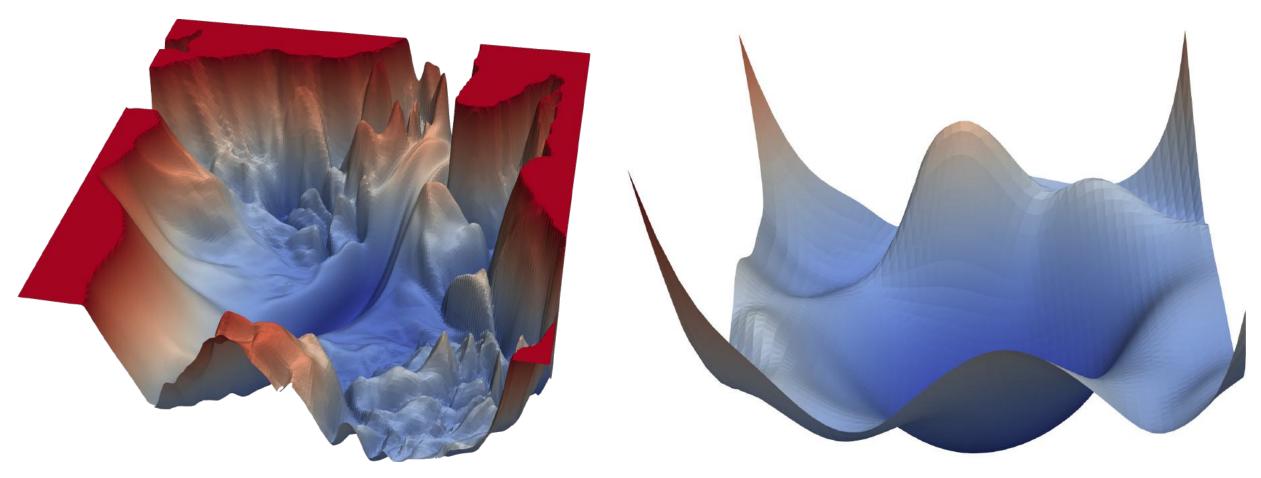
Residual Learning

- a shallower model (18 layers)

- Richer solution space
- A deeper model should not have higher training error
- A solution by construction:
 - original layers: copied from a
 - learned shallower model
 - extra layers: set as identity
 - at least the same training error

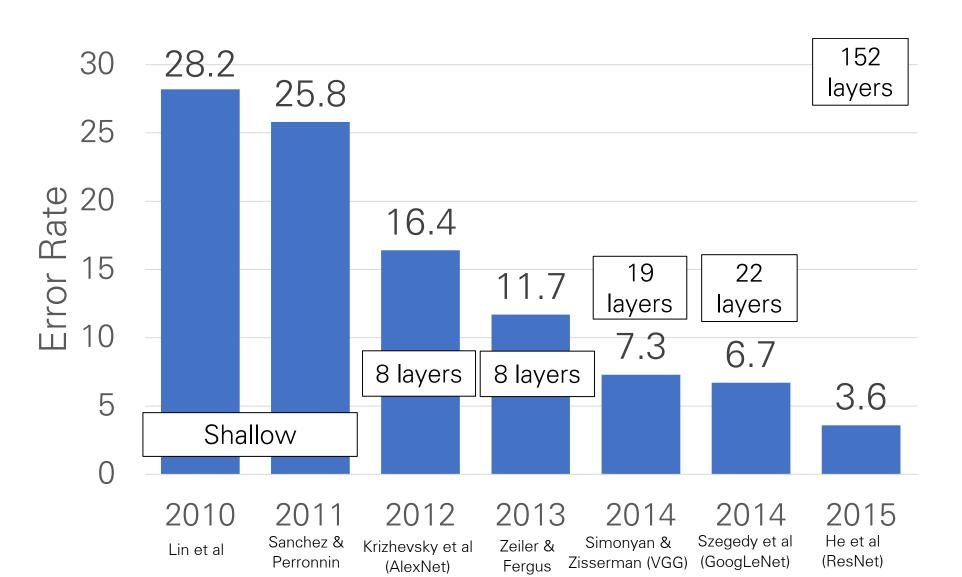


Residual Learning

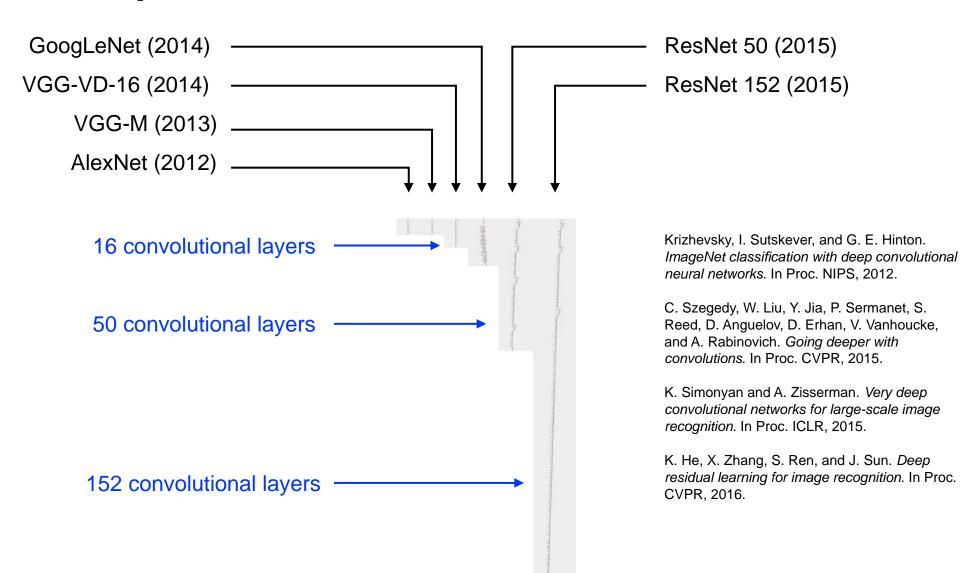


 The loss surface of a 56-layer net using the CIFAR-10 dataset, both without (left) and with (right) residual connections.

ImageNet Classification Challenge

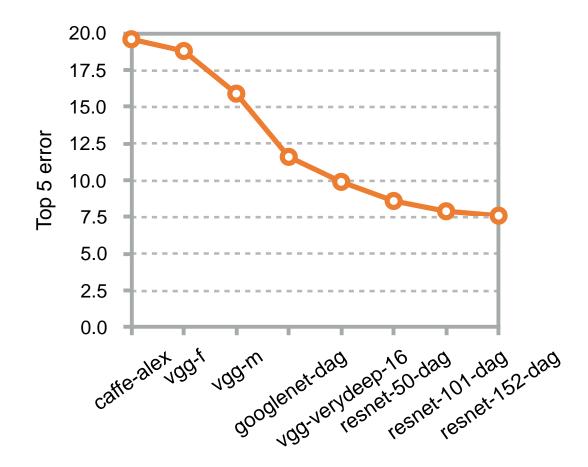


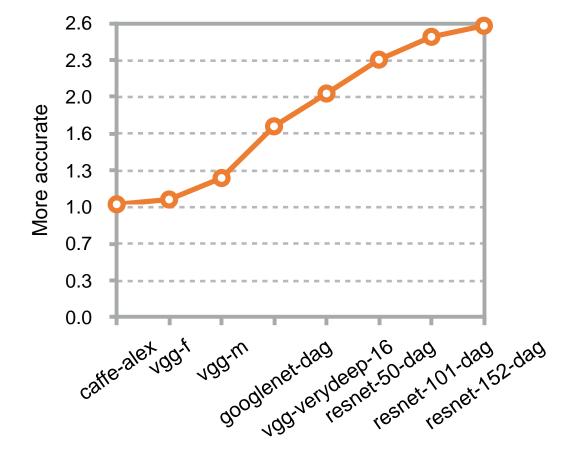
How deep is enough?



How deep is enough?

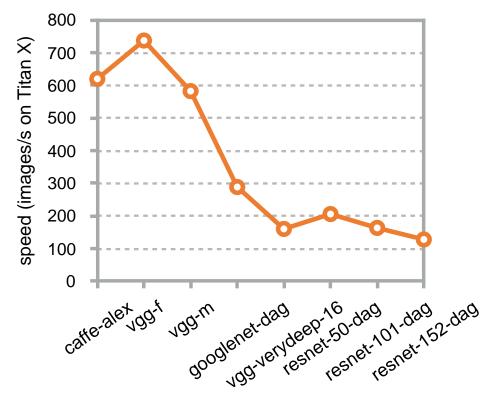
• 3 × more accurate in 3 years

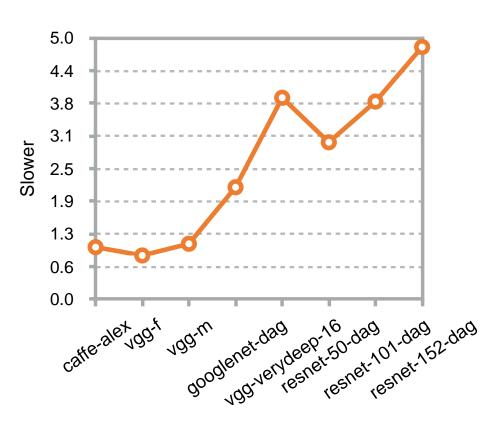




Speed

• 5 × slower

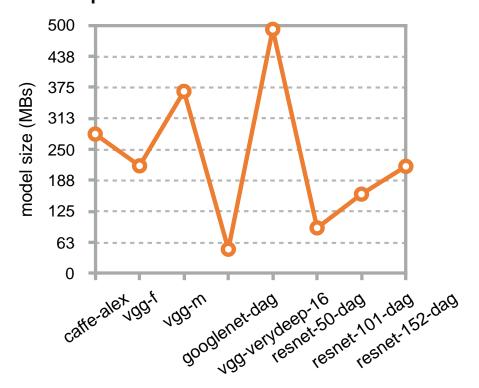


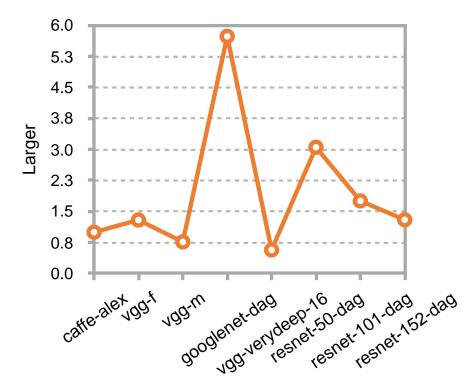


- Remark: 101 ResNet layers same size/speed as 16 VGG-VD layers
- Reason: Far fewer feature channels (quadratic speed/space gain)
- Moral: Optimize your architecture

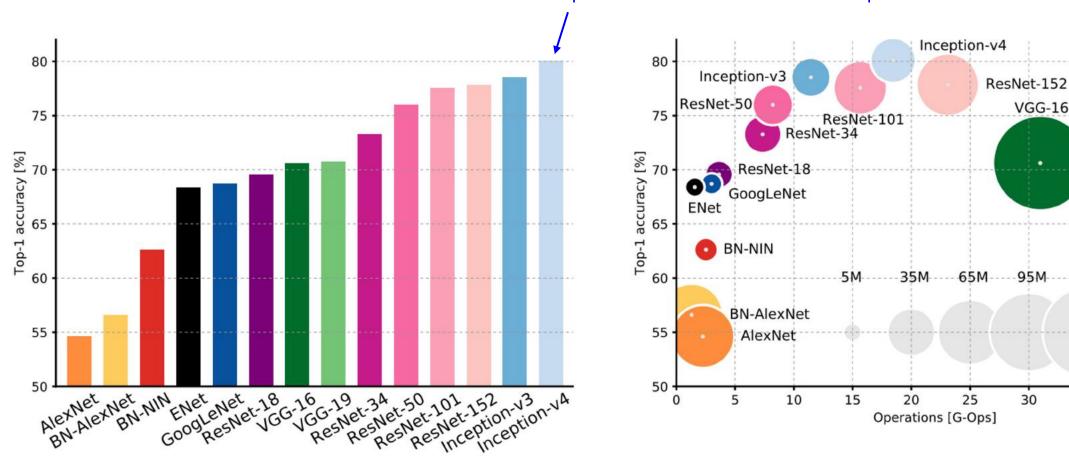
Model Size

Num. of parameters is about the same





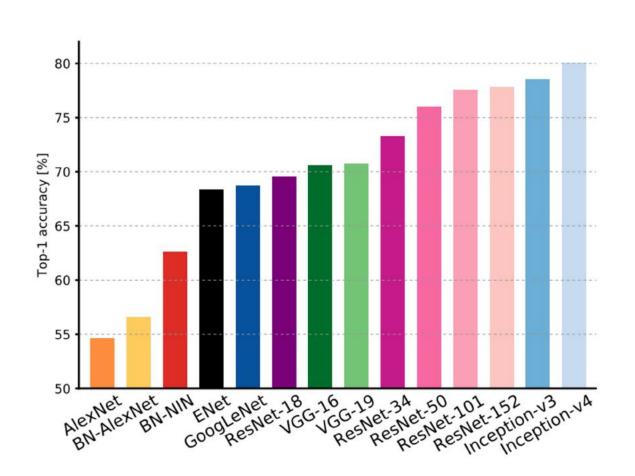
- Remark: 101 ResNet layers same size/speed as 16 VGG-VD layers
- Reason: Far fewer feature channels (quadratic speed/space gain)
- Moral: Optimize your architecture



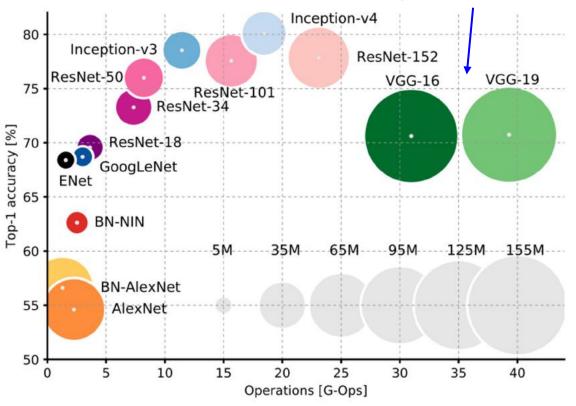
VGG-19

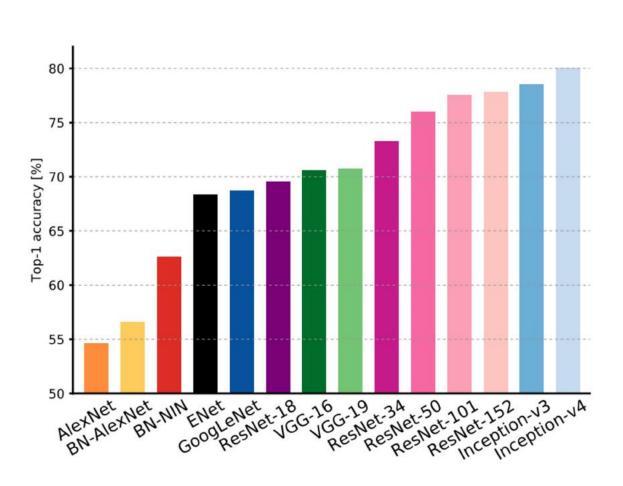
35

40

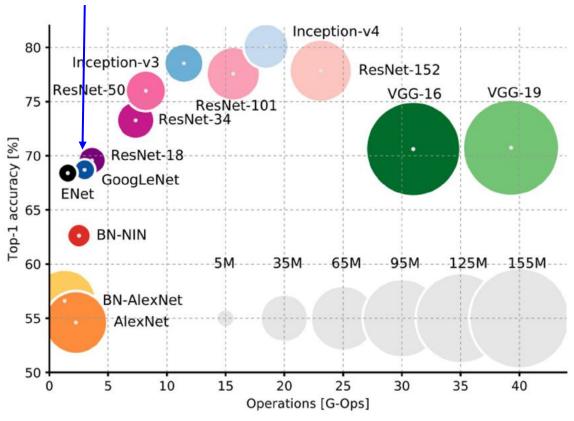


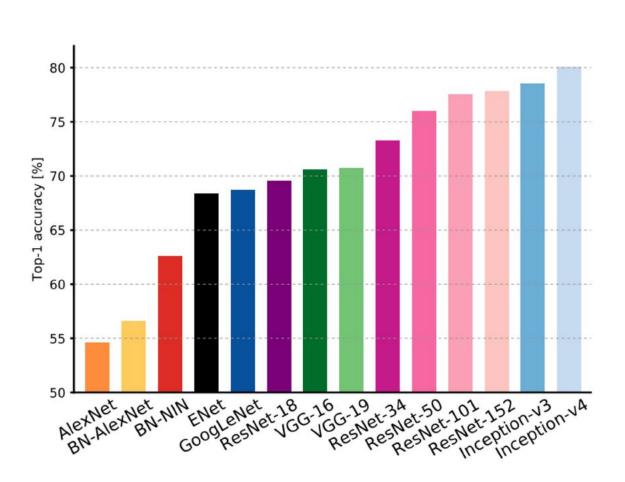
VGG: Highest memory, most operations

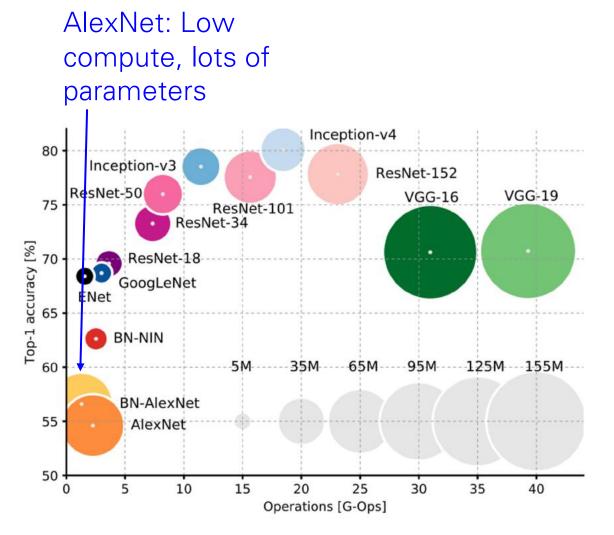


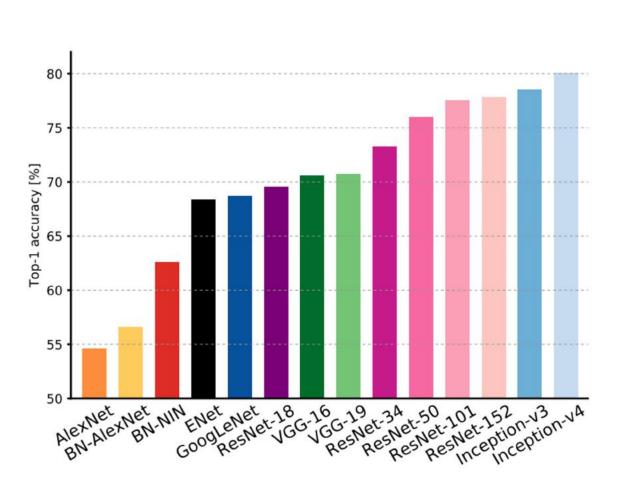


GoogLeNet: Very efficient!

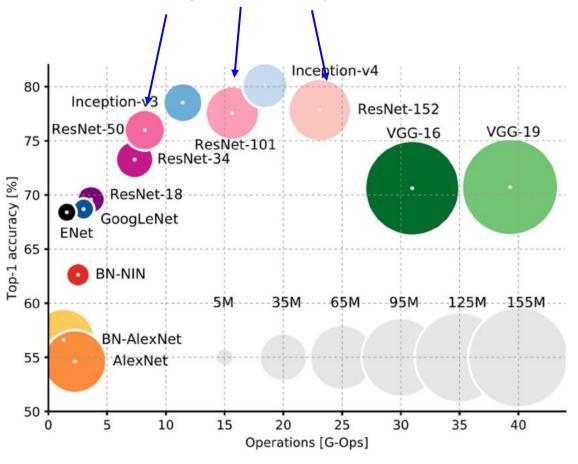




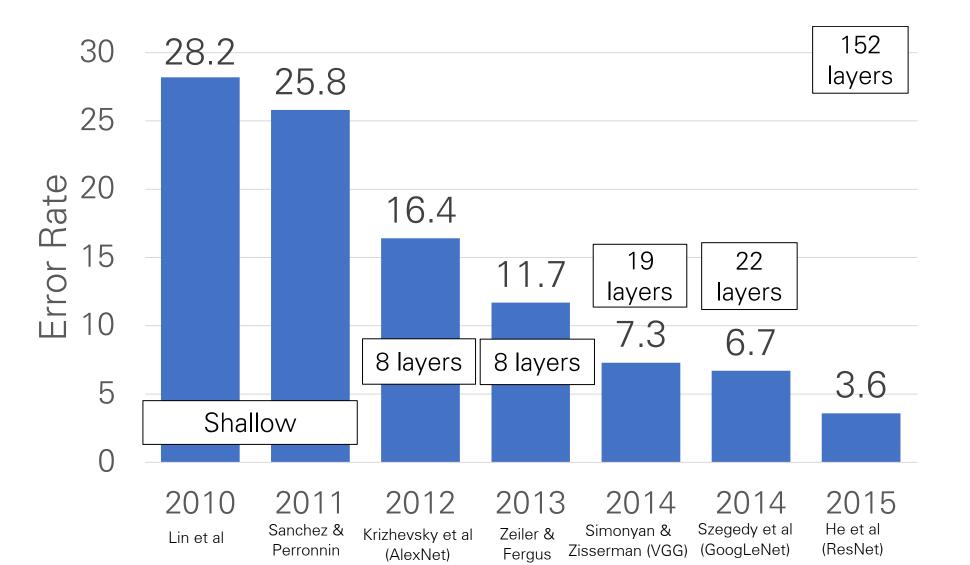




ResNet: Simple design, moderate efficiency, high accuracy



ImageNet Classification Challenge

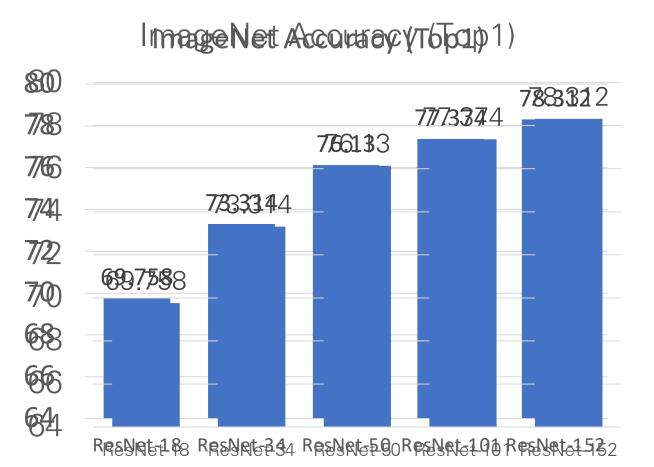


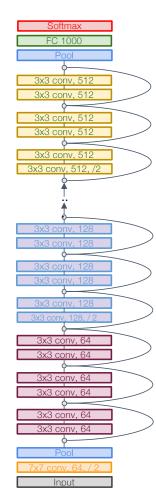
Today: More recent CNN architectures

Post-ResNet Architectures

ResNet made it possible to increase accuracy with larger, deeper models

Many followup architectures emphasize **efficiency**: can we improve accuracy while controlling for model "complexity"?





Measures of Model Complexity

Parameters: How many learnable parameters does the model have?

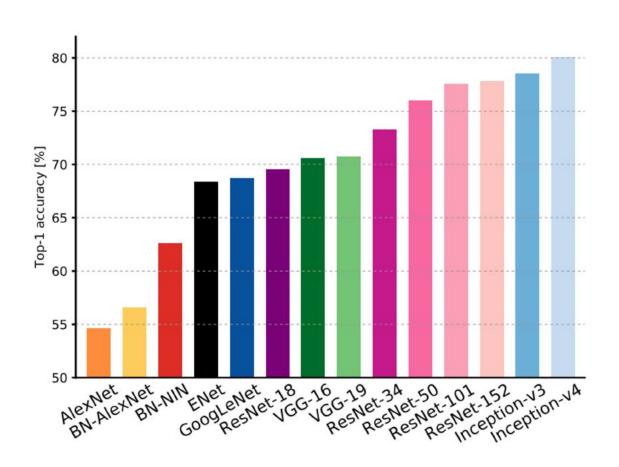
Floating Point Operations (FLOPs): How many arithmetic operations does it take to compute the forward pass of the model?

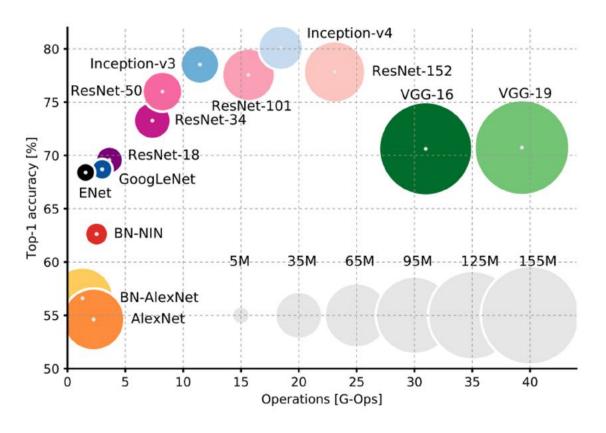
Watch out, lots of subtlety here:

- Many papers only count operations in conv layers (ignore ReLU, pooling, BatchNorm).

 Most papers use "1 FLOP" = "1 multiply and 1 addition" so dot product of two N-dim vectors takes N FLOPs; some papers say MADD or MACC instead of FLOP
- Other sources (e.g. NVIDIA marketing material) count "1 multiply and one addition" = 2 FLOPs, so dot product of two N-dim vectors takes 2N FLOPs

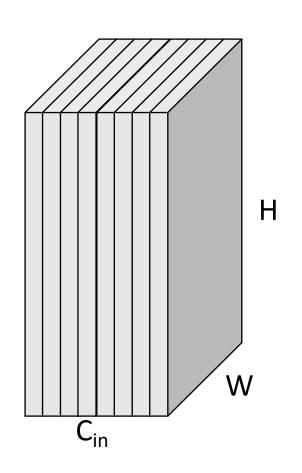
Network Runtime: How long does a forward pass of the model take on real hardware?

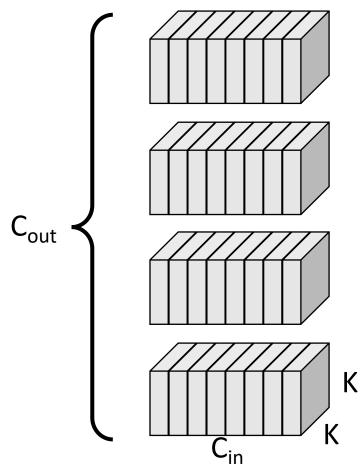


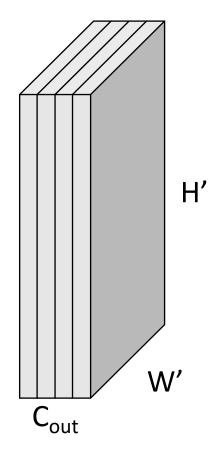


Key ingredient: Grouped / Separable convolution

Each filter has the same number of channels as the input







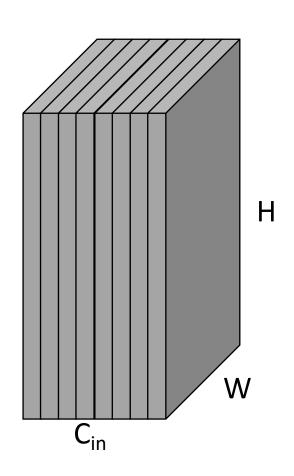
Input: $C_{in} \times H \times W$

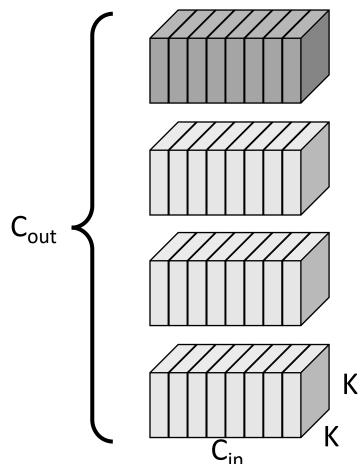
Weights: C_{out} x C_{in} x K x K

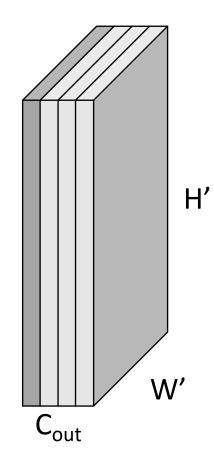
Output: C_{out} x H' x W'

Each filter has the same number of channels as the input

Each plane of the output depends on the full input and one filter







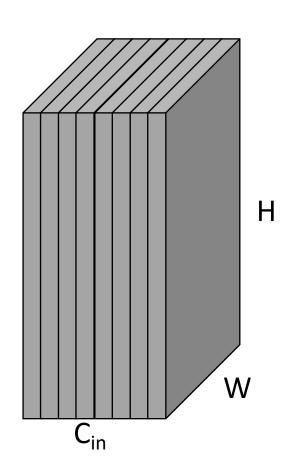
Input: $C_{in} \times H \times W$

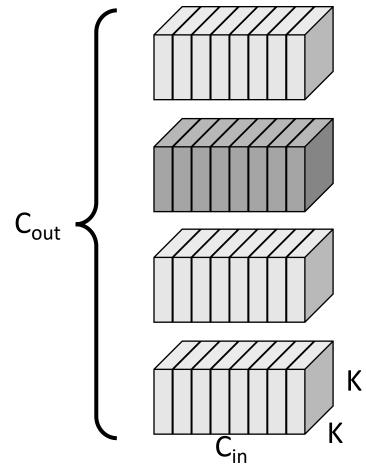
Weights: C_{out} x C_{in} x K x K

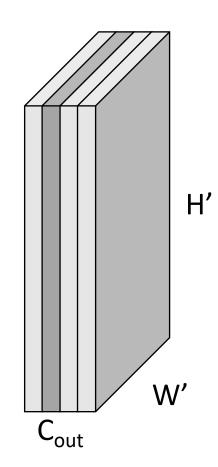
Output: C_{out} x H' x W'

Each filter has the same number of channels as the input

Each plane of the output depends on the full input and one filter







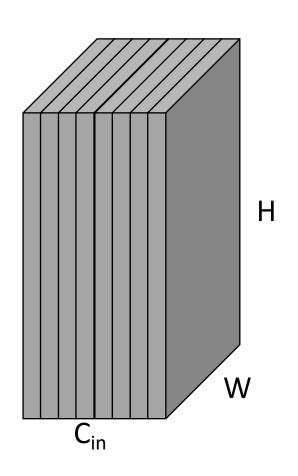
Input: $C_{in} \times H \times W$

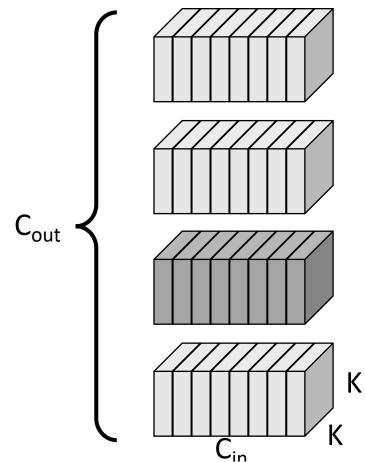
Weights: C_{out} x C_{in} x K x K

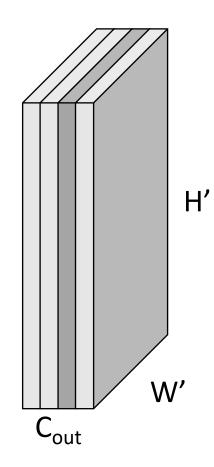
Output: C_{out} x H' x W'

Each filter has the same number of channels as the input

Each plane of the output depends on the full input and one filter





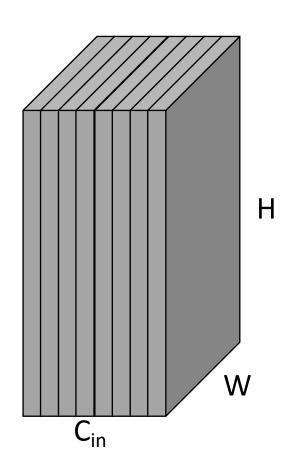


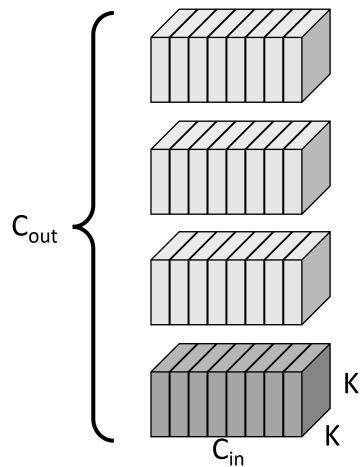
Input: $C_{in} \times H \times W$

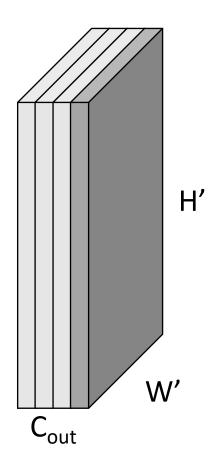
Weights: C_{out} x C_{in} x K x K

Each filter has the same number of channels as the input

Each plane of the output depends on the full input and one filter

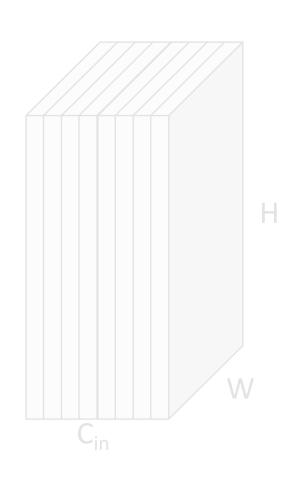


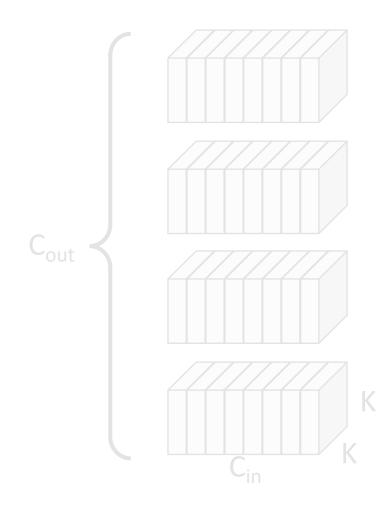


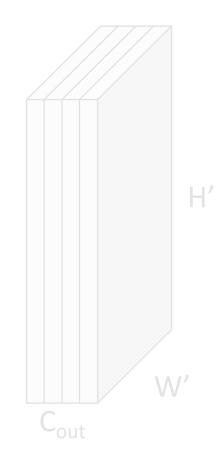


Input: $C_{in} \times H \times W$

Weights: C_{out} x C_{in} x K x K





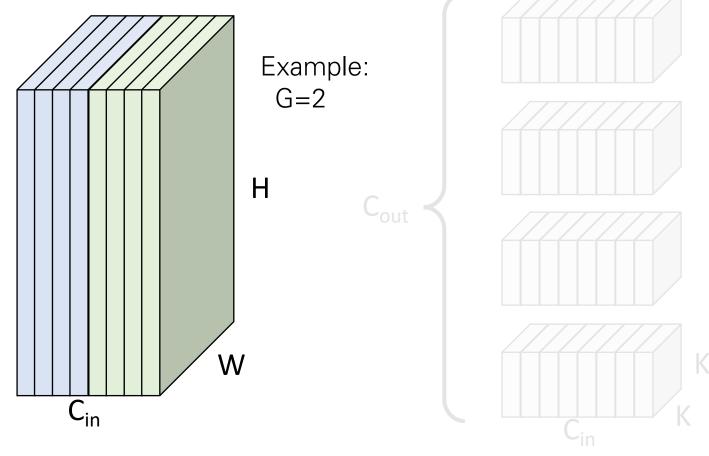


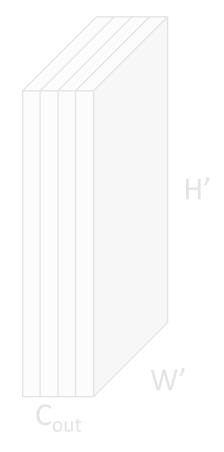
Input: $C_{in} \times H \times W$

Weights: Cout x Cin x K x K

Output: $C_{out} \times H' \times W'$

Divide channels of input into G groups with (C_{in}/G) channels each





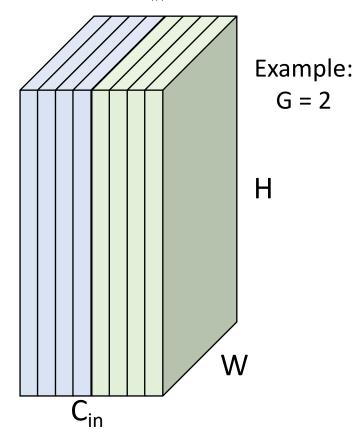
Input: $C_{in} \times H \times W$

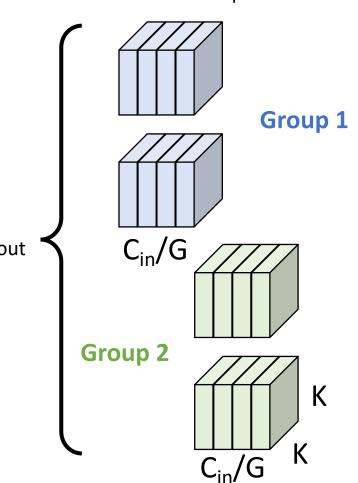
Weights: C_{out} x C_{in} x K x K

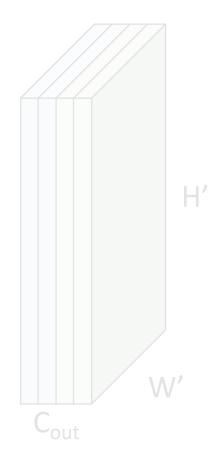
Output: $C_{out} \times H' \times W'$

Divide filters into G groups; each group looks at a **subset** of input channels

Divide channels of input into G groups with (C_{in}/G) channels each







Input: $C_{in} \times H \times W$

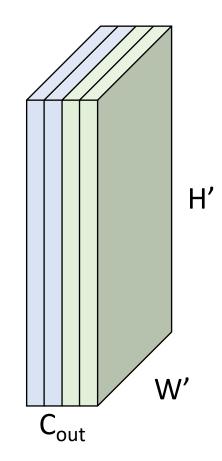
Weights: $C_{out} \times (C_{in}/G) \times K \times K$ Output: $C_{out} \times H' \times W'$

Divide channels of input into G groups with (C_{in}/G) channels each

Example: **Group 1** G = 2Н C_{in}/G **Group 2** W K

Divide filters into G groups; each group looks at a **subset** of input channels

Each plane of the output depends on one filter and a subset of the input channels



Input: $C_{in} \times H \times W$

Weights: $C_{out} \times (C_{in}/G) \times K \times K$ Output: $C_{out} \times H' \times W'$

Divide channels of input into G groups with (C_{in}/G) channels each

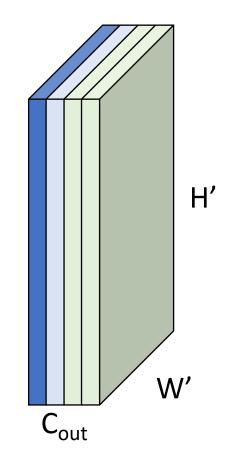
Example: **Group 1** G=2Н C_{in}/G **Group 2** K W

Input: $C_{in} \times H \times W$

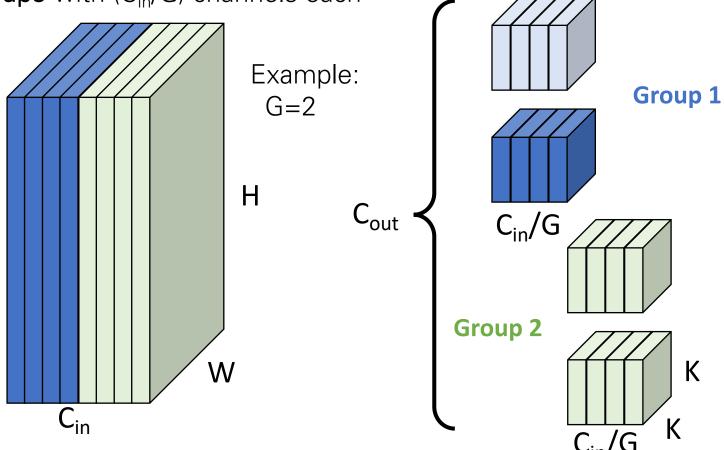
Weights: C_{out} x C_{in} x K x K

Divide filters into G groups; each group looks at a **subset** of input channels

Each plane of the output depends on one filter and a **subset** of the input channels



Divide channels of input into G groups with (C_{in}/G) channels each

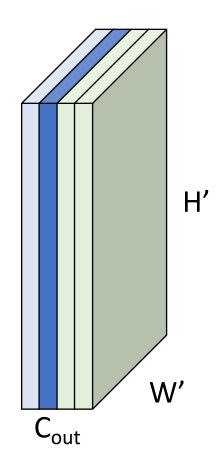


Input: $C_{in} \times H \times W$

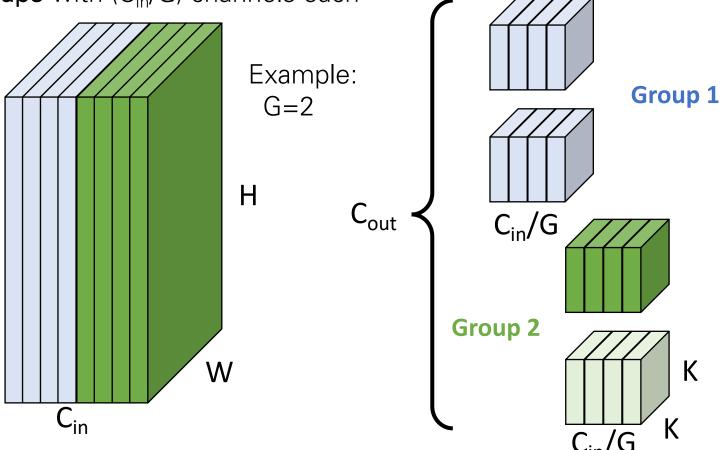
Weights: C_{out} x C_{in} x K x K

Divide filters into G groups; each group looks at a **subset** of input channels

Each plane of the output depends on one filter and a **subset** of the input channels



Divide channels of input into G groups with (C_{in}/G) channels each

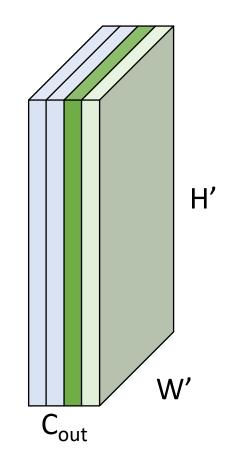


Input: $C_{in} \times H \times W$

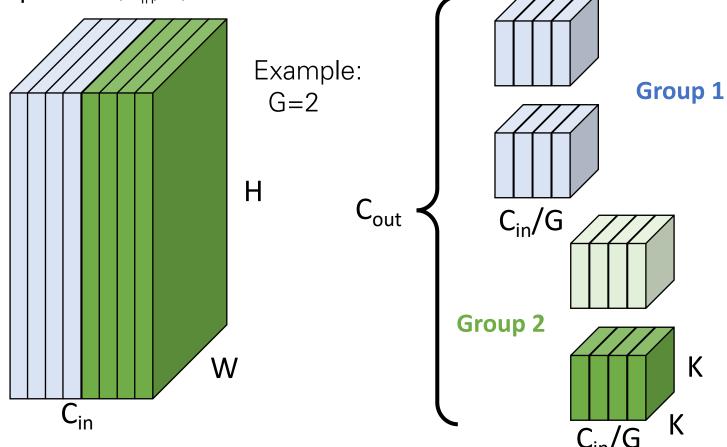
Weights: C_{out} x C_{in} x K x K

Divide filters into G groups; each group looks at a **subset** of input channels

Each plane of the output depends on one filter and a **subset** of the input channels



Divide channels of input into G groups with (C_{in}/G) channels each

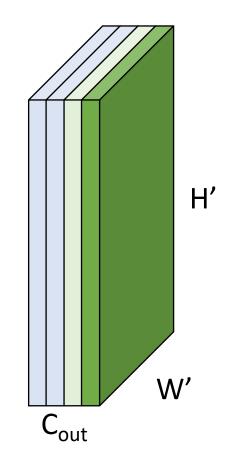


Input: $C_{in} \times H \times W$

Weights: C_{out} x C_{in} x K x K

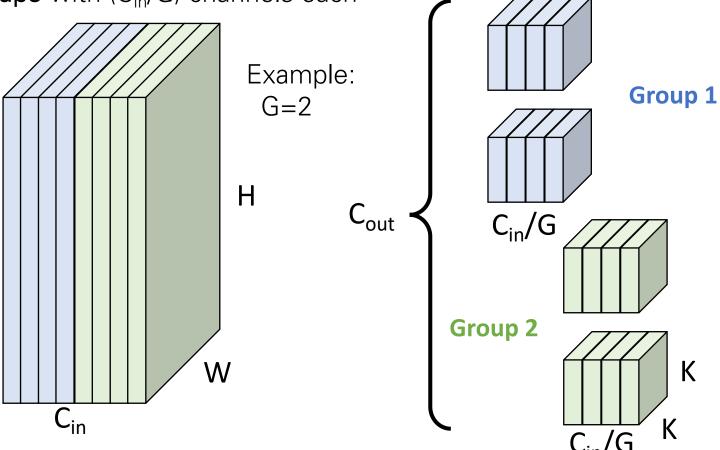
Divide filters into G groups; each group looks at a **subset** of input channels

Each plane of the output depends on one filter and a **subset** of the input channels



Group Convolution

Divide channels of input into G groups with (C_{in}/G) channels each

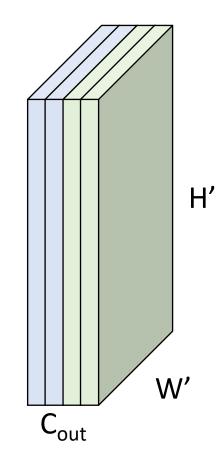


Input: $C_{in} \times H \times W$

Weights: C_{out} x C_{in} x K x K

Divide filters into G groups; each group looks at a **subset** of input channels

Each plane of the output depends on one filter and a **subset** of the input channels



Group Convolution

W

Divide channels of input into G groups with (C_{in}/G) channels each

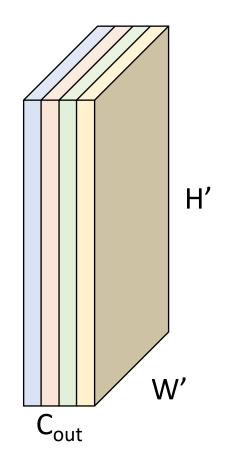
Example:
G=4

Group 2

Group 3

Divide filters into G groups; each group looks at a **subset** of input channels

Each plane of the output depends on one filter and a **subset** of the input channels



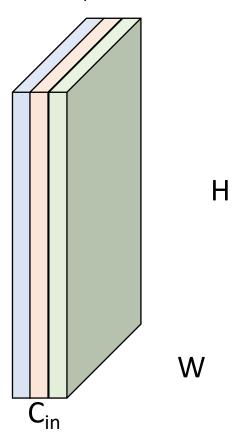
Input: $C_{in} \times H \times W$

Weights: C_{out} x C_{in} x K x K

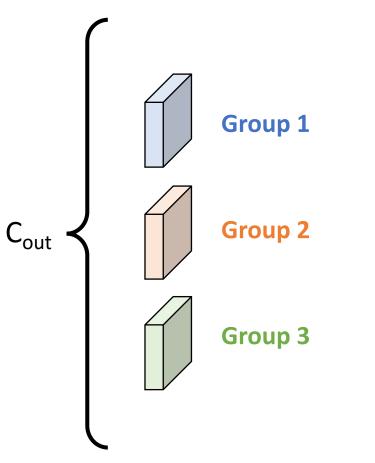
Group 4

Special Case: Depthwise Convolution

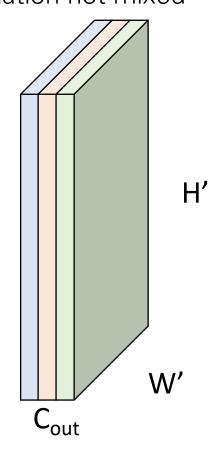
Number of groups equals number of input channels



Common to also set $C_{out} = G$



Output only mixes *spatial* information from input; **channel** information not mixed

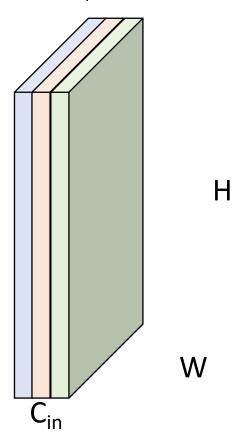


Input: $C_{in} \times H \times W$

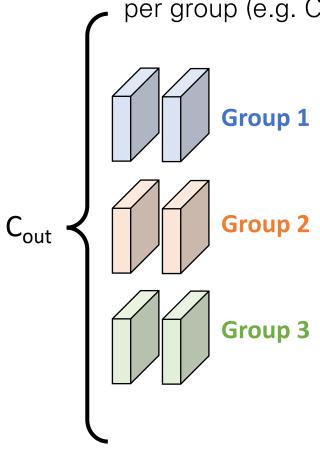
Weights: C_{out} x 1 x K x K

Special Case: Depthwise Convolution

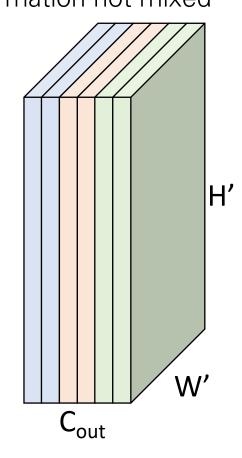
Number of groups equals number of input channels



Can still have multiple filters per group (e.g. $C_{out} = 2C_{in}$)



Output only mixes *spatial* information from input; **channel** information not mixed



Input: $C_{in} \times H \times W$

Weights: C_{out} x 1 x K x K

Grouped Convolution vs Standard Convolution

Grouped Convolution (G groups):

G parallel conv layers; each "sees" C_{in}/G input channels and produces C_{out}/G output channels

Input: $C_{in} \times H \times W$

Split to G x [(C_{in} / G) x H x W] Weight:G x (C_{out} / G) x (C_{in} / G) x K x K G parallel convolutions

Output: $G \times [(C_{out} / G) \times H' \times W']$ Concat to $C_{out} \times H' \times W'$

FLOPs: CoutCinK2HW/G

Standard Convolution (groups=1)

Input: $C_{in} \times H \times W$

Weight: C_{out} x C_{in} x K x K

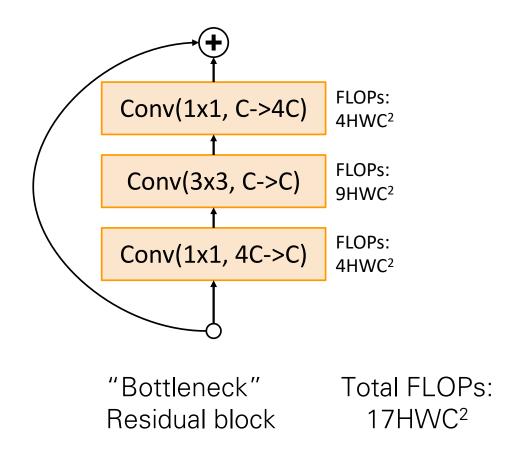
Output: C_{out} x H' x W'

FLOPs: CoutCinK2HW

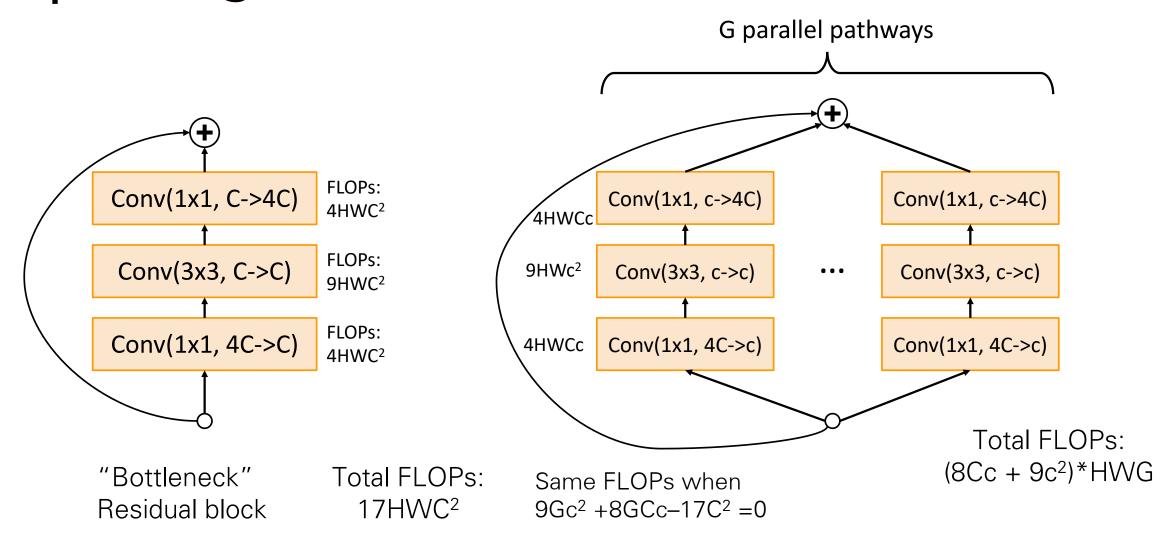
All convolutional kernels touch all C_{in} channels of the input

Using G groups reduces FLOPs by a factor of G!

Improving ResNets

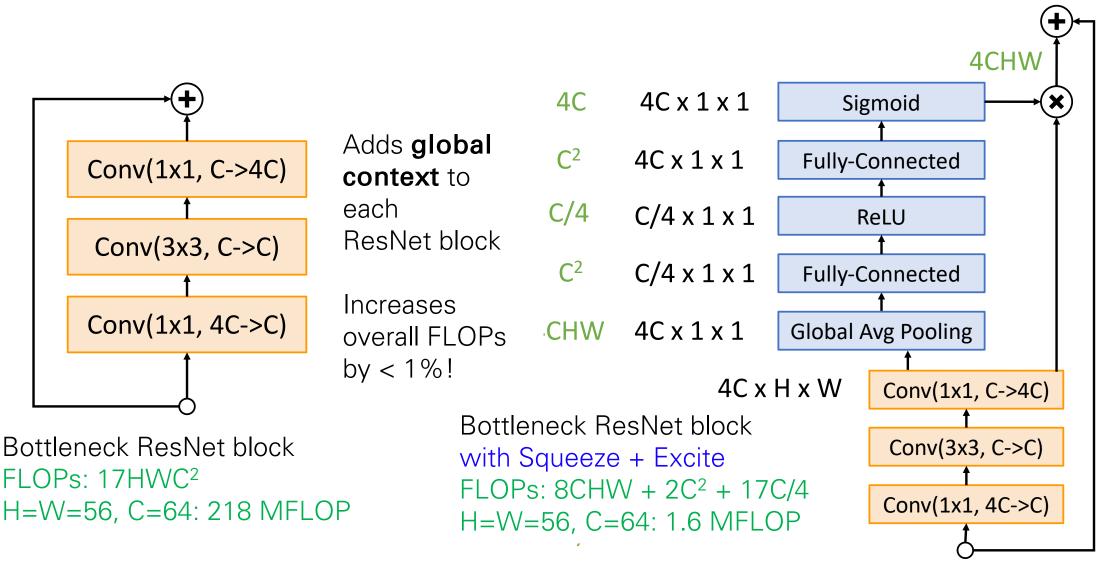


Improving ResNets: ResNeXt

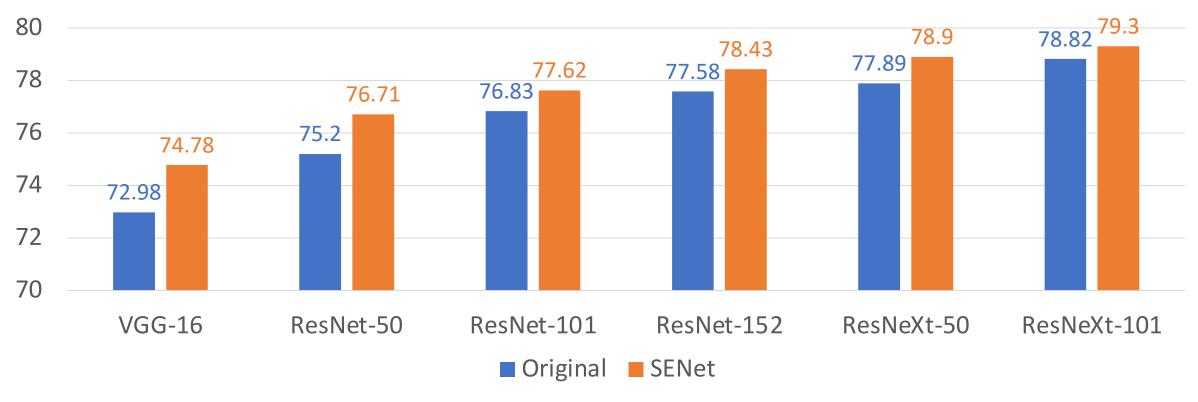


Example: C=64, G=4, c=24; C=64, G=32, c=4

Squeeze-and-Excitation Networks (SENet)



Squeeze-and-Excitation Networks (SENet)



Add SE to any architecture, enjoy 1-2% boost in accuracy

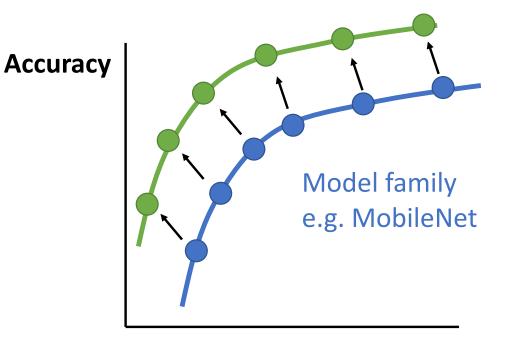
Recall: Convolution Layer

New model family e.g. MobileNetV2

Instead of pushing for the largest network with biggest accuracy, consider tiny networks and accuracy / complexity tradeoff

Compare **families of models**:

One family is better than another if it moves the whole curve up and to the left

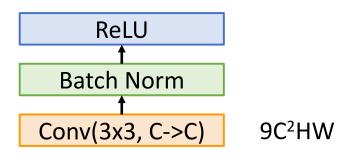


Model Complexity
(FLOPs, #params, runtime speed)

MobileNets: Tiny Networks (For Mobile Devices)

Standard Convolution Block

Total cost: 9C²HW

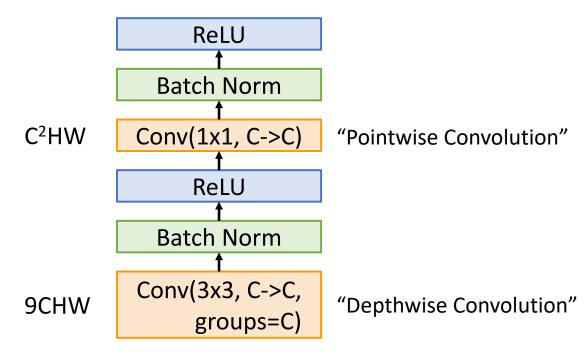


Speedup =
$$9C2/(9C+C^2)$$

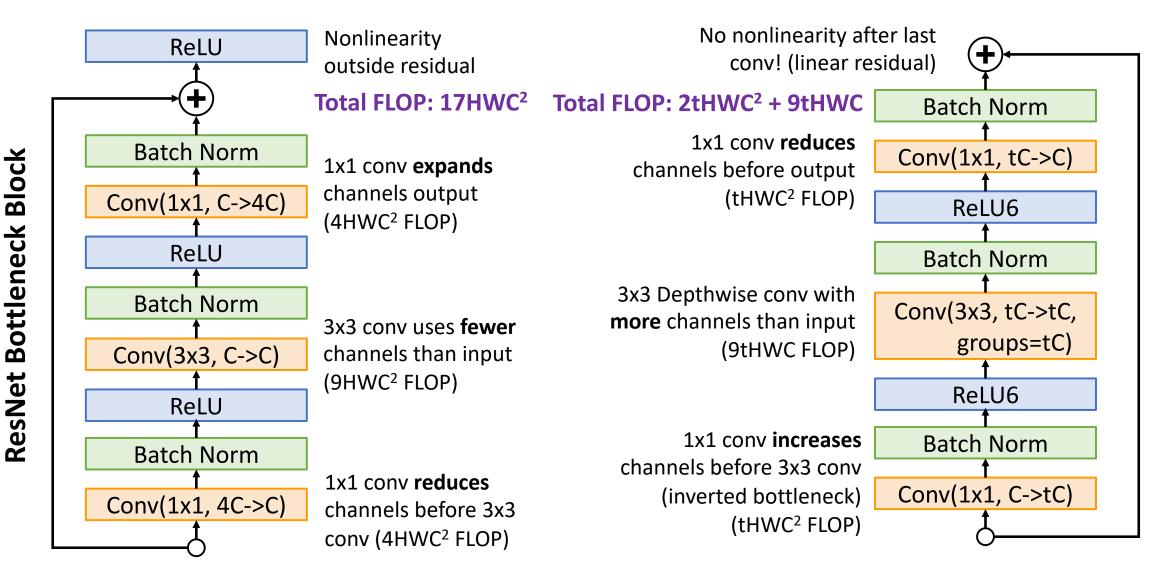
= $9C/(9+C)$
=> 9 (as C->inf)

Depthwise Separable Convolution

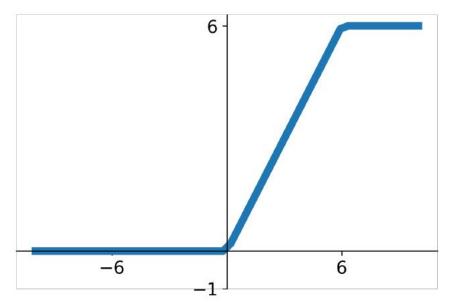
Total cost: $(9C + C^2)HW$



MobileNetV2: Inverted Bottleneck, Linear Residual

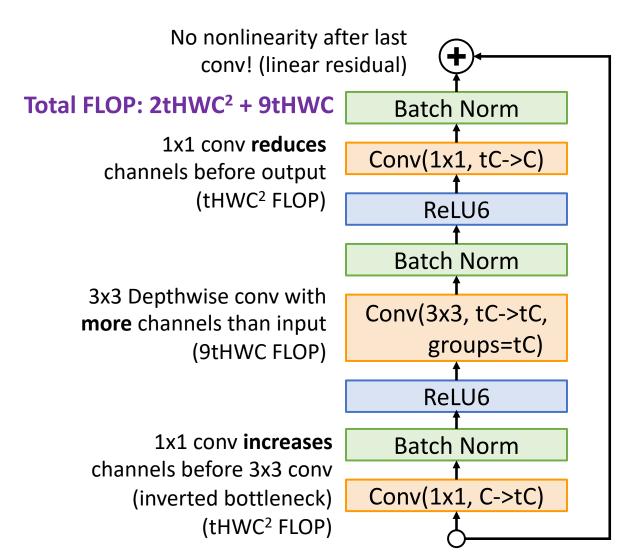


MobileNetV2: Inverted Bottleneck, Linear Residual

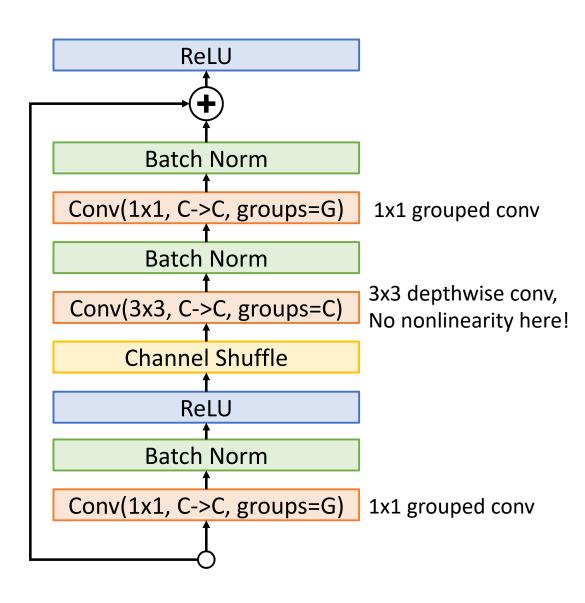


$$ReLU6(x) = \begin{cases} 0 & if \ x \le 0 \\ x & if \ 0 < x < 6 \\ 6 & if \ x \ge 6 \end{cases}$$

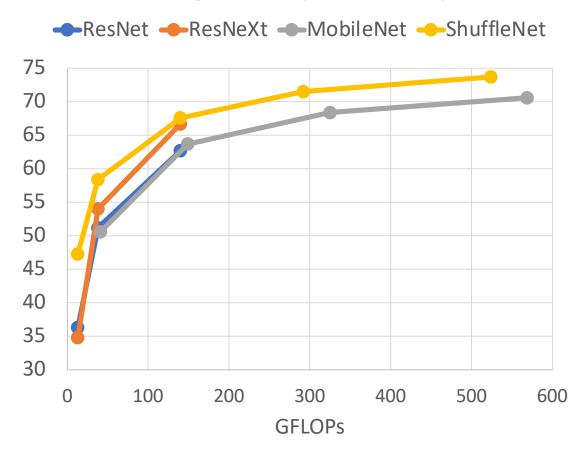
Keeps activations in reasonable range when running inference in low precision

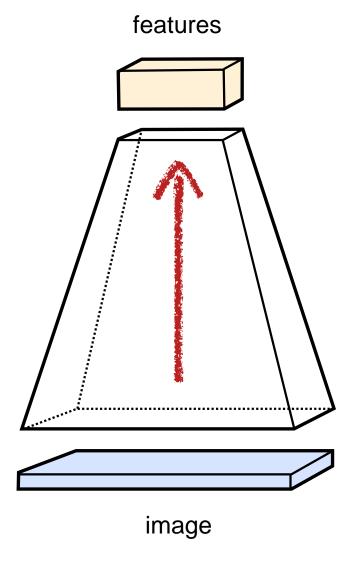


ShuffleNet



ImageNet Top1 Accuracy





Guideline 1: Avoid tight bottlenecks

From bottom to top

- The spatial resolution HxW decreases
- The number of channels C increases

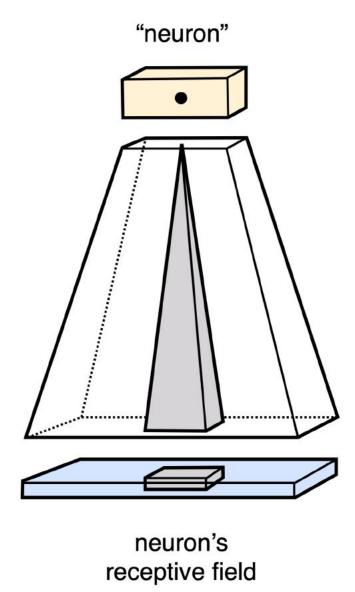
Guideline

- Avoid tight information bottleneck
- Decrease the data volume $H \times W \times C$ slowly

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR 2015.

C. Szegedy, V. Vanhoucke, S. loffe, and J. Shlens. **Rethinking the inception architecture for computer vision**. In CVPR 2016.

Receptive Field



Must be large enough

- Receptive field of a neuron
 - The image region influencing a neuron
 - Anything happening outside is invisible to the neuron

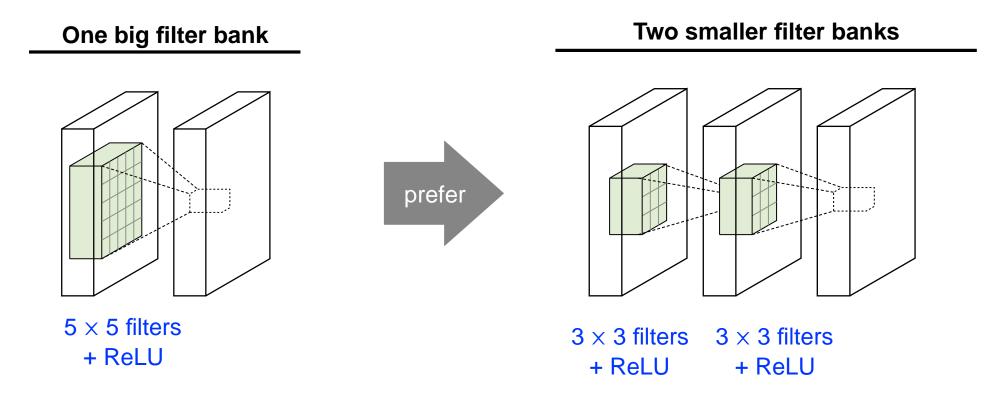
Importance

 Large image structures cannot be detected by neurons with small receptive fields

Enlarging the receptive field

- Large filters
- Chains of small filters

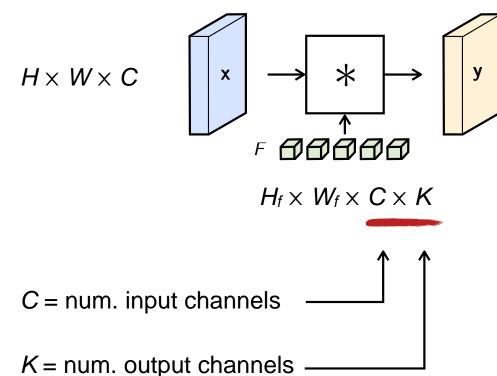
Guideline 2: Prefer small filter chains



- Remark: 101 ResNet layers same size/speed as 16 VGG-VD layers
- Reason: Far fewer feature channels (quadratic speed/space gain)
- Moral: Optimize your architecture

Guideline 3:

Keep the number of channels at bay



Num. of operations

$$\frac{H \times H_f}{\text{stride}} \times \frac{W \times W_f}{\text{stride}} \times C \times K$$

Num. of parameters

$$H_f \times W_f \times C \times K$$

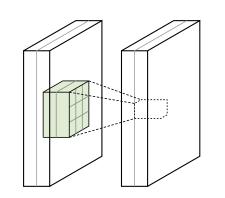
complexity $\propto C \times K$

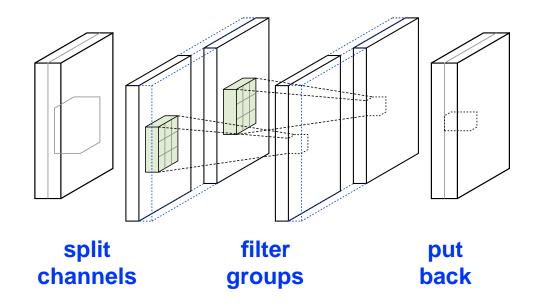
Guideline 4:

M filters

G groups of M/G filters

Less computations with filter groups

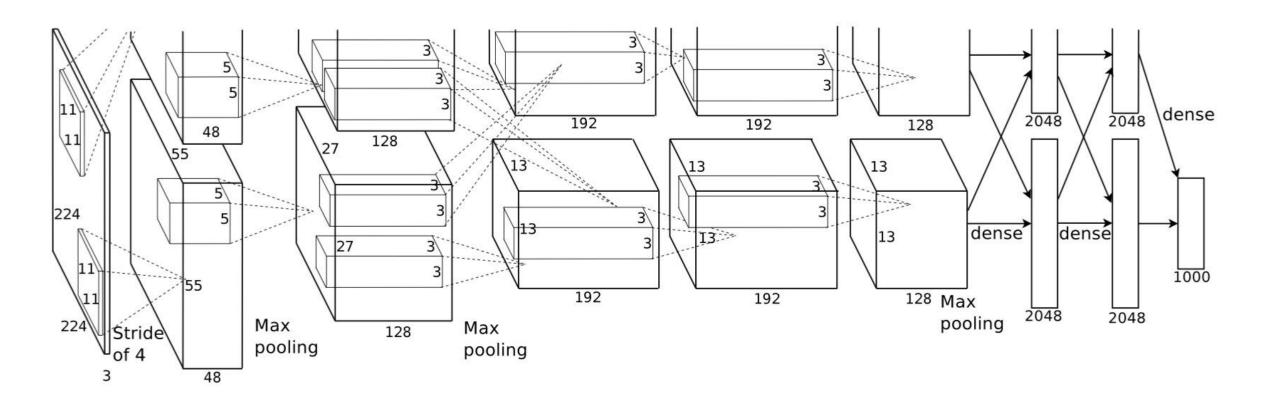




Did we see this before?

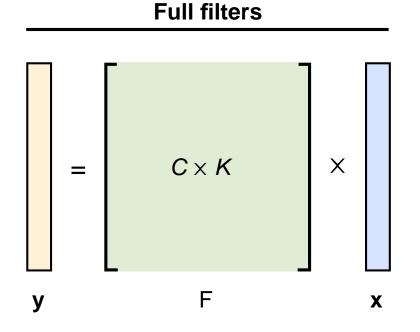
complexity $\propto (C \times K) / G$

AlexNet

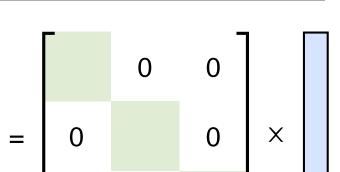


Guideline 4:

Less computations with filter groups



complexity: $C \times K$



Group-sparse filters

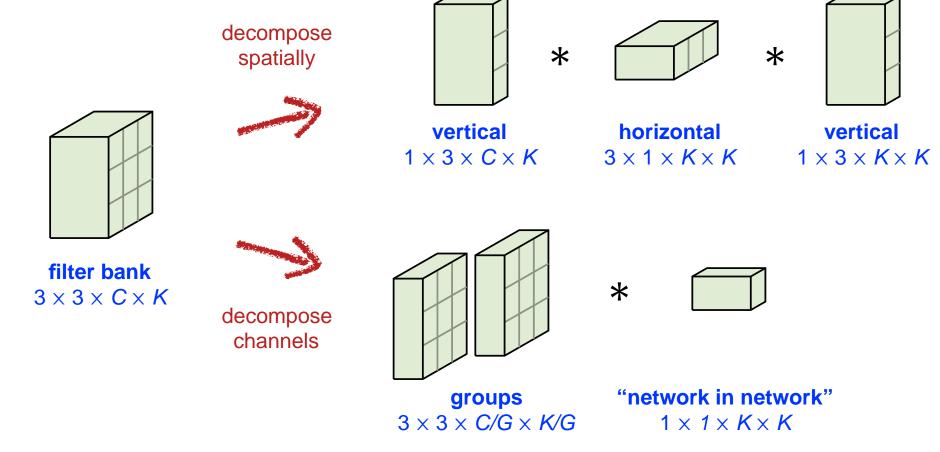
complexity: $C \times K/G$

F

Groups = filters, seen as a matrix, have a "block" structure

Guideline 5:

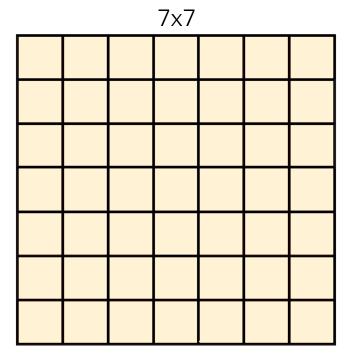
Low-rank decompositions



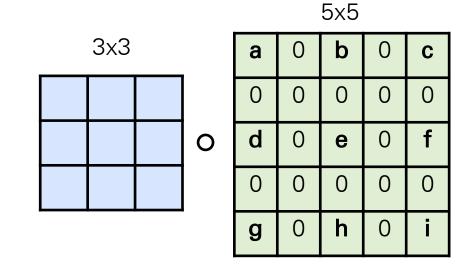
Make sure to mix the information

Guideline 6:

Dilated Convolutions



49 coefficients18 degrees of freedom

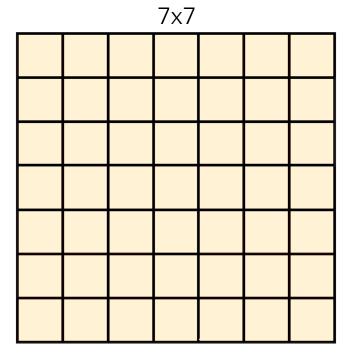


25 coefficients9 degrees of freedom

Exponential expansion of the receptive field without loss of resolution

Guideline 6:

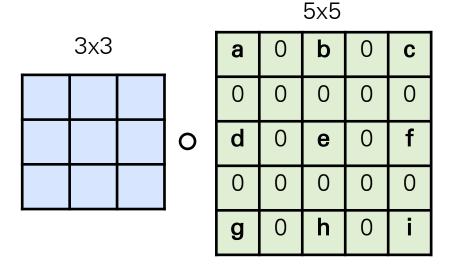
Dilated Convolutions



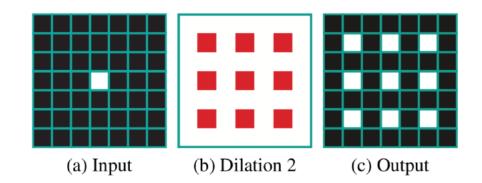
49 coefficients18 degrees of freedom

Exponential expansion of the receptive field without loss of resolution

What is lost?



25 coefficients9 degrees of freedom



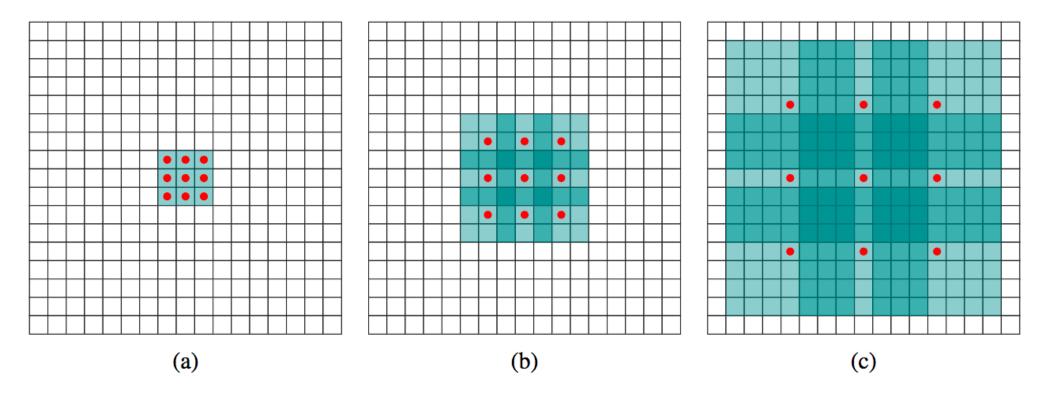


Figure 1: Systematic dilation supports exponential expansion of the receptive field without loss of resolution or coverage. (a) F_1 is produced from F_0 by a 1-dilated convolution; each element in F_1 has a receptive field of 3×3 . (b) F_2 is produced from F_1 by a 2-dilated convolution; each element in F_2 has a receptive field of 7×7 . (c) F_3 is produced from F_2 by a 4-dilated convolution; each element in F_3 has a receptive field of 15×15 . The number of parameters associated with each layer is identical. The receptive field grows exponentially while the number of parameters grows linearly.

CNN Architectures Summary

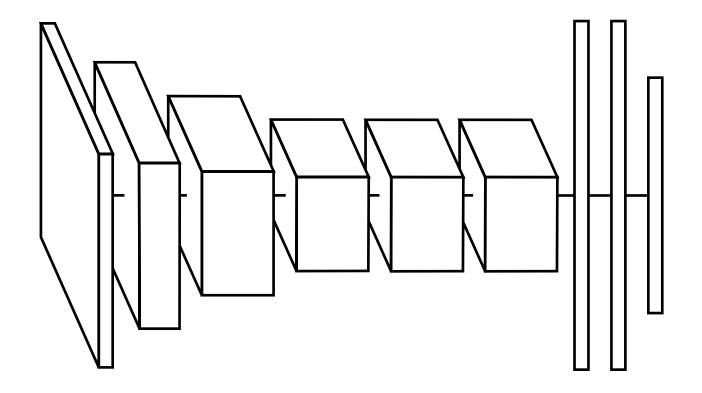
- Early work (AlexNet->VGG->ResNet): bigger networks work better
- New focus on efficiency: Improve accuracy, control for network complexity
- Grouped, Depthwise, Dilated convolution appear in many modern architectures
- Squeeze-and-Excite adds accuracy boost to just about any architecture while only adding a tiny amount of FLOPs and runtime
- Tiny networks for **mobile devices** (MobileNet, ShuffleNet)
- Neural Architecture Search (NAS) promised to automate architecture design
- More recent work has moved towards careful improvements to ResNet-like architectures
- ResNet and ResNeXt are still surprisingly strong and popular architectures!

Transfer Learning with Convolutional Neural Networks

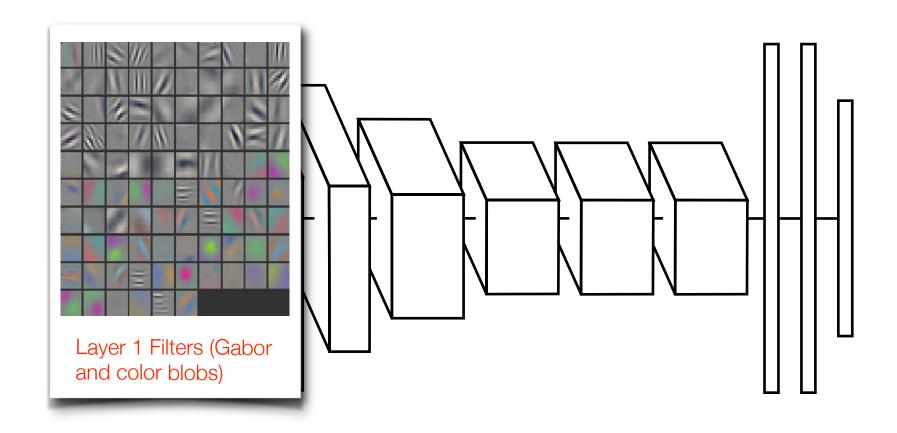
Beyond CNNs

- Do features extracted from the CNN generalize other tasks and datasets?
 - Donahue et al. (2013), Chatfield et al. (2014), Razavian et al. (2014), Yosinski et al. (2014), etc.
- CNN activations as deep features
- Finetuning CNNs

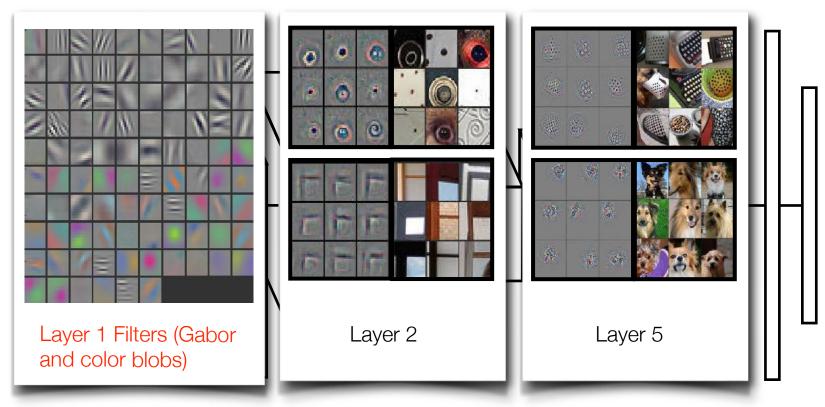
• CNNs discover effective representations. Why not to use them?



CNNs discover effective representations. Why not to use them?

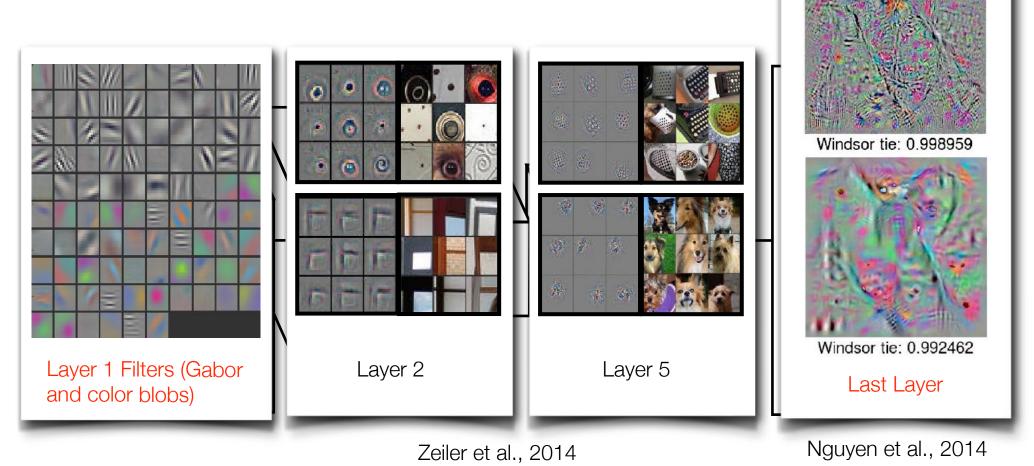


CNNs discover effective representations. Why not to use them?



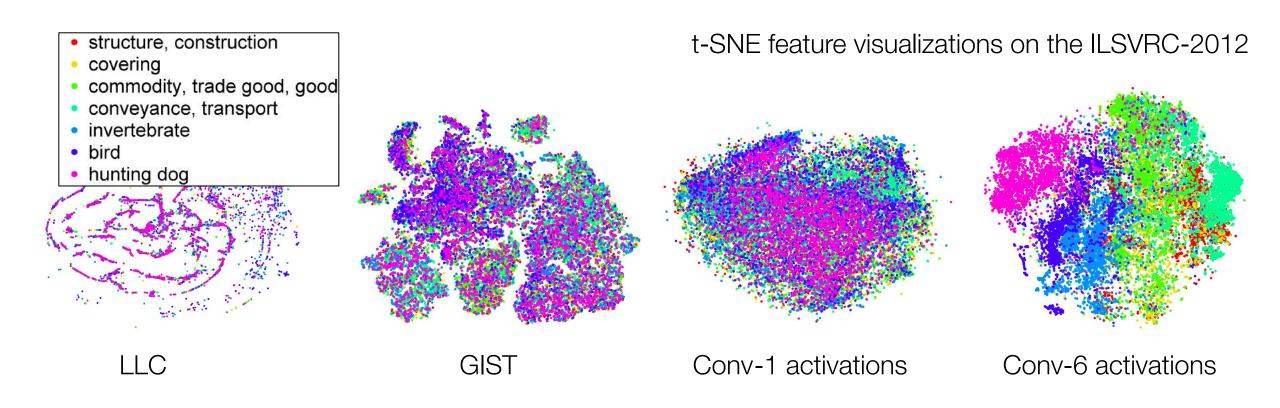
Zeiler et al., 2014

• CNNs discover effective representations. Why not



CNNs as deep features

CNNs discover effective representations. Why not to use them?



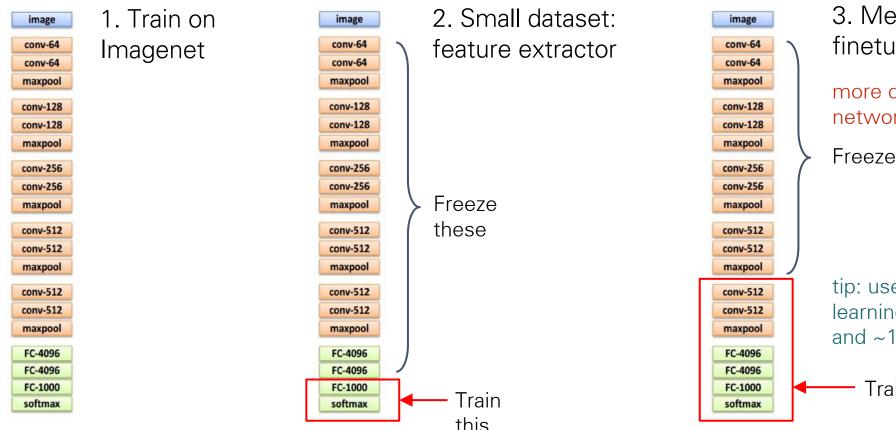
Transfer Learning with CNNs

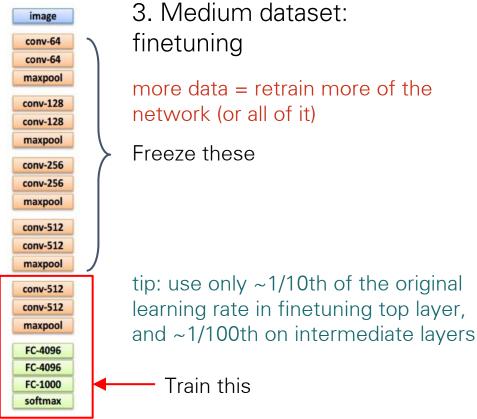
 A CNN trained on a (large enough) dataset generalizes to other visual tasks

A. Joulin, L.J.P. van der Maaten, A. Jabri, and N. Vasilache Learning visual features from Large Weakly supervised Data. ECCV 2016

Transfer Learning with CNNs

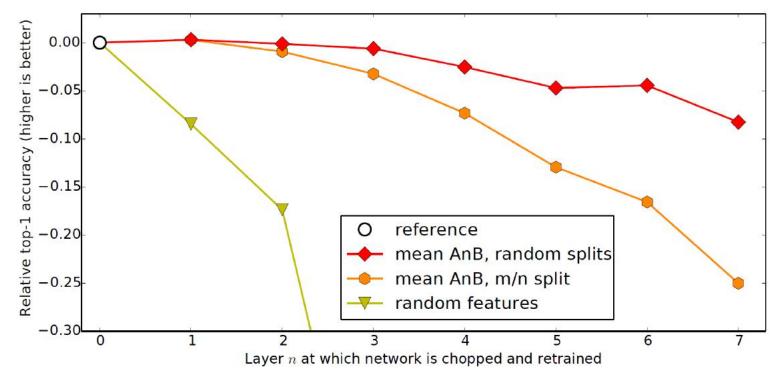
- Keep layers 1-7 of our ImageNet-trained model fixed
- Train a new softmax classifier on top using the training images of the new dataset.





How transferable are features in CNN networks?

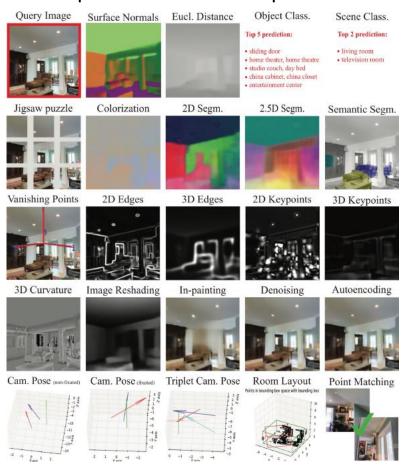
- Divide ImageNet into man-made objects A (449 classes) and natural objects B (551 classes)
- The transferability of features decreases as the distance between the base task and target task increases

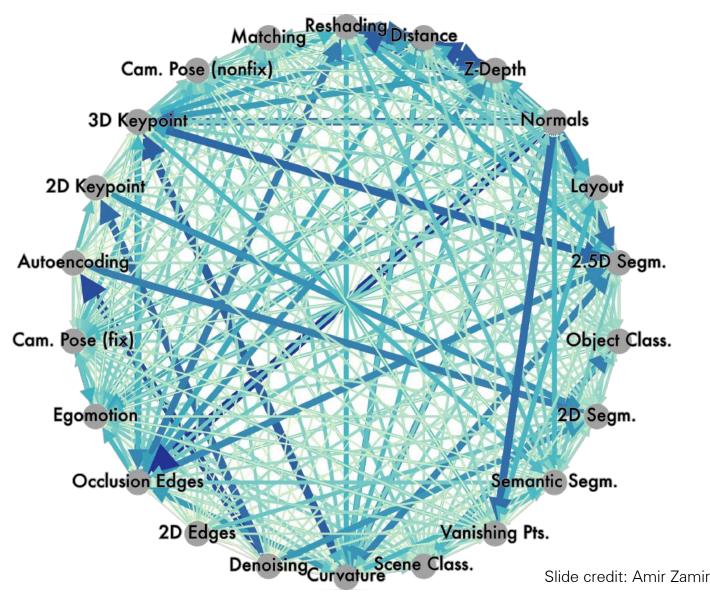


How transferable are features in CNN

networks?

An open research problem

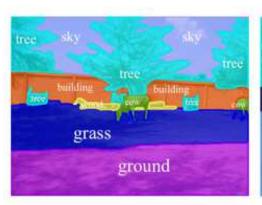


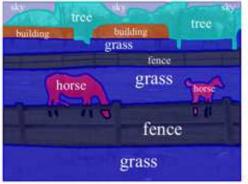


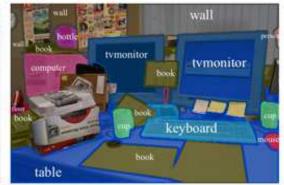
Semantic Segmentation

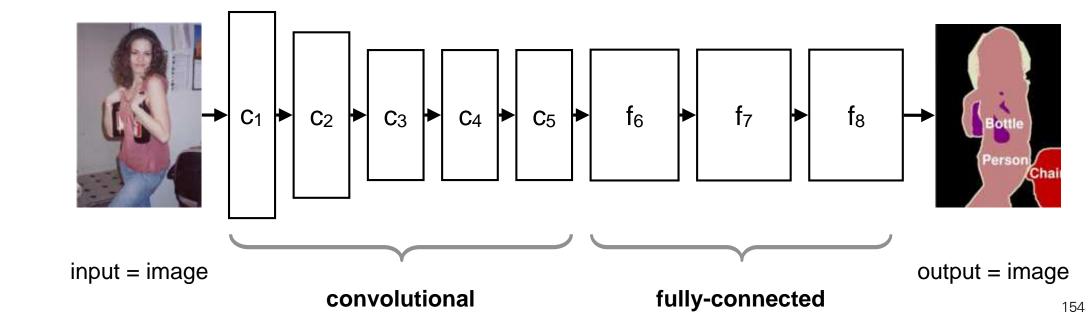
Semantic Image Segmentation

Label individual pixels



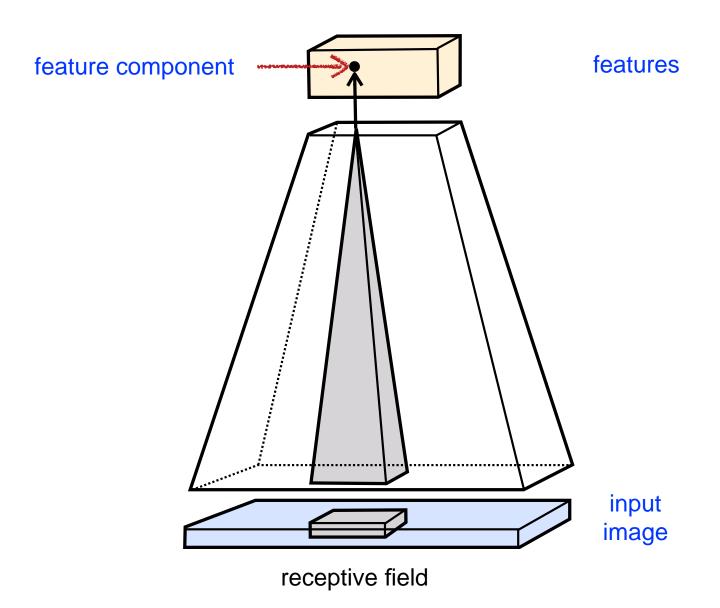






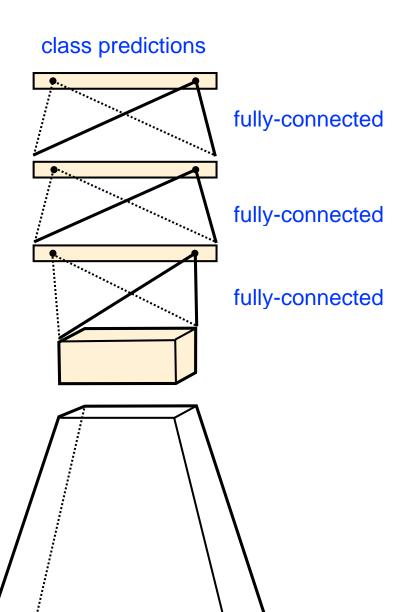
Convolutional Layers

Local receptive field



Fully Connected Layers

Global receptive field



Convolutional vs. Fully Connected

 Comparing the receptive fields

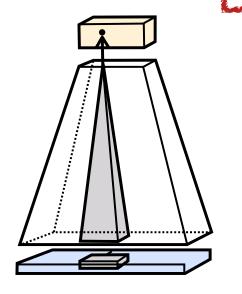
Downsampling filters

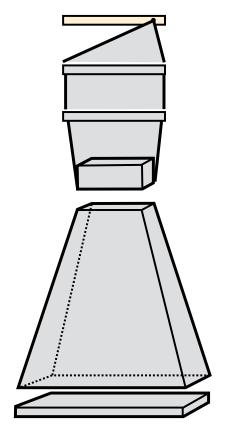
Responses are spatially selective, can be used to localize things.

Upsampling filters

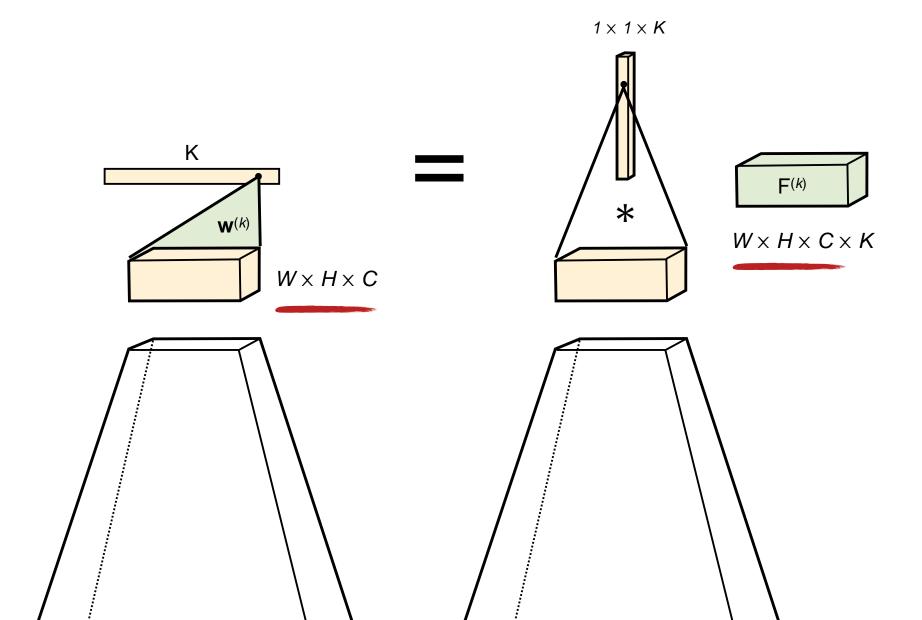
Responses are global, do not characterize well position

Which one is more useful for pixel level labelling?

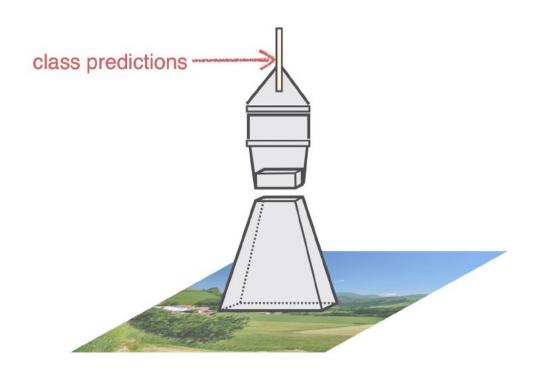




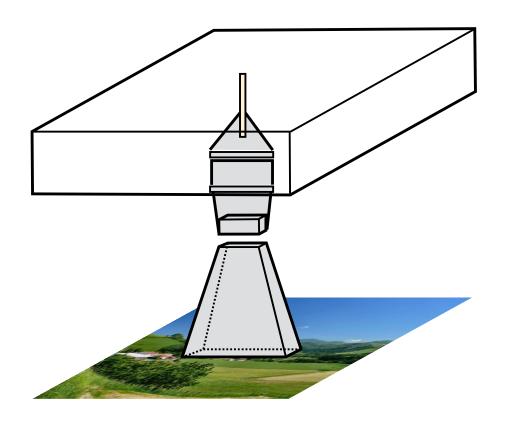
Fully-Connected Layer = Large Filter



Fully-Convolutional Neural Networks



Fully-Convolutional Neural Networks



Dense evaluation

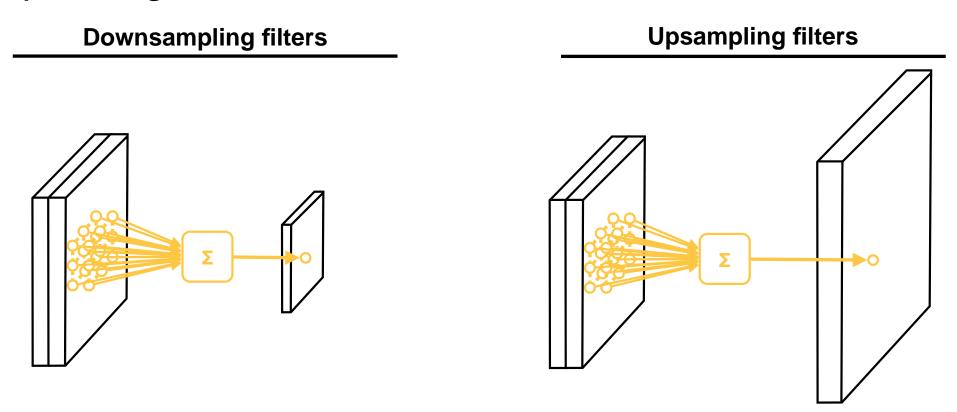
- Apply the whole network convolutional
- Estimates a vector of class probabilities at each pixel

Downsampling

- In practice most network downsample the data fast
- The output is very low resolution (e.g. 1/32 of original)

Upsampling The Resolution

Interpolating filter

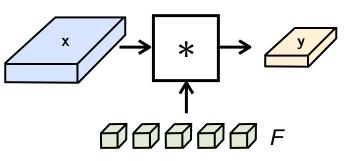


Upsampling filters allow to increase the resolution of the output Very useful to get full-resolution segmentation results

Deconvolution Layer

Or convolution transpose

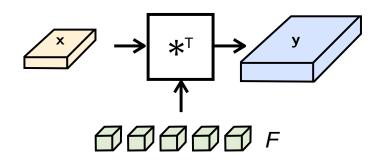
Convolution



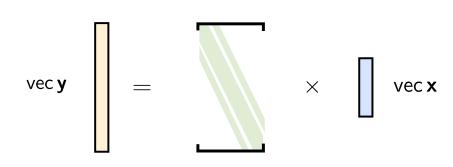
As matrix multiplication

Banded matrix equivalent to F

Convolution transpose



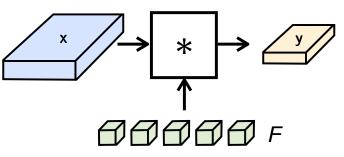
Transposed



Transposed matrix

Deconvolution Layer

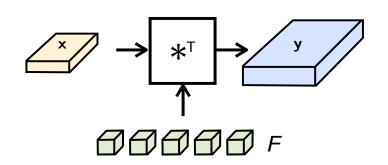
Or convolution transpose



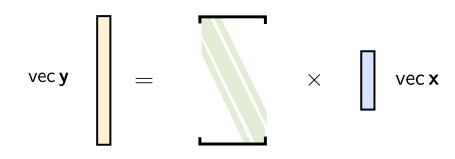
As matrix multiplication

Banded matrix equivalent to F

Convolution transpose

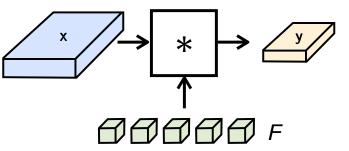


Transposed



Deconvolution Layer

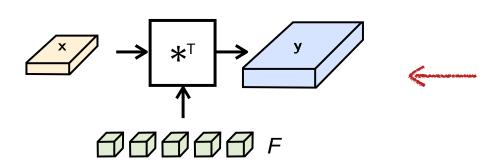
Or convolution transpose



As matrix multiplication

Banded matrix equivalent to F

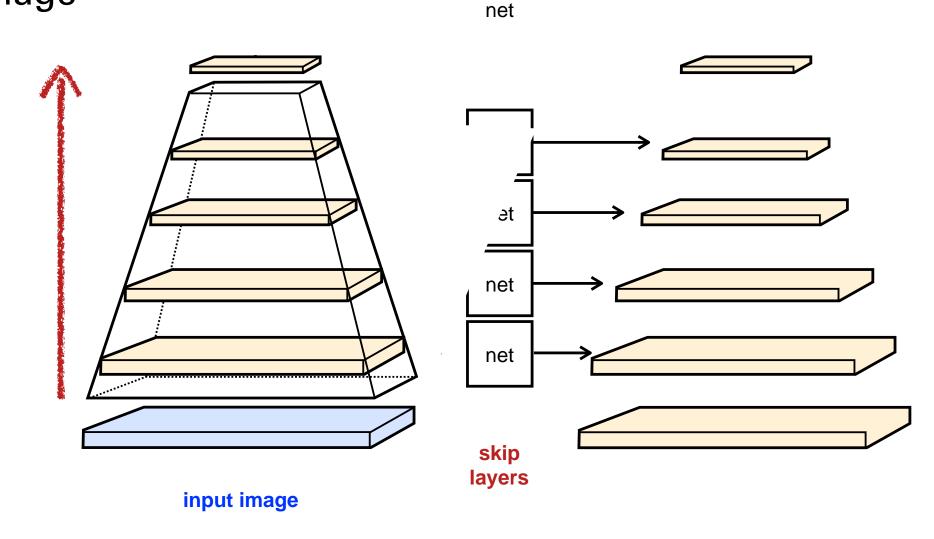
Convolution transpose



Transposed

U-Architectures

Image to image



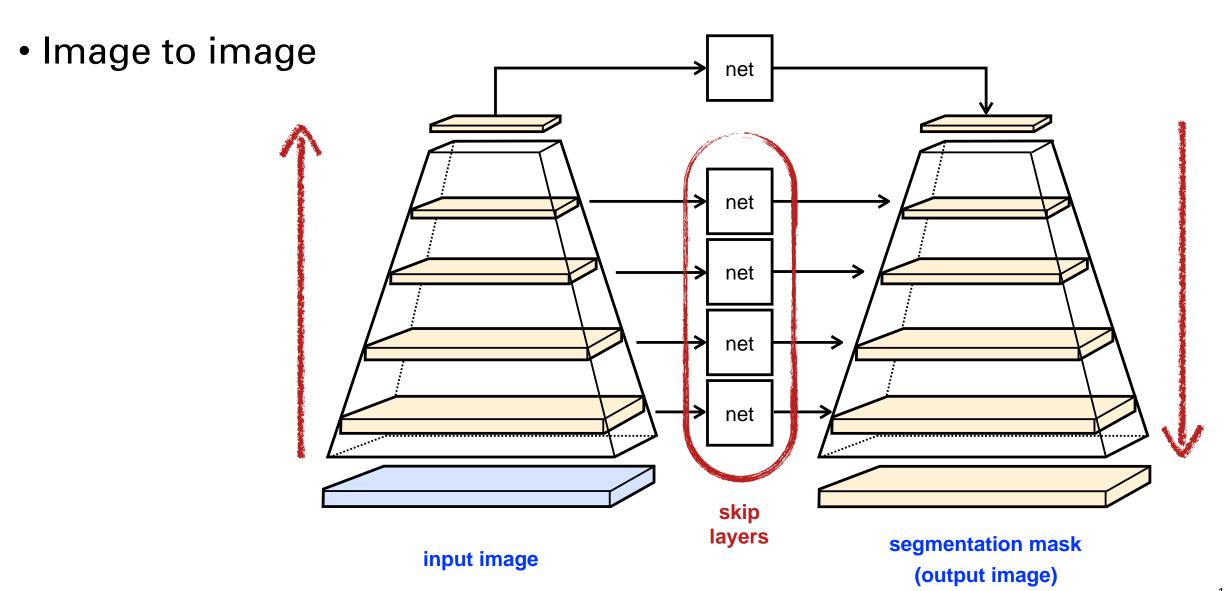
U-Architectures

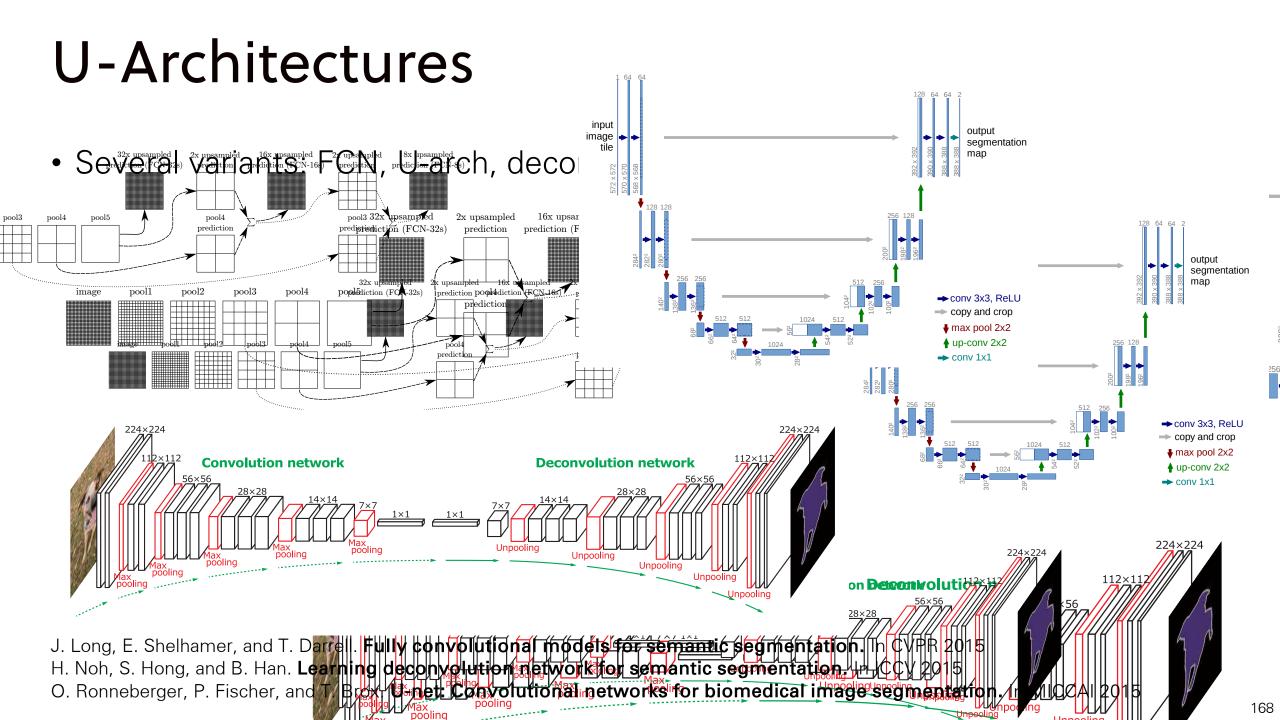
 Image to image net segmentation mask

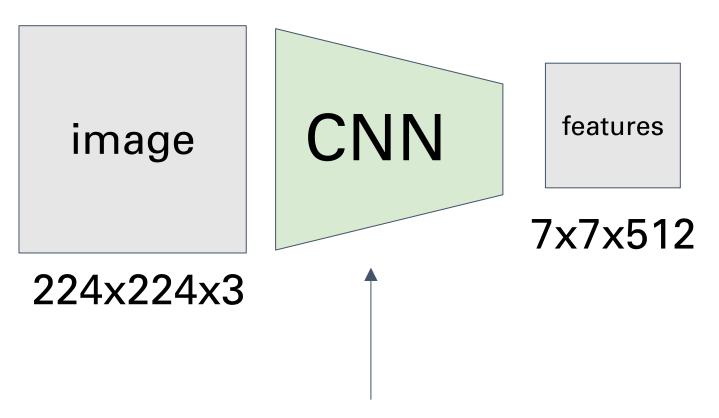
input image

(output image)

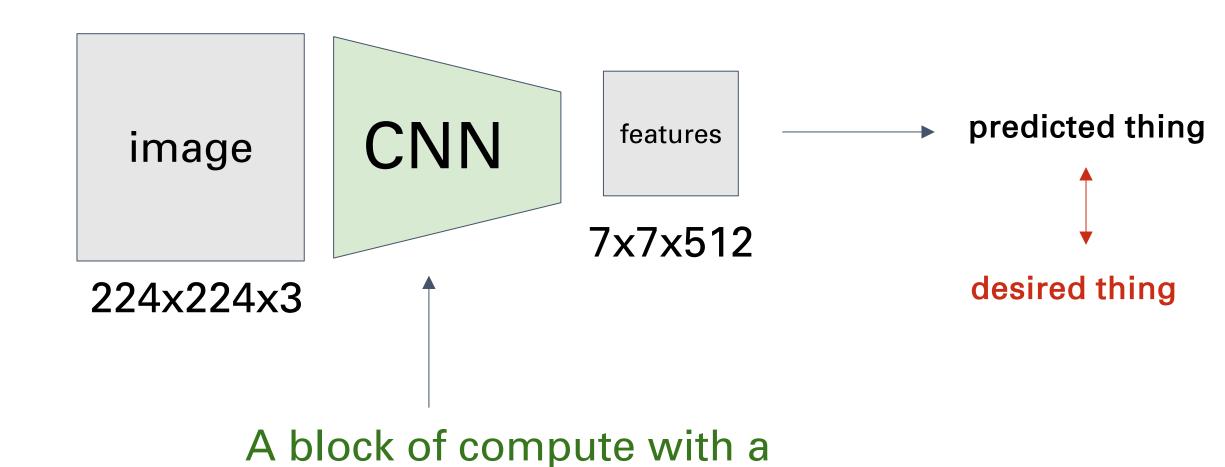
U-Architectures







A block of compute with a few million parameters.



few million parameters.

predicted thing CNN features image 7x7x512 desired thing 224x224x3

A block of compute with a

few million parameters.

173

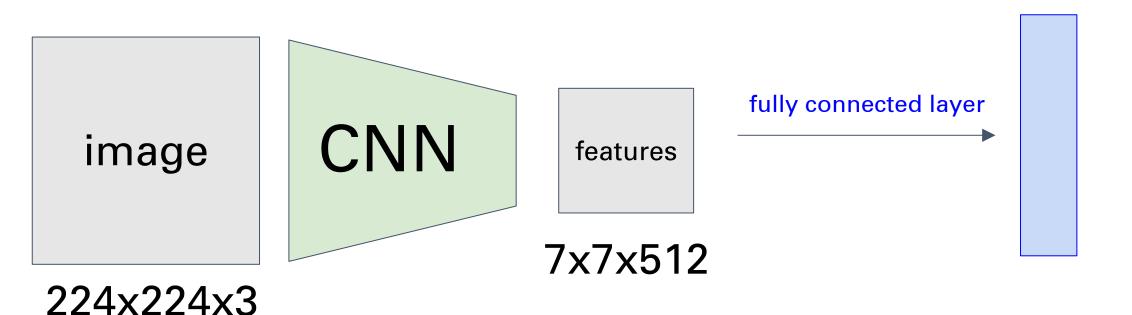
this part

changes from

task to task

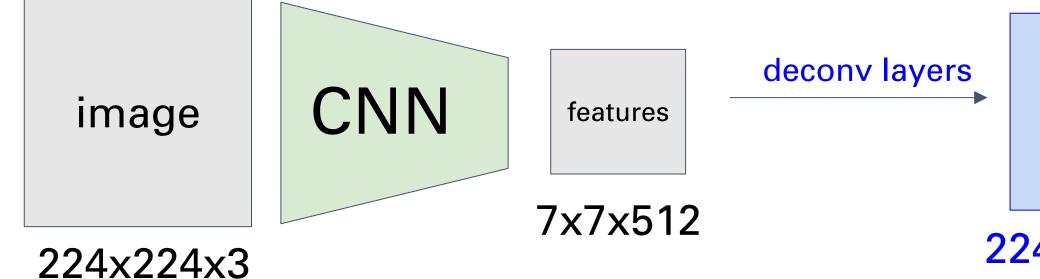
Image Classification

thing = a vector of probabilities for different classes



e.g. vector of 1000 numbers giving probabilities for different classes.

Segmentation

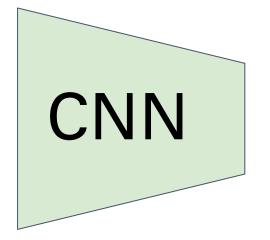


224x224x20 array of class probabilities at each pixel,

Localization

image

224x224x3



features

7x7x512

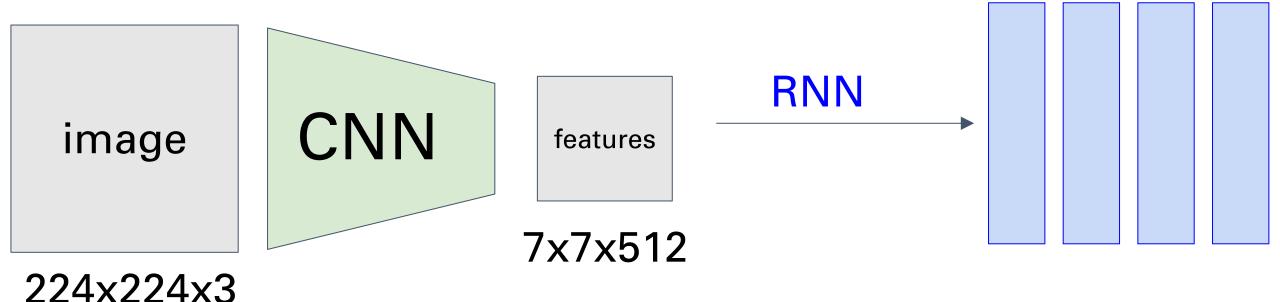
fully connected layer

Class probabilities (as before)

4 numbers:

- X coord
- Y coord
- Width
- Height

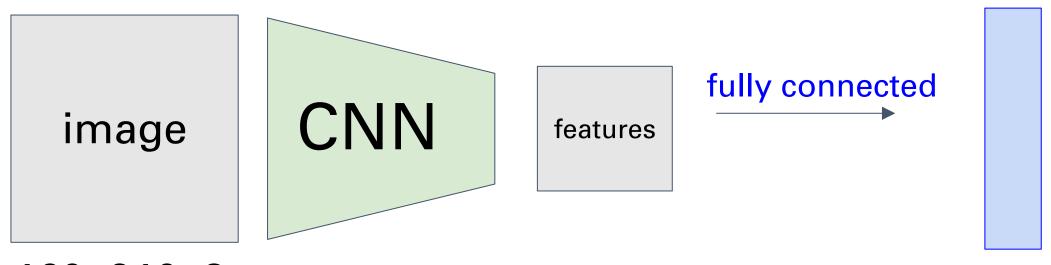
Image Captioning



A sequence of 10,000-dimensional vectors giving probabilities of different words in the caption.

Reinforcement Learning

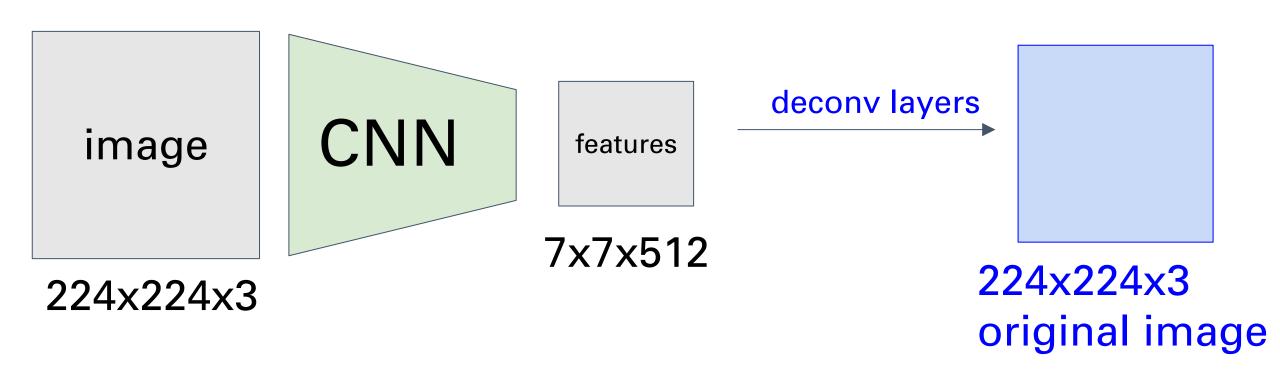
Mnih et al. 2015



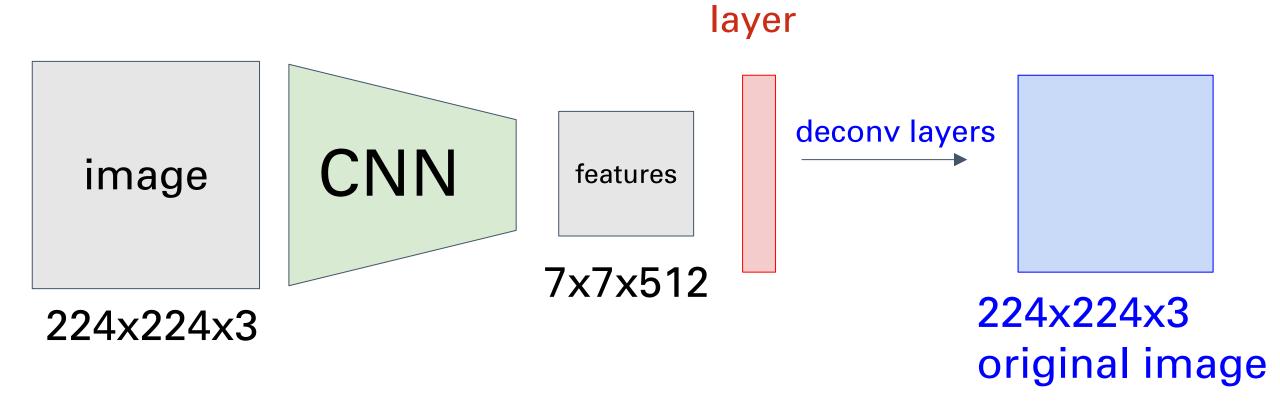
160x210x3

e.g. vector of 8 numbers giving probability of wanting to take any of the 8 possible ATARI actions.

Autoencoders

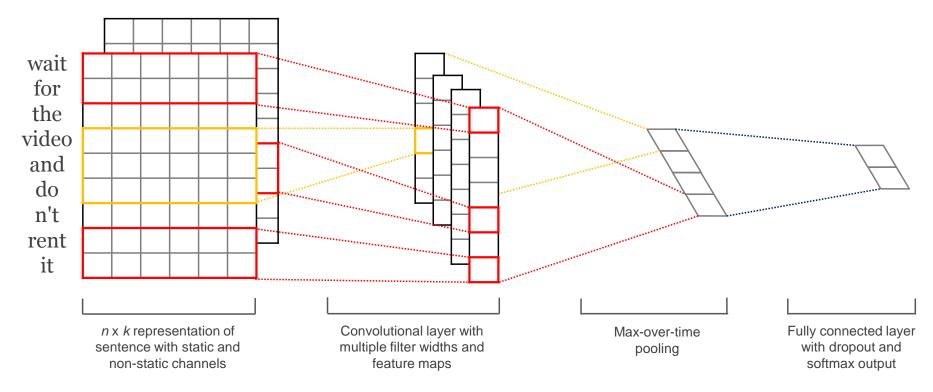


Variational Autoencoders

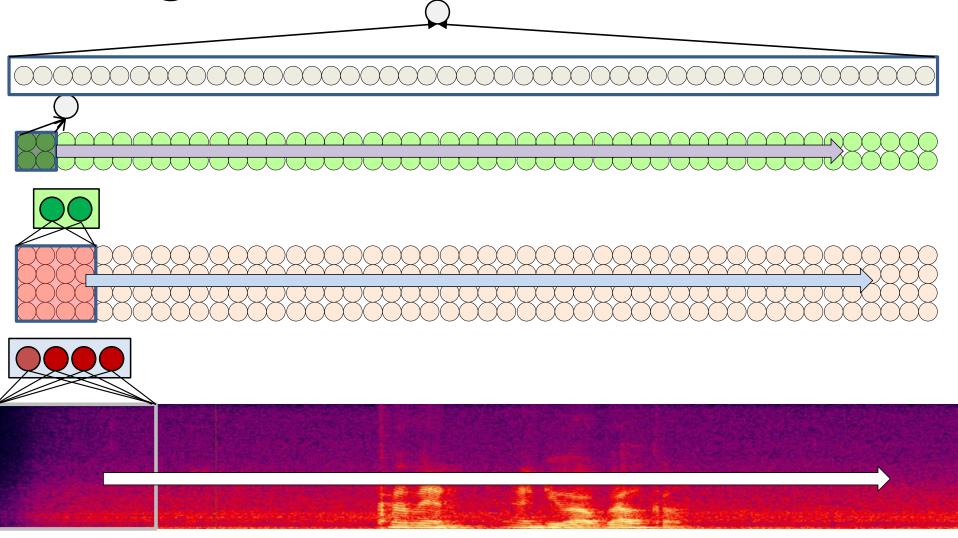


reparameterization

[Kingma et al.], [Rezende et al.], [Salimans et al.]



- 1D convolution ≈ Time Delay Neural Networks (Waibel et al. 1989, Collobert and Weston 2011)
- Two main paradigms:
 - Context window modeling: For tagging, etc. get the surrounding context before tagging
 - Sentence modeling: Do convolution to extract n-grams, pooling to combine over whole sentence



• CNNs for audio processing: MFCC features + Time Delay Neural Networks

Next lecture: Understanding and Visualizing ConvNets