

Using RNNs to generate Super Mario Maker levels, Adam Geitgey

00

Previously on COMP541

e
.

-

* sequence modeling

 recurrent neural networks (RNNs)
 the vanilla RNN unit

* how to train RNNs

 the long short-term memory
(LSTM) unit and its variants

» gated recurrent unit (GRU)

Lecture overview

* what is attention?

 attention pre-transformers

* self-attention and transformer networks
e vision transformers

» pretraining during transformers

Disclaimer: Much of the material and slides for this lecture were borrowed from
— Kyunghyun Cho's slides on neural sequence modeling

—Wenhu Chen's UWaterloo CS886 class

—Justin Johnson's EECS 498/598 class

— Philip Isola and Stefanie Jegelka's MIT 6.5898 Deep Learning class

What is Attention?

* The notion of exploiting context is not new
— CNN - context from spatial locality (useful for images)

— RNN - context from temporal locality (useful for sequences/time-series
data)

— Embedding priors into models forces them to pay “attention” to relevant
features for a given problem

 \What we now call “attention” in DL

— The idea of paying “attention” to the most relevant or important parts of the
INput at a given step

— Very useful in sequence-to-sequence modelling
— |deally, we'd like to learn this!

What is a Learned Attention Mechanism?

» An attention mechanism typically refers to function that allows a
model to attend to different content

* There are many forms of attention mechanisms
— Additive
— Dot-product

* \\Ve have names to distinguish attention based on what is attended to
— Self-attention (intra attention)
— Cross-attention (encoder-decoder attention/inter attention)

Sequence to Sequence

« Example Scenarios
— Text — Text (e.g. Q/A, translation, text summarization)
— Image — Text (e.g. Image captioning)

Output
[yl] [Yz] [y3] [3@] sequence
A A A A

Input
X1
sequence

Sequence to Sequence

« Example Scenarios
— Text — Text (e.g. Q/A, translation, text summarization)
— Image — Text (e.g. Image captioning)

« How? Usually Encoder-Decoder models
—e.9. RNNs, transformers

state
ENCODER DECODER
context

vector

Output

EAREIRETN e

Input
X1
sequence

Sequence to Sequence with RNNs

 Encoder (LSTM) and decoder (LSTM)
« Fixed-length context vector

Input: sequence xyq, ..., Xt Output: sequence yq, ..., Y1

hy = f(xe, he—q) St = 9(Vt-1,St-1,€)
Initial
state

b 4@ b H s D e ——> s > s, O

‘ I ‘] ‘ It TT TT T

w m m (m o »
Context
ENCODER vector DECODER

|. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural networks,” in Proceedings of the 27th International Conference on Neural Information Processing
Systems (NIPS), 2014, pp. 3104-3112.

Sequence to Sequence with RNNs

* Encoder (LSTM) and decoder (LSTM)
» Fixed-length context vector (bottleneck)

Input: sequence xyq, ..., Xt Output: sequence yq, ..., Y1

hy = f(xe, he—q) St = 9(Vt-1,St-1,€)
Initial
state

hy G e @ e @ e o5 Gy W
R g

w o m s n : 0

Context

ENCODER vector DECODER

|. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural networks,” in Proceedings of the 27th International Conference on Neural Information Processing
Systems (NIPS), 2014, pp. 3104-3112.

Sequence to Sequence with RNNs + Attention

* |deal Use a different context vector for each timestep in the
decoder

St = 9(Vt-1,St-1,Ct)
 No more bottleneck through a single vector

» Craft the context vector so that it “looks at” different parts of the
Input sequence for each decoder timestep

D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly Learning to Align and Translate,” in 3rd International Conference on Learning Representations (ICLR), 2015.

10

Sequence to Sequence with RNNs + Attention

Attention weights
(normalize
alignment scores)

Alignment scores

€1,1 €1,2 €1,3 €1,4
: ' eri = fate(St—1,h;)
LA L N L O L
T hy h, ha h, >
Initial
state
X1 X2 X3 Xa
ENCODER

] Compute context vector

Ce = 2 a’t,ihi

i

Find s;: t =1

St = 9(Vt-1,St-1, Ct)

S1
A

—

C1

Context
vector

a; ; represents the probability
that the target word y; is
aligned to, or translated from, a
source word Xx;

a; ; reflects the importance of

the annotation h; with respect
to the previous hidden state
St_1 In deciding the next state
S¢ and generating y;

DECODER

D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly Learning to Align and Translate,” in 3rd International Conference on Learning Representations (ICLR), 2015. 11

Sequence to Sequence with RNNs + Attention

Attention weights
(normalize
alignment scores)

Alignment scores
ei = fart(Se—1,hi)

Compute context vector

Ct = 2 at,ihi

i

Find sy: t = 2

St = 9(Vt-1,St-1, Ct)

. e

A
F

ENCODER

I

Context
vector

13

l_T

3’1

DECODER

D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly Learning to Align and Translate,” in 3rd International Conference on Learning Representations (ICLR), 2015.

Sequence to Sequence with RNNs + Attention

] Compute context vector . L
. . R N Findsg: t =t
Ct = Z aih;

Attention weights ‘

(n.ormallzed = g(Vt—1, St—1, Ct)
alignment scores)

AI|gnment scores
L T T 1T

" B B D - — 5 @ 5 O 5 O .

‘ ‘ ‘ I Initial | l_T
State N _1
X1 X2 X3 X4 > }’0 3’1 C3 C3

Context

ENCODER vector DECODER

D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly Learning to Align and Translate,” in 3rd International Conference on Learning Representations (ICLR), 2015.

Sequence to Sequence with RNNs + Attention

All steps are
Compute context vect(

: differentiable, so we
— — — —
? ¢, = z ap iy can backpropagate
. through everything

Attention weights '

(n.ormallzed St = §(Ve—1,St—1,Ct)
alignment scores)

|
Alignment scores Ct
€t,1 €t,2 €t,3 €t 4 €0 = Fure(s h)
ti — Jatt\St—1,1
Tf 11 11 11 - l .
| | | t—1

" A e A s AR b 50 — 5 O 5 O 5 O s

 SEE— - t t Initial
Encoder is bi-directional: allows for the state — —1
annotation of each word to summarize both
preceding and following words. >)’o y1 C3 C3

Context

ENCODER vector DECODER

D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly Learning to Align and Translate,” in 3rd International Conference on Learning Representations (ICLR), 2015.

Sequence to Sequence with RNNs + Attention

Application: translation § 8538 B, &
ESEERb s in=2S . ¥

. . accord

Each pixel shows the weight a; ; sur

la

of the annotation of the i-th
source word for the t-th target économique

européenne

word. A
ete

signé

en

ao(t

1992

<end>

D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly Learning to Align and Translate,” in 3rd International Conference on Learning Representations (ICLR), 2015.

15

Sequence to Sequence with RNNs + Attention

Application: 30 ? F ? g ?
text translation ' | ' '
5
RNN: S
) e
RNNenc = ~ | & Sy,
M 10H — RNNsearch-50 N— \\'?:. s J
----- RNNsearch-30 | g R T e
RNN + attention: 5 — - RNNenc-50 o s S """""""" i
-+ - RNNenc-30 é"\,_
RNNsearch %0 10 20 30 10 50 6C

Sentence length

D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly Learning to Align and Translate,” in 3rd International Conference on Learning Representations (ICLR), 2015.

16

Image Captioning with Visual Attention

* \We can similarly use attention for image captioning (image — text)
» Builds directly on previous work

14x14 Feature Map A
bird
Q flying
: @ over
=~ ull-
body
of
water
1. Input 2. Convolutional 3. RNN with attention 4. Word by
Image Feature Extraction over the image word
generation

K. Xu et al., “Show, Attend and Tell: Neural Image Caption Generation with Visual Attention,” in PMLR, 2015, pp. 2048-2057.

Image Captioning with Visual Attention

Compute context vector

€t = 2 aihy St = 9(Ve-1,St-1, Ct)

[

h; corresponds to a part of the image

fatt(') iS an MLP

A

e = fatt(hy, Se—1) Cti

exp(e;)

Ay =
i k=1 exp(eck) PR
— So Different context vector at
every time step

h; ¢ Each context vector attends

4 to different image regions.

Input image Feature Annotation vectors
extraction (feature vectors) [STARTI
ENCODER DECODER

K. Xu et al., “Show, Attend and Tell: Neural Image Caption Generation with Visual Attention,” in PMLR, 2015, pp. 2048-2057.

18

Image Captioning with Visual Attention

h; corresponds to a part of the image Compute context vector
fatt(') is an MLP | €t = Z atihi St = g(yt—l' St—1 Ct)
l
A bird flying [END]

eri = fatt(hiSe—1)

exp(e;)
ch=1 exp(etr)

A¢i =

B

Input image Feature Annotation vectors _ _
extraction (feature vectors) [START] A bird flying
ENCODER DECODER

K. Xu et al., “Show, Attend and Tell: Neural Image Caption Generation with Visual Attention,” in PMLR, 2015, pp. 2048-2057. 19

Image Captioning with Visual Attention

All steps are differentiable, so we can Compute context vector
backpropagate through everything. ¢, = Z o h,

St = 9(Vt-1,St-1,Ct)

Each context vector attends to different
Image regions.

exp(es;)

ch=1 exp(etr)

Ay A bird flying [END]

A¢i =

‘So S1 [T Sy ™

’? L C1 > C » C3 » Cy
% % %)
Input image Feature Annotation vectors

extraction (feature vectors) [START] A bird
ENCODER

S3

flying
DECODER

K. Xu et al., “Show, Attend and Tell: Neural Image Caption Generation with Visual Attention,” in PMLR, 2015, pp. 2048-2057.

Image Captioning with Visual Attention

* \isualization of the attention for each generated word

— Gives insight to “where” and “what” the attention focused on when
generating each word

deterministic

C— m E u m .L |‘ |‘ _'
“hard” attention

(requires RL) bird flying over body water

K. Xu et al., “Show, Attend and Tell: Neural Image Caption Generation with Visual Attention,” in PMLR, 2015, pp. 2048-2057.

Image Captioning with Visual Attention

A stop sign is on a road with a
mountain in the background.

g —

A little girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with
a teddy bear. in the water. trees in the background.

K. Xu et al., “Show, Attend and Tell: Neural Image Caption Generation with Visual Attention,” in PMLR, 2015, pp. 2048-2057.

22

Three Ways of Processing Sequences

Recurrent Neural Network

YiT— Yo Y3 " VY4

I R

X, X, X3 X,

Works on Ordered Sequences

(-) Not parallelizable: need to
compute hidden states
sequentially

Three Ways of Processing Sequences

Recurrent Neural Network 1D Convolution

Y1 Yo Y3 T Vs Y1 Y2 Y3 Ya

X1 X X3 X4 X1 X, X3 X4
Works on Ordered Sequences Works on Multidimensional Grids
(+) Good at long sequences: (-) Bad at long sequences: Need
After one RNN layer, ht "sees” to stack many conv layers for
the whole sequence outputs to “see” the whole
(-) Not parallelizable: need to sequence
compute hidden states (+) Highly parallel: Each output

sequentially can be computed in parallel

Three Ways of Processing Sequences

Recurrent Neural Network

YiT— Yo Y3 " VY4

I R

X4 X, X3 X,

Works on Ordered Sequences
(+) Good at long sequences:

After one RNN layer, ht "sees”

the whole sequence

(-) Not parallelizable: need to
compute hidden states
sequentially

1D Convolution

Y1 Y2 Y3 Yq
X1 X, X3 X4

Works on Multidimensional Grids
(-) Bad at long sequences: Need
to stack many conv layers for
outputs to “see” the whole
sequence

(+) Highly parallel: Each output
can be computed in parallel

Self-Attention

Works on Sets of Vectors

(-) Good at long sequences:
after one self-attention layer,
each output “sees” all inputs!
(+) Highly parallel: Each output
can be computed in parallel

(-) Very memory intensive

25

Three Ways of Processing Sequences

Recurrent Neural Network 1D Convolution

Self-Attention

Attention iIs all you need

Vaswani et al, NeurlPS 2017

Works on Ordered Sequences Works on Multidimensional Grids
(-) Bad at long sequences: Need
to stack many conv layers for

outputs to “see” the whole
(-) Not parallelizable: need to sequence

compute hidden states
sequentially

Works on Sets of Vectors

(-) Very memory intensive

26

Attention is All you Need (2017)

» Key ldea:

—Decouple attention from RNNs Attention Is All You Need

— Use self-attention to make this efficient

Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit*
Google Brain Google Brain Google Research Google Research
vaswani@google.com noam@google.com nikip@google.com usz@google.com

= = Llion Jones* Aidan N. Gomez* T Eukasz Kaiser*
[
® C O n t r I b u t I O n S . Google Research University of Toronto Google Brain

1lion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

— Mult-head attention i, e,
— Transformer architecture

* Highly impactful (as we'll touch on later)

A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems (NeurlPS), 2017.

Feature Superposition (Polysemanticity)

HYPOTHETICAL DISENTANGLED MODEL

« A NN neural activation often does not
represent a single thing

more features than they have

&
&
« “Neural networks want to represent :
14 .

neurons for”[1] ®

« Superposition of features: “often
pack many unrelated concepts into a

. | 17 [1] OBSERVED
SiNgle neuron MODEL
X - . . @
 Results in decreased explainability @
— A paper from Anthropic seeks to add K J

explainability in LLMs [2]

[1] N. Elhage et al., "Toy Models of Superposition.” arXiv, 2022. doi: 10.48550/arXiv.2209.10652.
[2] T. Bricken et al., “Towards Monosemanticity: Decomposing Language Models With Dictionary Learning.” 2023. [Online]. Available: https://transformer-circuits.pub/2023/monosemantic-features/index.html 28

https://doi.org/10.48550/arXiv.2209.10652
https://transformer-circuits.pub/2023/monosemantic-features/index.html

Attention we've seen so far

Now known as “additive” recurrent attention (type of encoder-decoder attention)

r— Context vector

HE ce=),y
L

. ' igh
Attention Attention weights
a, = softmax(e;)

Alignment Alignment scores
er; = fatt(Se-1, i)
f att: simple feedforward
network (e.g. MLP)
Input Se_1

29

Issues with Recurrent Attention

 Scalability issues
— Performance degrades as the distance between words increases

 Parallelization limitations
— Recurrent processes lacks ability to be parallelized

* Memory constraints
— RNNs have limited memory and struggle with long-range dependencies
— Diluted impact of earlier elements on output as sequence progresses

» Potential solution: decouple attention from RNNs

— How? Separate the attention mechanism into smaller, self-contained
components

30

Decoupling from RNNs

* Recall: attention determines the importance of elements to be
passed forward in the model.

— These weights lets the model pay attention to the most significant
parts

* Objective: a more general attention mechanism not confined to RNNs
—\We need a modified procedure to:

1. Determine weights based on context that indicate the elements to
attend to

2. Apply these weights to enhance attended features

31

Parametrization — Recurrent Neural Nets

» Following Bahdanau et al. [2019]

* The encoder turns a sequence of tokens into a sequence of
contextualized vectors.

— — — — —
ht = [ht, ht], where ht = RNN(Qﬁt, ht—1)7 ht = RNN(QZt,]’Lt_|_1)

* The underlying principle behind recently successful contextualized
embeddings N
— ELMo [Peters et al., 2018], p<yl|y1<l>)W

BERT [Devlin et al. 2019] and m_

all the other muppets
L1,L2y...,XT, yikay;w"ayik—l Y

32

Parametrization — Recurrent Neural Nets

» Following Bahdanau et al. [2019]
oy X exp(ATT (A, ze—1,Y¢-1))

* The decoder consists of three stages

T:L'
1. Attention: attend to a small subset of Ct = Z o e
source vectors t/=1

2. Update: update its internal state
3. Predict: predict the next token

zt = RNN([yt—1; ¢, 2¢-1)
p(yr = v|y<s, X) x exp(OUT (24, v))

» Attention has become the core
component in many recent
advances

e Transformers [Vaswani et al., 2017],

S

* % *
L1,L2y...,XT, Y1+:Y25---5Y1—-1 Y

33

Side-note: gated recurrent units to attention

* A key idea behind LSTM and GRU is the additive update

ht = ur © ht—l + (1 — Ut) ® Bt, where ilt = f(flft, ht—l)

* This additive update creates linear short-cut connections

DEOE0 >0

34

Side-note: gated recurrent units to attention

* \What are these shortcuts? @
OSOS0<_>6

* [f we unroll it, we see it's a weighted combination of all previous
hidden vectors:
hi =ur @ hy—1 + (1 —ug) © ilta
—u; O (w1 O hyo+ (1 —ui1) @ he1) + (1 —u) © hy,
= O (w1 © (Up—2 @ s + (1 —uy—2) @ hyo) + (1 —w—1) @ hy1) + (1 — wy) @ hy,

35

Side-note: gated recurrent units to attention

1. Can we “free” these dependent i izl ~
weights? hy = Zl (]11 ug‘) (E(l — Uk)) h 0
2. Can we “free” candidate vectors? .

hy = Z oziﬁi, where «; o< eXp(ATT(iLi,CCt)) 1

3. Can we separate keys and values?’ ~—

4. Can we have multiple attention .
heads? hy = Zaif(a:i), where o; o< exp(ATT(f(x;), 7)) 2

Zaz x;)), where a; o exp(ATT(K(f(x;)), Q(x))) 3

he = [hi;--- ;hi*], where hY = Zakvk (z;)), where af oc exp(ATT(K"(f(z:)), Q% (x4))) 4

— Transformers

36

Decoupling from RNNs

« RNN Notation

Input for position i in source sequence
Hidden states for position i in source sequence
Hidden states for position t in target sequence

Context vector for position t in target sequence

y Output for position t in target sequence

37

Decoupling from RNNs

* New Notation

38

Decoupling from RNNs

* New Notation

k; Key vector for position i in an arbitrary sequence
V; Value vector for position i in an arbitrary sequence
Query vector for position j in a (same/different) arbitrary sequence

0j Output vector corresponding to position j

39

A more general atte

Attention(q, k, v)

Attention

Alignment

Goal: find the “alignment”
or “compatibility” of keys
with a query to scale
values

ntion

mul + add

Output vectors

— d
Oj—ZjSvi € R%

i

Attention weights

a; = softmax(e;)

Alignment scores
eij = fatt(q; ki)

fatt(-)

Keys: k; € R%
Values: v; € R%*
Query: g; € R%

i €{1,..,N}
je{1,..,T}

40

A more general attention

Attention(q, k, v)

Attention

Alignment

Goal: find the “alignment”
or “compatibility” between
keys and queries to scale
values

a1 A32 A33

> €34 €32 €33

t 1

LAY

Output vectors
Oj €]de,
forjin{l,..,T}

Attention weights

a; = softmax(e;)

Alignment scores
eij = fatt(q;, ki)

fatt(-)

Keys: k; € R%
Values: v; € R%
Query: q; € R%

i €{1,..,N}
je{1,..,T}

41

Applying the Attention Mechanism

Self-Attention Cross-Attention
» Keys, values, and queries are all * Keys-values and queries are
derived from the same source derived from separate sources
Arbitrary

inputs vy | | vy | | V3 M vy | | U3
X1
X2 --Pl-V k4 k, ks -—P[} k, ks --;[}
X3
"l" q1) q3 ~ qz | 43 T~

Arbitrary

transformation x .
x,y are arbitrary sequences

42

Attention Mechanism in Attention is All You Need

To use a decoupled attention mechanism, it is implemented with properties:

1. fatt(+) = scaled dot-product attention

* Good representation of compatibility
» Fast and Interpretable computation
 Parallelizable evaluation across all queries (can leverage GPUs)

» Scaled dot-products for stable softmax gradients in high dimensions
(prevents large magnitudes)

2. Imposed a common dimension for keys, values, and queries

* Requirement for dot-product
« Simplifies architecture with predictable attention output shape
* Provides consistent hidden state dimensions for easier model analysis

A. Vaswani et al., "Attention is All you Need,” in Advances in Neural Information Processing Systems (NeurlPS), 2017.

43

Attention in Attention is All you Need

Scaled Dot-Product
Attention

» Faster
* More space-efficient

Attention

Alignment

04 0, Output vectors

O]' € de

Attention weights

a; = softmax(e;)

Alignment scores

q; - ki

eij = fatt(qj ki) = Jd,

fatt(+) = scaled dot-product

> €34 €32 €33
Keys: k; € R%%
Y t Share the same

f f . d
Values: v; € R% dimension
6 W

44

Attention in Attention is All you Need

Calculate dot-products
In parallel with matrix
multiplication

« High concurrency on
modern hardware
(GPUs)

* Independently
calculates each query

Alignment

Matrix of outputs O € RT*%

Matrix containing attention
weights

Q- KT
Alj,i] = softmax()
Jdi

Alignment scores

KT . .
€ji = fatt(q]'» ki) = Qﬁ [}, 1]

fatt(-) = scaled dot-product

Keys: K € RV*%
Values: V € RV*dk
Query: Q € RT*%

45

Misconceptions about Transformers (1)

 \What?

— Attention in transformers performs a vector similarity search

* \\Why?
— Over-simplification in terminology

— The key-query value explanation is convenient, and many don’t know to look
past It

N

) : softmax()

Vdj

A4

3 nearest neighbors for a query in a vector space

46

Misconceptions about Transformers (1)

* \\What?

« Attention In transformers performs a vector similarity search
-~ Why?

— Over-simplification in terminology

— The key-query value explanation is convenient, and many don’t know to look
past It
T ; i T

How do we get Q, K, and V?

. softmax
What are we learning? ()

\/’/(l;\-

|s this parametric or non-parametric?

I N -
"4

3 nearest neighbors for a query in a vector space

Learning Transformer Attention

Self-Attention Cross-Attention
» Keys, values, and queries are all * Keys-values and queries are
derived from the same source derived from separate
SOUrces
Arbitrary N, ——
inputs vy vy V3 V3 M

+ kl kz k3 -_’[} k3 -_’[

w N et

=

vz
kz
N\ N) (—\ |
"l" 91 | | 92 | | 43 ~ : ;’l’.@
Arbitrary _ 3
transformation Nothing to learn

o . are arbitrary sequences
inside of this Y584

Learning Transformer Attention

Self-Attention Cross-Attention
» Keys, values, and queries are all « Keys-values and queries are
derived from the same source derived from separate sources
. We have to
rbitrary) s R
inputs "l’L"lJ 2 {"SJ' learn these vy | | vs F
() (N\ (N\ (B (B
+ ki | | kz || k3 '—’[} \kz) \k3)-—>[
s N\ N\ A (N [)
"l" q1 | | 92 | q3 92 |93

Arbitrary

transformation x .
X,y are arbitrary sequences

Learning Transformer Attention

Self-Attention

Cross-Attention

Y

|
X

— X

** X, Y are matrices of arbitrary sequences

50

Multi-Head Attention

* Builds on Scaled Dot-Product Attention
» Extension of generalized attention mentioned outlined previously

» Leverages multiple heads to attend to different things

51

Learning Multi-Head Attention

Why do we need multiple heads?

Attention

Qutput vectors

— d
oj—Zajivi € R%

i

@y Attention weights
a; = softmax(e;)

52

Learning Multi-Head Attention

Why do we need multiple heads?

Attention

4]

U2

U3

aj1 V1@
ajz — vz ajz
Qj3 V303

Output vectors

— d
oj—Eajivi € R%

i

Attention weights
a; = softmax(e;)

53

Learning Multi-Head Attention

Why do we need multiple heads?

Attention

+ viajy
Va2Qjr

U3@j3

Output vectors

— d
oj—Eajivi € R%

i

Attention weights
a; = softmax(e;)

54

Learning Multi-Head Attention

Why do we need multiple heads?

Attention

Output vectors

— d
oj—Zajivi € R%

i

Since we summed through the
n positions, we |lose resolution
IN our representation

55

Learning Multi-Head Attention

* Main idea:
— Learn multiple sets of weights
matrices to attend to different things

— Preserve resolution since more
heads increases chance that the
iInformation is maintained

* Allows model to jointly attend to
iInformation from different
representation subspaces
(ke ensembling)

56

Learning Multi-Head Attention

* To make computation efficient, weight matrices project to subspaces

W, € Rimoaer*dk - Q = X2 € RO,
W, € RimoderXd — K = XW;© € R™%,
Wy, € RImoderc — | = XW,' € R™ %,

where di, = dyoger/h (512/8 = 64 In paper)

» Together all heads take roughly the same computational time as one fully
dimensioned attention head

57

Learning Multi-Head Attention

» Each 0y, € R™%

* h; €{0,...,7}, one output for each
head

» Recall, model expects vectors of

dimension dypdet
— Indicates we need to reduce

to a single 0 € RtX%model matrix

58

Learning Multi-Head Attention

MultiHead(Q,K,V) = Concat(head,, ..., head,_,)W?
where heady, = Attention(QW,%, KWK, VWy))

59

Transformer Architecture

Ways attention is used in the transformer:

» Self-attention in the encoder
— Allows the model to attend to all positions in the previous encoder layer
— Embeds context about how elements Iin the sequence relate to one another

« Masked self-attention in the decoder

— Allows the model to attend to all positions in the previous decoder layer up to and
iIncluding the current position (during auto-regressive process)

— Prevents forward looking bias by stopping leftward information flow during training
— Also embeds context about how elements in the sequence relate to one another

* Encoder-decoder cross-attention

— Allows decoder layers to attend all parts of the latent representation produced by the
encoder

— Pulls context from the encoder sequence over to the decoder”

A. Vaswani et al., "Attention is All you Need,” in Advances in Neural Information Processing Systems (NeurlPS), 2017. 60

Transformer Architecture

Why Self-Attention?

* Lower computational complexity

» Greater amount of the computation that can be parallelized

« Each representation encodes the positional information of the sequence

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n? - d) O(1) O(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional O(k-n-d?) O(1) O(logk(n))

Self-Attention (restricted) O(r-n-d) O(1) O(n/r)

61

Transformer Architecture

Why Self-Attention?

« Cheaper (more power, less parameters)

e Faster to train

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n?* - d) O(1) O(1)

Recurrent O(n - d?)

Convolutional O(k -n-d?) n < dfor S.equence)

Self-Attention (restricted) O(r-n-d) representations

Transformer Architecture

Encoder
Stack

Positional
Encoding
Input
X X eee X
1 2 n 'I Embedding J

Generator

(prediction head)

T

Decoder
Stack

7O

|

Err?buggs;[ng I [71]“.[yt_l]<

Positional
Encoding

Output
Probabilities
(for y;)
v
ﬁ [Decoding J
u Procedure
auto-regressive [yb
decoding
t++
(shift right)

63

Transformer Architecture

Encoder
Stack

Positional
Encoding
Input
X X eee X
1 2 n 'I Embedding J

- Output
Generator Probabilities
(prediction head) (for y,)

T

Decoder M
Stack J

auto-regressive
decoding

Positional
Encoding

|

\ 4
“Greedy”
argmax

‘ Yt |
t++

(shift right)

Err?buggs;[ng I [71]“.[yt_l]<

64

Transformer Architecture

- Output
Generator Probabilities
(prediction head) (for y,)
T
=» Add & Norm | v

Proced
Forward Stack u et

_T auto-regressive 3

[o J Decoder M [Decoding J

IVIulti-Head t++
[Self- } (shift right)
ATTpAn’rinn

Positional Positional
Encoding 1\9 Encoding
von Input Output vee

X1 X2 *n 'l Embedding } [Embedding I' (V1 oo (i)

65

Transformer Architecture

- Output
Generator Probabilities

(prediction head) (for y,)

1
[Add & Norm |

Feed
Forward

(Add & Norm |«
=» Add & Norm | [Multi-Head v

Cross- <N n [Decoding J

Feed :
Attention Procedure
[Forward J /) u

_T auto-regressive 3
xN > Add & Norm [AddNrm je

L decoding
Viulti-Head
[Self- J

Attention
A

[

—

§

t++
(shift right)

Multi-Head
Self-

S
Positional E Positional
Encoding 1\9 ' Encoding
von Input Output vee

X1 X2 *n 'l Embedding } [Embedding Vi |ooe Vel

N

66

x N

Positional
Encoding

xl xZ PYY) xn ﬁ[

=» Add & Norm |
Feed
Forward

M

=»{ Add & Norm |

NIU-Head
[Self- J

Attention
A

@—efa

Input
Embedding

Transformer Architecture

Output
[Soﬁmax =" probabilities
(Linear) (for y¢)

t

([Add & Norm |«
Feed
Forward

(Add & Norm |«

Multi-Head
Cross-
Attention

—

[

2 él_Ti

(Add & Norm | €=

I\/Iultl Head
Self-

Ty
e—@

Output
[Embedding I [yt 1

xN

Positional
Encoding

J

auto-regressive
decoding

v

|

Decoding
Procedure

‘ Yt |
t++

(shift right)

67

Transformer Architecture

Output
. Soft —— e
Constant representation Lo . ProEabmtles
size d,,q0; DEtWeen [L'”Teaf) tfor yt)
model components (Add & Norm)=

—

Feed
Forward

(Add & Norm |«
=—»(Add & Norm | { Multi-Head J \ 4]

Feed biess- N l 2 [Decoding
Forward

[

Attention t ' Procedure

t 3 1
—T auto-regressive | Ve |

M It'.Head Masked Multi- t++

ulti- 5 L

[Self-Attention J 'E?edniglrt (shift right)
t ¢ ¢ 1 4

Positional E Positional
Encoding 1\9 ' Encoding

von Input Output vee
1 %2 *n 'l Embedding} [Embedding I' (D1 oo (Yemi)«

Transformers
From The Ground Up

Harvard, “The Annotated Transformer.” [Online]. Available: https://nlp.seas.harvard.edu/annotated-transformer/

https://nlp.seas.harvard.edu/annotated-transformer/

Model Creation Helper

Transformers From The Ground Up
Clones Helper function

 \What?

— Create N copies of pytorch nn.Module

* \\Why?
— The Transformer’s structure contains a lot of
design repetition (like VGG) Remember these clones

shouldn’t share parameters (for
the most part)

def clones(module, N):
"Produce N identical layers."
return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])

Make sure to Initialize all model
parameters to keep clones
Independent

Getting Data into the Transformer (1)

Transformers From The Ground Up

Creating Embeddings

* \What?
— Create vector representation of sequence 0 067
vocabulary 1 =
* Why7 : —
— Can be computed on by neural architecture 0 067

— Dimensionality usually reduced
« ~37,000 words = 512 In paper
- More efficient computation

0.13

-0.07

0.33

0.22

-0.46

0.22

-012

.08

-012

e How? ... _.[

— Learned mapping (linear projection)

Input
Embedding

71

Getting Data into the Transformer (1)

Transformers From The Ground Up

Implementing Embeddings

class Embeddings(nn.Module):
def _init_ (self, d_model, vocab):
super(Embeddings, self).__init__ ()
self.lut = nn.Embedding(vocab, d_model)
self.d_model = d_model

def forward(self, x):
return self.lut(x) * math.sqrt(self.d_model)

nn.Embedding creates a lookup
table to map sequence vocabulary to
unigue vectors

Uses learned weights to handle this
mapping (essentially a nn.Linear)

72

Getting Data into the Transformer (2)

Transformers From The Ground Up
Positional encoding

* \What? x; PE;

— Add information about an element's ‘ ‘ ‘ + ‘ ‘ ‘
position In a sequence to Its representation

« \Why? =]

— Removes need for recurrence or z;
convolution

® HOW? Positional @_%
] Encoding
— Element wise addition of sinusoidal
encoding

73

Getting Data into the Transformer (2)

Transformers From The Ground Up

Sinusoidal positional encoding
“May allow the model to easily learn to attend by relative positions”

dimension

[
1.0- y :é PE(l,Zl) = sin 2]
’ 10000%modet

AV "N
i / / \
N PE(i,2;41) = cos(: 2])
" ' » 10000%modet

I € {1, ;N};l € {1; ---;dmodel}

embedding
o
o

5

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120
position

-10 -5

74

Getting Data into the Transformer (2)

Transformers From The Ground Up

Implementing sinusoidal positional encoding

* Know d,, 4.1 @t model creation

class PositionalEncoding(nn.Module): t|me, SO pl’eCompUTe pOSItIOﬂa|
"Implement the PE function." .
encoding
def __init_ (self, d_model, dropout, max_len=5000):
super(PositionalEncoding, self).__init_ ()]])]
self.dropout = nn.Dropout(p=dropout) ° D|m 1S ConS|Stent W|'th X’ SO we
Compute the positional encodings once in log space. Use |n‘p|ace addItIOn to add
pe = torch.zeros(max_len, d_model) .o |
position = torch.arange(@, max_len).unsqueeze(1) pOSItlona ConteXt T-O X

def

div_term = torch.exp(
torch.arange(@, d_model, 2) * —(math.log(10000.0) / d_model)
)
pel:, 0::2] = torch.sin(position * div_term)
pel:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer("pe", pe)

forward(self, x):
x = x + self.pe[:, : x.size(1)].requires_grad_(False)
return self.dropout(x)

75

Encoder-Decoder Sublayers (1)

Transformers From The Ground Up

Multi-Head Attention Sublayers
* \\What?

— Carries out multi-head attention and
learns weights for creating keys, values,
and queries

* \\Why?

— To extract relevant context from input
seguence

— Multiple heads provide greater resolution
« Attend to different sub-representations

* How?
— Implemented as previously discussed

[Add & Norm |

[Feed Forward J

[Add & Norm |
Multi-Head
Self-Attention

f_I_f

[Add & Norm |

[Feed Forward]

([Add & Norm)

Multi-Head
Cross-
Attention

4+ 1

([Add & Norm)

Masked
Multi-Head

Self-Attention

76

Encoder-Decoder Sublayers (1)

Transformers From The Ground Up
Implementing Multi-Head Attentionc

def attention(query, key, value, mask=None, dropout=None):
"Compute 'Scaled Dot Product Attention'"
d_k = query.size(-1)
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)
if mask is not None:
scores = scores.masked_fill(mask == @, -1e9)
p_attn = scores.softmax(dim=-1)
if dropout is not None:
p_attn = dropout(p_attn)
return torch.matmul(p_attn, value), p_attn

77

Encoder-Decoder Sublayers (1)

Transformers From The Ground Up

Implementing Multi-Head Attentionc

class MultiHeadedAttention(nn.Module):
def __init__ (self, h, d_model, dropout=0.1):

"Take in model size and number of heads."
super(MultiHeadedAttention, self).__init_ ()
assert d_model % h ==
We assume d_v always equals d_k
self.d_k = d_model // h
self.h = h
self.linears = clones(nn.Linear(d_model, d_model), 4)
self.attn = None
self.dropout = nn.Dropout(p=dropout)

def forward(self, query, key, value, mask=None):
"Implements Figure 2"
if mask is not None:
Same mask applied to all h heads.
mask = mask.unsqueeze(1)
nbatches = query.size(0)

1) Do all the linear projections in batch from d_model => h x d_k
query, key, value = [

lin(x).view(nbatches, -1, self.h, self.d_k).transpose(1l, 2)

for lin, x in zip(self.linears, (query, key, value))

2) Apply attention on all the projected vectors in batch.
x, self.attn = attention(
query, key, value, mask=mask, dropout=self.dropout

)

3) "Concat" using a view and apply a final linear.
Xi=: (
x.transpose(1, 2)
.contiguous()
.view(nbatches, -1, self.h x self.d_k)
)
del query
del key
del value
return self.linears[-1](x)

78

Encoder-Decoder Sublayers (2)

Transformers From The Ground Up

Position-wise Feed Forward Network
* \What?

— Applies learned transformations to each position in input
representation

* Applied separately and identically

* \Why?
— Exploits context added by previous sublayers

— Adds depth to network so it can approximate greater
complexity

— Increases resolution to pull out different parts of the
superposition

 How?
— Linear MLP (FC) layers with RelLU activation in between
— Hidden space with higher dimension
FFN(X) — max(O,xW1 + bl)WZ + bz

d xd dreXxd
Wl € [R“%model ff’[/[/2 € R“ff*%model

[Add &Norm |
| |

[Feed Forward]

[Add &Norm |

Multi-Head
Self-Attention

[Add & Norm |

[Feed Forward]

([Add & Norm |
Multi-Head
Cross-
Attention

[Add & Norm |

Masked Multi-
Head Self-

Attention

79

Encoder-Decoder Sublayers (2)

Transformers From The Ground Up
Implementing position-wise Feed

Forward Network
o dff = 204‘8 = 4 dmodel

class PositionwiseFeedForward(nn.Module):
"Implements FFN equation."

def __init__ (self, d_model, d_ff, dropout=0.1):
super(PositionwiseFeedForward, self).__init__ ()
self.w_1 = nn.Linear(d_model, d_ff)
self.w_2 = nn.Linear(d_ff, d_model)
self.dropout = nn.Dropout(dropout)

def forward(self, x):
return self.w_2(self.dropout(self.w_1(x).relu()))

80

Encoder-Decoder Sublayers (3)

Transformers From The Ground Up

Sublayer connections

» Residual connection (recall resnet)
— Can be less expensive to learn residuals
— Elevates vanishing gradient
— Preserves more of the input signal through skip
connection
* Dropout (recall resnet)
— Regularizes model (combats overfitting)
— Encourages diversity of attention heads

e LayerNorm
— Combats vanishing gradient
— Combats exploding gradient

LayerNorm(x + Dropout(Sublayer(x)))

=» Add & Norm |
| |

[Feed Forward 1

)

1
=»(Add & Norm |

Multi-Head
Self-Attention

___4‘

[Add & Norm

|

[Feed Forward J

t

[Add & Norm

Multi- Head
Cross-
Attention

J

[Add & Norm

]4_

Head Self-

I\/Iasked Multi-
Attention

J

81

Encoder-Decoder Sublayers (3)

Transformers From The Ground Up

Implementing sublayer connections

class LayerNorm(nn.Module):
"Construct a layernorm module (See citation for details)."

def

def

__init_ (self, features, eps=le-6):

super(LayerNorm, self).__init_ ()

self.a_2 = nn.Parameter(torch.ones(features))
self.b_2 = nn.Parameter(torch.zeros(features))
eps

self.eps

forward(self, x):

mean = x.mean(-1, keepdim=True)

std = x.std(-1, keepdim=True)

return self.a_2 * (x — mean) / (std + self.eps) + self.b_2

class SublayerConnection(nn.Module):

A residual connection followed by a layer norm.
Note for code simplicity the norm is first as opposed to last.

def

def

__init_ (self, size, dropout):

super(SublayerConnection, self).__init_ ()
self.norm = LayerNorm(size)
self.dropout = nn.Dropout(dropout)

forward(self, x, sublayer):
"Apply residual connection to any sublayer with the same size."
return x + self.dropout(sublayer(self.norm(x)))

82

Encoder-Decoder Layers (1)

Transformers From The Ground Up
Encoder Layer

* \What?
— Composable blocks for the task of encoding an R
INnput sequence representation with attention []
Feed Forward
* \Why?
— Easy construction of model A& o)
— Allows encoder layers to be stacked to achieve —»{ Add & Norm) Mult-Head
depth [;] [Cross- J
. . . Feed Forward Attention
— Repeating Multi-head attention B
- Model more complex position interactions f
—»(Add & Norm) (Add & Norm |
e How? o o Masked Multi-
. . uiti-riea ead Self-
— Multi-head self-attention (8 heads used) sublayer [Self-Attention J e
— Position-wise feed forward network sublayer

— All sublayers are surrounded by sublayer
connections

83

Encoder-Decoder Layers (1)

_ Transformers From The Ground Up
Implementing the encoder layer

[Add & Norm |
class EncoderLayer(nn.Module):
"Encoder is made up of self-attn and feed forward (defined below)" [Feed Forward]
def __init_ (self, size, self_attn, feed_forward, dropout):
super(EncoderLayer, self).__init_ () (_Add&Norm]
self.self _attn = self_attn mal Add&Norm J Mlé"“ Head
ross-
self.feed forward = feed_forward | | Feed Forward Attention
self.sublayer = clones(SublayerConnection(size, dropout), 2)
self.size = size
> Add & Nom) [A& o
def forward(self, x, mask): v I'.H ; Masked Multi-
"Follow Figure 1 (left) for connections." ulti-riea Head Self-
x = self.sublayer([@0] (x, lambda x: self.self_attn(x, x, x, mask)) 7y
return self.sublayer[1](x, self.feed_forward) r——1
X

arbitrary

Encoder-Decoder Layers (2)

Transformers From The Ground Up

Decoder Layer
* \What?

— Composable blocks for the task of decoding
a target sequence auto-regressively

« Same as encoder layers other than:

1. the additional multi-head attention block to
preform cross-attention with the output
representation from the encoder

2. the addition of masking in self-attention
- This prevents cheating(forward looking bias)
- Model purely attends to past info

[Add &Norm |

[Feed Forward]

[Add & Norm |

Multi-Head
Self-Attention

([Add & Norm |«

[Feed Forward]

 —

[Add & Norm |

Multi-Head
Cross-
Attention

2 :_17

[Add & Norm |

Masked Multi-
Head Self-

Attention

t ¢ ¢

85

Encoder-Decoder Layers (2)

Transformers From The Ground Up

Implementing the decoder layer

class DecoderLayer(nn.Module):

"Decoder is made of self-attn, src-attn, and feed forward (defined below)"

def

def

__init__(self, size, self_attn, src_attn, feed_forward, dropout):

super(DecoderLayer, self).__init__ ()

self.size = size

self.self_attn = self_attn

self.src_attn = src_attn

self.feed_forward = feed_forward

self.sublayer = clones(SublayerConnection(size, dropout), 3)

forward(self, x, memory, src_mask, tgt_mask):
"Follow Figure 1 (right) for connections."

m = memory
x = self.sublayer[0] (x, lambda x: self.self_attn(x, x, x, tgt_mask))
x = self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask))

return self.sublayer[2] (x, self.feed_forward)

Add & Norm

[]
[Feed Forward]

[Add & Norm |

Multi-Head
Self-Attention

t

[Add & Norm |«

[Feed Forward]

 —

[Add & Norm

je=
Multi-Head
Cross-

Attention

2 :_17

[Add & Norm |

Masked Multi-
Head Self-

Attention

t ¢ ¢

The Prediction Head

Generator

Transformers From The Ground Up

« Sometimes referred to as the predictor

A final linear mapping

— Internal Representation -> logits that capture
maximum likelihood of next element in sequence

— In seqg2seq language translation this maps back to
vocab corpora

Output Probabilities
[Softmax For next area

* Apply softmax to convert logits to probabilities [Untear)

The Prediction Head

Implementing a generator

Transformers From The Ground Up

class Generator(nn.Module):
"Define standard linear + softmax generation step."

def _init_ (self, d_model, vocab):
super(Generator, self).__init_ ()
self.proj = nn.Linear(d_model, vocab)

def forward(self, x):
return log_softmax(self.proj(x), dim=-1)

88

Assembling the Encoder-Decoder

Transformers From The Ground Up
» Encoder-Decoder

Output Probabilities

1

(Linear)

([Add & Norm |}
[Feed Forward]
(_Add & Norm je= Stack N of the sublayers
=» Add & Norm | Multi-Head
N : Cross- <N
Feed Forward Attention
1 -+ 3 | Add Generator on top
—>(_Add & Norm (_Add &Norm _J«—
- Masked Multi-
[Multl—Heqd } Head Self-
Self-Attention BT e

Assembling the Encoder-Decoder

Transformers From The Ground Up
* Encoder-Decoder implementation

class Encoder(nn.Module):
"Core encoder is a stack of N layers"

class Decoder(nn.Module):
"Generic N layer decoder with masking."

def __init_ (self, layer, N):
super(Encoder, self).__init__()
self.layers = clones(layer, N)
self.norm = LayerNorm(layer.size)

def __init_ (self, layer, N):
super(Decoder, self).__init_ ()
self.layers = clones(layer, N)
self.norm = LayerNorm(layer.size)
def forward(self, x, mask):
def forward(self, x, memory, src_mask, tgt_mask):

"Pass the input (and mask) through each layer in turn." ‘
for layer in self.layers:

for layer in self. layers:
x = layer(x, mask)
return self.norm(x)

x = layer(x, memory, src_mask, tgt_mask)
return self.norm(x)

90

Misconceptions about Transformers (2)

 \What?

— Notion of a whole “transformer block” that is stackable in the vanilla
transformer architecture

— Incorrect belief that encoder-decoder attention connection is layer wise

* \\Why?
— Incorrect understanding of stacking layers
— Pervasive amount of bad figures

91

Misconceptions about Transformers (2)

Incorrect Correct

encoder

decoder ///’

te encoder

ts encoder decoder encoder decoder

ty encoder decoder encoder decoder

decoder encoder decoder

t3 encoder

t, encoder decoder encoder

\ J . J L /. J

decoder \\\‘ encoder

tq encoder

92

Assembling the Encoder-Decoder

* Encoder-Decoder implementation

class EncoderDecoder(nn.Module):

Transformers From The Ground Up

A standard Encoder-Decoder architecture. Base for this and many

other models.

def __init_ (self, encoder, decoder, src_embed, tgt_embed, generator):
super(EncoderDecoder, self).__init__ ()

self.encoder
self.decoder
self.src_embed
self.tgt_embed
self.generator

encoder
decoder
src_embed
tgt_embed
generator

def forward(self, src, tgt, src_mask, tgt_mask):
"Take in and process masked src and target sequences."
return self.decode(self.encode(src, src_mask), src_mask, tgt, tgt_mask)

def encode(self, src, src_mask):

return self.encoder(self.src_embed(src), src_mask)

def decode(self, memory, src_mask, tgt, tgt_mask):
return self.decoder(self.tgt_embed(tgt), memory, src_mask, tgt_mask)

Putting it all together

Transformers From The Ground Up

Output Probabilities

(Linear)

([Add & Norm |
[Feed Forward]

([Add & Norm |}

= Add & Norm | Multi-Head
: Cross- <N

[Feed Forward J Attention

xN =»{ Add & Norm | _Add & Norm J—

MUl '.H Masked Multi-

SimaCE Head Self-
Self-Attention Attention

Positional Positional
Encoding ? Ef Encoding
Input Output .
X X eee X YY) _
! 2 n 'l Embedding J [Embedding - ——

Putting it all together

Transformers From The Ground Up

def make_model(
src_vocab, tgt_vocab, N=6, d_model=512, d_ff=2048, h=8, dropout=0.1

"Helper: Construct a model from hyperparameters."

c = copy.deepcopy

attn = MultiHeadedAttention(h, d_model)

ff = PositionwiseFeedForward(d_model, d_ff, dropout)

position = PositionalEncoding(d_model, dropout)

model = EncoderDecoder(
Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N),
Decoder(DecoderLayer(d_model, c(attn), c(attn), c(ff), dropout), N),
nn.Sequential(Embeddings(d_model, src_vocab), c(position)),
nn.Sequential(Embeddings(d_model, tgt_vocab), c(position)),
Generator(d_model, tgt_vocab),

This was important from their code.
Initialize parameters with Glorot / fan_avg.
for p in model.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
return model

Training Transformers

 “Architecture alone does not make a model”

Architecture + Training = Model

* A model expresses different properties depending on how It is
trained

 Like nature vs. nurture, both impact what the model does
 Training 1s what influences parameters

96

Training Transformers

* Models fit to training data

* [T shown examples that encourage bidirectional attention, it will learn
that

* [T shown only examples that require right attention, it may express
more unidirectional behavior (won't generalize as well)

« BERT uses large scale pre-training to do this

97

Training Transformers

* Masked training

» Attention mechanism can build a masking support directly

 Motivation:

— Want to prevent the model from learning from future information in the
output sequence

 Main idea:

— Since each decode layer starts with a self-attention block, we can add
custom logic to mask out positions In target sequence which it shouldn’'t see
vet

* Implemented as rolling window

98

Training Transformers

* Masked training

def subsequent_mask(size): (1): Sul:s:quent Hask
"Mask out subsequent positions." 24 '
attn_shape = (1, size, size) i“ -
subsequent_mask = torch.triu(torch.ones(attn_shape), diagonal=1).type(5. '
torch.uint8 6-
) 7 0.6
return subsequent_mask == g g:
é 104 0.4
= 11
12—
def attention(query, key, value, mask=None, dropout=None): 13: 0.2
"Compute 'Scaled Dot Product Attention'" 15
d_k = query.size(-1) 16 0.0
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k) 1;:
if mask is not None: 19 -
scores = scores.masked_fill(mask == @, -1e9) O .~ &0 b © I 000 & Al oo 15 © 0D
p_attn = scores.softmax(dim=-1) Wim;::w R

if dropout is not None: —189 |S Very negatlve,

p_attn = dropout(p_attn)

return torch.matmul(p_attn, value), p_attn SOftmaX(—1 69) 9 O

99

Results and Impact

Performance

* Experimentation on text translation: (1) EN-DE and (2) EN-FR

o BLEU Training Cost (FLOPs)
ofe EN-DE EN-FR EN-DE EN-FR

ByteNet [18] 23.75

Deep-Att + PosUnk [39] 39.2 1.0 - 1020
GNMT + RL [38] 24.6 39.92 2.3-101® 1.4-102%°
ConvS2S [9] 25.16 40.46 9.6-10% 1.5.1020
MOoE [32] 26.03 40.56 20-10"° 1.2.10%
Deep-Att + PosUnk Ensemble [39] 40.4 8.0 - 10%°
GNMT + RL Ensemble [38] 26.30 41.16 1.8-10%° 1.1-10%
ConvS2S Ensemble [9] 26.36 41.29 T.7- 10" 1.2.104
Transformer (base model) 27.3 38.1 3.3-10'8
Transformer (big) 28.4 41.8 2.3-10%°

A. Vaswani et al., "Attention is All you Need,” in Advances in Neural Information Processing Systems (NeurlPS), 2017.

101

Paper Impact

* Highly influential
* Paper has 113,405 citations

 Transformer architecture has been
used as the basis for many state-of-
the-art models

 Transformer is a fundamental building
block of all LLMs (e.g. GPT-4, LLaMA
2, Gemini, etc.)

Attention Is All You Need

Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit*

Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com

Llion Jones* Aidan N. Gomez* | Fukasz Kaiser*
Google Research University of Toronto Google Brain
llion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com
Illia Polosukhin* *

illia.polosukhin@gmail.com

102

How to use Attention /
Transformers for Vision?

to existing CNNs

10N

Add attenti

ldea #1

Start from standard CNN architecture (e.g. ResNet)

Softmax

FC 1000

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128,/ 2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

Pool

Input

", ICML 2018

"Self-Attention Generative Adversarial Networks'’

Zhang et al.,

", CVPR 2018

"Non-local Neural Networks

Wang et al.,

ldea #1: Add attention to existing CNNs

Start from standard CNN architecture (e.g. ResNet)

Add Self-Attention blocks between existing ResNet blocks

O

1ndu|
|00d
O
#9 ‘AUOD §Xg
79 /\uloo DE
O
#9 ‘AUOD §Xg
79 /\uloo eXE
O
79 ‘AUOD §Xg
79 /\uloo DE
9
uolnuany-j|es
2/ ‘8¢l ‘NUOO gXg
8¢l AUIOO eXg
O
8¢ ‘AUOD £Xg
8¢l ‘/\UIOO eXg
O
8¢} ‘AUOD EXG
8¢l AUIOO EXg
9
uonualNy-48s
¢/ ‘21G ‘AU0D EXC
cLs /\JOO EXe
O
C LG 'AUOD gXg
A% ‘/\JOO (9283
O
C LG 'AUOD gXg
cLs /\JOO EXe
O

|00d
XBWYOS

000} O4

Zhang et al., "Self-Attention Generative Adversarial Networks”, ICML 2018
Wang et al., "Non-local Neural Networks"”, CVPR 2018

ldea #1: Add attention to existing CNNs

Model is still a CNN! Start from standard CNN architecture (e.g. ResNet)
Can we replace
convolution entirely? Add Self-Attention blocks between existing ResNet blocks

O

[
82| ‘AUOD EXE
O
82| ‘AUOD EXE
[
82| ‘AUOD EXE
O
82| ‘AUOD EXE
[
82| ‘AUOD EXE
O
]

Z1LG ‘AUOD £XE
O
Z1G ‘AUOD £XE
]

Z1G ‘AUOD £XE
O
Z1G ‘AUOD £XE
]

Z1LG ‘AUOD £XE
O

1ndu|
|00d
O
#9 ‘AUOD §Xg
79 /\uloo DE
O
#9 ‘AUOD §Xg
79 /\uloo eXE
O
79 ‘AUOD §Xg
79 /\uloo DE
9
2/ ‘8¢l ‘NUOO gXg

uolnuany-4|8s
uonuaNy-4|as
2/ ‘CLG ‘AUOD EXg

|00d
XBWYOS

000} O4

Zhang et al., "Self-Attention Generative Adversarial Networks”, ICML 2018
Wang et al., "Non-local Neural Networks"”, CVPR 2018

ldea #2: Replace Convolution with “Local Attention”

Convolution: Output at each position is inner product of
conv kernel with receptive field in input

Input: C x Hx W Output: C' x Hx W

Hu et al., “Local Relation Networks for Image Recognition”, ICCV 2019;
Ramachandran et al., “Stand-Alone Self-Attention in Vision Models”, NeurlPS 2019

ldea #2: Replace Convolution with “Local Attention”

Map center of receptive field to query

Query: Dq

Input: C x Hx W Output: C' x Hx W

Hu et al., “Local Relation Networks for Image Recognition”, ICCV 2019;
Ramachandran et al., “Stand-Alone Self-Attention in Vision Models”, NeurlPS 2019

ldea #2: Replace Convolution with “Local Attention”

Map center of receptive field to query
Map each element in receptive field to key and value

Query: Dq
Keys: RxX R x Dg
Values: Rx R x C’

Input: C x Hx W Output: C' x Hx W

Hu et al., “Local Relation Networks for Image Recognition”, ICCV 2019;
Ramachandran et al., “Stand-Alone Self-Attention in Vision Models”, NeurlPS 2019

ldea #2: Replace Convolution with “Local Attention”

Map center of receptive field to query
Map each element in receptive field to key and value
Compute using attention

Query: Dq
Keys: RxX R x Dg
Values: Rx R x C’

oo

Attention
Input: C x Hx W Output: C' x Hx W

Hu et al., “Local Relation Networks for Image Recognition”, ICCV 2019;
Ramachandran et al., “Stand-Alone Self-Attention in Vision Models”, NeurlPS 2019

ldea

Map center of receptive field to query
Map each element in receptive field to
Compute using attention

and value

Replace all conv in ResNet with local attention

LR = “Local Relation’

Hu et al., “Local Relation Networks for Image Recognition”, ICCV 2019;

Ramachandran et al., “Stand-Alone Self-Attention in Vision Models”, NeurlPS 2019

I

2: Replace Convolution with “Local Attention’

I

stage| output ResNet-50 LR-Net-50 (7 x7, m=8)
. 1x1, 64

resl | 112x112| 7x7 conv, 64, stride 2 7x7 LR, 64, stride 2

3 %3 max pool, stride 2 | 3X3 max pool, stride 2
el mre 1x1, 64 1x1, 100

3x3 conv, 64 | X3 7x7LR,100 | %3
1:¢1,:256 ! 1%l,256 I

[1x1,128 [1x1,200 |
res3 | 28x28 3x3 conv, 128 | X4 7x7LR,200 | x4

L 1.%1,512 | ! %1, 512 I

[1x1,256 i [1x1,400 |
resd | 14x14 3x3 conv, 256 | X6 7x7LR,400 | X6

| 1x1, 1024 | L 1x1, 1024 I

[1x1,512 | [1x1,800 |
resS| 7x7 3x3conv, 512 | X3 7x7LR, 800 | X3

L 1x1, 2048 | L 1x1,2048 I

- global average pool global average pool
X
1000-d fc, softmax 1000-d fc, softmax
params 25.5x10° 23.3x10°
FLOPs 4.3x10° 4.3x10°

I

ldea #2: Replace Convolution with “Local Attention’

Map center of receptive field to query Lots of tricky details,
Map each element in receptive field to key and value hard to implement,
Compute using attention only marginally better
Replace all conv in ResNet with local attention than ResNets

Query: Dq
Keys: RxX R x Dg
Values: Rx R x C’

oo

Attention
Input: C x Hx W Output: C' x Hx W

Hu et al., “Local Relation Networks for Image Recognition”, ICCV 2019;
Ramachandran et al., “Stand-Alone Self-Attention in Vision Models”, NeurlPS 2019

ldea #3: Standard Transformer on Pixels

Treat an Image as a set
of pixel values t t f t

Layer Normalization

(+

| I | |
MLP MLP MLP MLP

L 1 I |

Layer Normalization

:é
L Self-Attention

t t t t
I et
Feed as input to
standard Transformer ‘

Chen et al., “Generative Pretraining from Pixels”, ICML 2020

ldea #3: Standard Transformer on Pixels

Treat an Image as a set

of pixel values t t t t
3" Layer Normalization
A ‘ ‘? o
| | | |
?g .4 MLP MLP MLP MLP
N
1 | | |
v |
Layer Normalization
:
Self-Attention
t t t t
] LU

Feed as input to

standard Transformer

Chen et al., “Generative Pretraining from Pixels”, ICML 2020

|

Problem: Memory use!

R x R image needs R*
elements per attention
matrix

ldea #3: Standard Transformer on Pixels

Treat an Image as a set

of pixel values t t t 1
;" Layer Normalization
i A ‘? e
4 | [| |
f;‘ L4 MLP | |MLP| |MLP| |MLP
N
i 1 | |
v |
Layer Normalization
:
Self-Attention
y t t t t
EEE = L T
Feed as input to
standard Transformer

Chen et al., “Generative Pretraining from Pixels”, ICML 2020

Problem: Memory use!

R x R image needs R*
elements per attention
matrix

R=128, 48 layers, 16 heads
per layer takes 768GB of
memory for attention
matrices for a single
example...

ldea #4: Standard Transformer on Patches

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

ldea #4: Standard Transformer on Patches

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

ldea #4: Standard Transformer on Patches

o

N input patches, each > . % ' % }i _
of shape 3x16x16 E D1 ’

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

ldea #4: Standard Transformer on Patches

Linear projection to
D-dimensional vector

N input patches, each
of shape 3x16x16

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

ldea #4: Standard Transformer on Patches

Add positional
embedding: learned
D-dim vector per position +

Linear projection to
D-dimensional vector

N input patches, each
of shape 3x16x16

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

ldea #4: Standard Transformer on Patches

Output vectors

Exact same as

NLP Transformer! Transformer

Add positional
embedding: learned

D-dim vector per position

Linear projection to
D-dimensional vector

N input patches, each
of shape 3x16x16

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

ldea #4: Standard Transformer on Patches

Output vectors

Exact same as

NLP Transformer! Transformer

Add positional
embedding: learned
D-dim vector per position +

Linear projection to
D-dimensional vector

N input patches, each
of shape 3x16x16

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

Special extra input:
classification token
(D dims, learned)

ldea #4: Standard Transformer on Patches

Linear projection
to C-dim vector
of predicted class

scores
Output vectors

Exact same as

NLP Transformer! Transformer

Special extra input:
classification token
(D dims, learned)

Add positional
embedding: learned
D-dim vector per position

Linear projection to
D-dimensional vector

N input patches, each
of shape 3x16x16

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

Vision Transformer (ViT)

with no convolutions! to C-dim vector
of predicted class

scores
Output vectors

Exact same as

NLP Transformer! Transformer

Special extra input:
classification token
(D dims, learned)

Add positional
embedding: learned
D-dim vector per position

1

Linear projection to
D-dimensional vector

N input patches, each
of shape 3x16x16

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

Vision Transformer (ViT)

Computer vision model Not quite: With patch size p, first layer
with no convolutions! Is Conv2D(pxp, 3->D, stride=p)

Output vectors

Linear projection
to C-dim vector
of predicted class
scores

Exact same as

NLP Transformer! Transformer

Add positional
embedding: learned
D-dim vector per position

1

Linear projection to
D-dimensional vector

N input patches, each
of shape 3x16x16

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

Special extra input:
classification token
(D dims, learned)

Vision Transformer (ViT)

Computer vision model Not quite: MLPs in Transfprmer Linear projection
with no convolutions! are stacks of 1x1 convolution to C-dim vector
of predicted class

scores
Output vectors

Exact same as

NLP Transformer! Transformer

Special extra input:
classification token
(D dims, learned)

Add positional
embedding: learned
D-dim vector per position

1

Linear projection to
D-dimensional vector

N input patches, each
of shape 3x16x16

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

Vision Transformer (ViT)

In practice: take 224x224 input image, Each attention matrix has 144 = 38,416
divide into 14x14 grid of 16x16 pixel entries, takes 150 KB
patches (or 16x16 grid of 14x14 patches) (or 65,536 entries, takes 256 KB)

Output vectors

Linear projection
to C-dim vector
of predicted class
scores

Transformer

Exact same as
NLP Transformer!

|

Add positional
embedding: learned
D-dim vector per position

Linear projection to
D-dimensional vector

N input patches, each
of shape 3x16x16

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

Special extra input:
classification token
(D dims, learned)

Vision Transformer (ViT)

In practice: take 224x224 input image, With 48 layers, 16 heads per
divide into 14x14 grid of 16x16 pixel layer, all attention matrices
patches (or 16x16 grid of 14x14 patches) take 112 MB (or 192MB)

Output vectors

Linear projection
to C-dim vector
of predicted class
scores

Exact same as

NLP Transformer! Transformer

Add positional
embedding: learned
D-dim vector per position

Linear projection to
D-dimensional vector

N input patches, each
of shape 3x16x16

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

Special extra input:
classification token
(D dims, learned)

Vision Transformer (ViT) vs ResNets

90
S
Q>)\. J
< 85 Il
o .
= _
o !
< _ B = Base
— 80 1 L = Large
. H = Huge
—
© ; /32, /16, /14 is patch
% 75 ResNet-152x4 VIT-L/32 Size; smaller patch
on ViT-B/32 ViT-L/16 size is a bigger model
E] VIiT-B/I6 @ ViT-H/14 | morepetenes)

70 | 1 | 1

ImageNet ImageNet-21k JFT-300M

Pre-training dataset

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

Vision Transformer (ViT) vs ResNets

Recall: ImageNet
dataset has

1k categories,
1.2M images

When trained on
ImageNet, VIT models
perform worse than
ResNets

oo 0 O
(= W o

ImageNet Topl Accuracy [%]
3
Lh

70 -

B = Base

L = Large

H = Huge

; /32, /16, /14 is patch
ResNets VIT-L/32 | gize: smaller patch
ViT-B/32 ViT-L/16 | sizeis a bigger model
ViT-B/16 @ ViT-H/14 | MorePatenes
ImagleN et ImageNet-2 1k J FT-éOOM

Pre-training dataset

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

Vision Transformer (ViT) vs ResNets

90
ImageNet-21k has S
14M images with P
21k categories 3 85
S
f you pretrain on < | ® B = Base
ImageNet-21k and = 80 - L = Large
fine-tune on ImageNet, © H = Huge
: . =
VIT does better: big = | /32, /16, /14 is patch
ViTs match big % 73 ResNets VIT-L/32 | size: smaller patch
ResNets = ViT-B/32 ViT-L/16 | sizeis a bigger model
E] VIiT-B/I6 @ ViT-H/14 | morepetenes)
70 — . .
ImageNet ImageNet-21k JFT-300M

Pre-training dataset

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

Vision Transformer (ViT) vs ResNets

JFT-300M Is an _ a
internal Google S
dataset with 300M 2 95]
labeled images g =
o _
If you pretrain on JFT <€ 1 ® B = Base
and finetune on =l hif&gi
ImageNet, large ViTs ﬁ
D 32, /16, /14 is patch
ouperfomlaige 5 .
on ViT-B/32 ViT-L/16 size is a bigger model
E ViT-B/16 ViT-H/14 | Morepatches)
70 — . .
ImageNet ImageNet-21k JFT-300M

Pre-training dataset

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

Vision Transformer (ViT) vs ResNets

JFT-300M is an _ o
internal Google S
dataset with 300M o e |
. < 85 Il
labeled images 5
5
2
If you pretrain on JFT <G -
and finetune on a
ImageNet, large Vils ﬁ
outperform large D
ResNets % 75
o))
<
g
70

@
ResNets ViT-L/32
ViT-B/32 ViT-L/16
ViT-B/16 ViT-H/14
ImagleN et ImageNet-2 1k J FT-1I300M

Pre-training dataset

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

ViTs make more
efficient use of GPU /
TPU hardware
(matrix multiply is
more hardware-
friendly than conv)

Vision Transformer (ViT) vs ResNets

Claim: ViT models have _ a
“|less inductive bias” than &,]
ResNets, so need more 2» 95]
pretraining data to learn g ol
good features 3 j
< |
(Not sure | buy this =l A
explanation: “inductive ﬁ
bias” is not a well- D
defined concept we can % T3]
measure!) &
g
70

|
ResNets ViT-L/32
ViT-B/32 ViT-L/16
ViT-B/16 ViT-H/14
ImagleN et ImageNet-Q 1k J FT-1I300M

Pre-training dataset

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

ViTs make more
efficient use of GPU /
TPU hardware
(matrix multiply is
more hardware-
friendly than conv)

Vision Transformer (ViT) vs ResNets

90

S

>\. J

Q' 85 -

g &

= J
Q

S

<o

How can we g. -
Improve the —

performance of © -
ViIT models on é}
ImageNet? g

=

70+

@
ResNets ViT-L/32
ViT-B/32 ViT-L/16
ViT-B/16 ViT-H/14
ImagleN et ImageNet-2 1k J FT-1I300M

Pre-training dataset

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

ViTs make more
efficient use of GPU /
TPU hardware
(matrix multiply is
more hardware-
friendly than conv)

ViT vs CNN

In most CNNs (including
ResNets), decrease resolution
and increase channels as you
go deeper in the network
(Hierarchical architecture)

Stage 3:
256 x 14 x 14 |

Useful since objects in images
can occur at various scales

Stage 2: |
128 x 28 x 28 |

Stage 1: |
64 x 56 x b6 |

Input:
3X224x 224 | |

ViT vs CNN

Stage 3:
266 x 14 x 14

Stage 2:
128 x 28 x 28

Stage 1:
64 x b6 x b6

Input:
3 X224 x 224

In most CNNs (including
ResNets), decrease resolution
and increase channels as you
go deeper in the network
(Hierarchical architecture)

Useful since objects in images
can occur at various scales

In a ViT, all blocks have
same resolution and
number of channels

(Isotropic architecture)

! ! ! !

Layer Normalization

i

|]
M| (M| wmee | MLP

Layer Normalization

|

Self-Attention

t t t t

! ! ! !
! ! ! !

Layer Normalization

L

[|
‘Mp | mep | e MLP
t f

Layer Normalization

|

Self-Attention
1 f f f

! ! ! !
! ! ! !

Layer Normalization

i

I |
‘MW“MW“MW“MW‘

Layer Normalization

|

Self-Attention

t t t t
f f f f

3 block:
768 x 14 x 14

2nd block:
768 x 14 x 14

15t block:
768 x 14 x 14

Input:
3 X 224 x 224

137

ViT vs CNN

Stage 3:
266 x 14 x 14

Stage 2:
128 x 28 x 28

Stage 1:
64 x b6 x b6

Input:
3 X224 x 224

In most CNNs (including
ResNets), decrease resolution
and increase channels as you
go deeper in the network
(Hierarchical architecture)

Useful since objects in images
can occur at various scales

In a ViT, all blocks have
same resolution and
number of channels

(Isotropic architecture)

Can we build a hierarchical ViT model?

! ! ! !

Layer Normalization

i

|]
M| (M| wmee | MLP

Layer Normalization

|

Self-Attention

t t t t

! ! ! !
! ! ! !

Layer Normalization

L

[|
‘Mp | mep | e MLP
t f

Layer Normalization

|

Self-Attention
1 f f f

! ! ! !
! ! ! !

Layer Normalization

i

I |
‘MW“MW“MW“MW‘

Layer Normalization

|

Self-Attention

t t t t
f f f f

3 block:
768 x 14 x 14

2nd block:
768 x 14 x 14

15t block:
768 x 14 x 14

Input:
3 X 224 x 224

Hierarchical ViT: Swin Transformer

C H W
X — X —
4 4

R _S;aée_l_ TN

| I

[b0 4 N\ 1

[= I

3xHxW |E| 1+ |% '

-+ 1 1

1 | & Swin I

Images [£ —> 5 —»| Transformer [+

SN = Block I

A L) 1

VN = I

A Gl BN /

‘e X2 ’/

Divide image into 4x4
patches and project to
C dimensions

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows"”, CVPR 2021

Hierarchical ViT: Swin Transformer

C H W 2 H W
X — X — X = X —
4 4 38 38
7 Stagel vT 0 Stage2
1 1 1
1 50 4 N\ 1! 4 N\ 1
= = 1! 50 I
ISIXHXW || |3 1! = i
2l =) 1 ! B0 . [
21 | & Swin | g Swin |
Images PP £ —> 5 > Transformer-:—:-) = [Transformer [+
Sl | = Block |11 |5 Block |,
=1 S L [~ i
v I = ! : A~ I
2 Kl Y 1y \ J!
‘e X2 AN X2 ’
Divide image into 4x4 Merge 2x2
patches and project to neighborhoods;
C dimensions now patches are

(effectively) 8x8

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows"”, CVPR 2021

Hierarchical ViT: Swin Transfor

c H W 2 H W
X — X — X =X —
4 4 38 38
" Stagel CvsT 0 Stage2
1 1
1 ol N\ 1! 4)
ol ! =) 1! 50
IXHXW | 3|1 |= =
=N I o) 1! B0)
21 | & Swin | g Swin
Images PP £ —> 5 > Transformer—:-i') = [P Transformer
SIERE Block |11 |5 Block
=1 L) 1! b=
AL = 1! [a¥
' F) X Fla \ y
‘e X2 AN X2
Divide image into 4x4 Merge 2x2

patches and project to
C dimensions

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows"”, CVPR 2021

neighborhoods;
now patches are
(effectively) 8x8

H/4

W/4

Hierarchical ViT: Swin Transfor

H/4
C H W 2 H W /
X — X — X =X —
4 4 38 38
7 Stagel vT 0 Stage2
1
: 50 4 ™ 1! 4 N : W/4
= =) 1! 50 I
ISIXHXW || |3 1! = i
o1 1 =) 1 ! B0 . [
21 | & Swin L Swin |
Images PP £ —> E‘j > Transformer—:-:-) = [Transformer [+
= » Block | S Block
% : 3 gl *:-é : H/8
Al o = 1 : A I
2 Kl Y 1y \ J!
v X2 N X2 s W/8
Divide image into 4x4 Merge 2x2
patches and project to neighborhoods;
C dimensions now patches are

(effectively) 8x8

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows"”, CVPR 2021

Concatenate
groups of
2x2 features

4C

Hierarchical ViT: Swin Transfor

H/4
C H W 5 H W /
X — X — X — X —
4 4 8 8
. ~ Stagel " " Stage2 C
1
I) é N\ ! : (" N\ 1 W/4
1 joi 1 1
3XHXW |81 |5 = !
Sl | , 1! | B , | Concatenate
£l 1 | 2 Swin 1! 5 Swin) groups of
Images P £ > & PP Transformer[#=»] = | Transformer [~
I 5| | pe I 2x2 features
Sl | & Block B B> Block |
=| < 1! g~ i H/8
o 1 E I : - 1 4C
2 Kl Y 4 - J!
‘e K2 AN X2 v W/8
Divide image into 4x4 Merge 2x2 Lln.eart.
patches_and p.roject to neighborhoods; projection
C dimensions now patches are H/8 from 4C to
(effectively) 8x8 2C channels
2C (1x1 conv)
W/8

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows"”, CVPR 2021

Hierarchical ViT: Swin Transformer

c H W 2 H W AC H
X — X — X = X — X X
4 4 8 8 16 16
R i N " TR M- vk N
| 1 1
i [=dl N r N i 4 N |
I o I 11
3xHxW | 8|+ |2 o F SRR :
=10 8 i 1! | o _ 11| B . |
211 | 2 Swin L Swin | 5 Swin '
Images PP £ —> 5 > Transformer-:—:-) = P Transformer—:—:) = [P Transformer [T
Sl | 5 Block |11 | S Block |1 |8 Block | !
=] S L I~ 1 | s ;
aw 1 E I : A 11 a® I
QL S NS WS NS S | U) N—
‘e X2 AR X2 AR X6 "
Divide image into 4x4 Merge 2x2 Merge 2x2
patches and project to neighborhoods; neighborhoods;
C dimensions now patches are now patches are
(effectively) 8x8 (effectively) 16x16

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows"”, CVPR 2021

Hierarchical ViT: Swin Transformer

C H.w 2C H.ow 4C H 8C H W
X — X — X — X — X X X
4 4 8 8 16 16 32 32
< Stagel vT 0 Stage2 v .7 Stge3d 00 Staged
| 1 1
i (=l N r N i r S T 4 ™
K= I |
3IxHxW | & |5 | i | -
21 |3 . 1B . 11| CBo . . B0 .
2l | 8 Swin | g Swin | 5 Swin i1 |5 Swin
Images PP £ Bk 5 > Transformer-:—:-) = Transformer—:—:) = P] Transformer - = | Transformer
SIERE Block |11 |5 Block |11 |5 Block |} |S Block
"‘c'é 1 o)) 1 ! -‘C-U‘ 11 .‘C-G‘ 11 .ES‘
=V B = I : ~ |~ L | P
: i \. J : 1 \. J : : _ J 1 _)
‘. X2 AN X2 AN X6 " L X2
Divide image into 4x4 Merge 2x2 Merge 2x2 Merge 2x2
patches and project to neighborhoods; neighborhoods; neighborhoods;
C dimensions now patches are now patches are now patches are
(effectively) 8x8 (effectively) 16x16 (effectively) 32x32

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows"”, CVPR 2021

Hierarchical ViT: Swin Transformer

Problem: 224x224 image

with 56>.<56 grlo! of 4x4 | H W H W H H W
patches: attention matrix — (Cx — x — 2C X — X — 4C X X 8C X
has 564 = 9.8M entries 4 4 8 8 16 16 32 32
" Stagel w7 Stage2 Cv 7 Stage3 N 07 Staged Y
| 1 1
v () N s N i e S 1 e N
R - |
3xHxW | & |2 o | B S :
p=3 o) ! Bo) 1 B0) I B0) [
2l | 8 Swin | g Swin | 5 Swin i1 |5 Swin ’
Images PP £ Bk 5 > Transformer—:-i') = Transformer—:—:) = P Transformer > = [Transformer [
SRR Block |11 |5 Block |11 |5 Block |!' |5 Block |,
211 S LA I~ 11 | s a1 = I
<V I = I: A~ P | A L | P I
A Kl Y 2 la \ J! \ Ji . 2
‘. X2 AN X2 RN X6 ,’ ‘\ X2 ’
Divide image into 4x4 Merge 2x2 Merge 2x2 Merge 2x2
patches and project to neighborhoods; neighborhoods; neighborhoods;
C dimensions now patches are now patches are now patches are
(effectively) 8x8 (effectively) 16x16 (effectively) 32x32

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows"”, CVPR 2021

Hierarchical ViT: Swin Transformer

Problem: 224x224 image

with 56>.<56 grlo! of 4x4 | H W H W H H W
patches: attention matrix — (Cx — x — 2C X — X — 4C X X 8C X
has 564 = 9.8M entries 4 4 8 8 16 16 32 32
" Stagel w7 Stage2 Cv 7 Stage3 N 07 Staged Y
| 1 1
v () N s N i e S 1 e N
R - |
3xHxW | & |2 o | B S :
p=3 o) ! Bo) 1 B0) I B0) [
2l | 8 Swin | g Swin | 5 Swin i1 |5 Swin ’
Images PP £ Bk 5 > Transformer—:-i') = Transformer—:—:) = P Transformer > = [Transformer [
SRR Block |11 |5 Block |11 |5 Block |!' |5 Block |,
211 S LA I~ 11 | s a1 = I
<V I = I: A~ P | A L | P I
A Kl Y 2 la \ J! \ Ji . 2
‘. X2 AN X2 RN X6 ,’ ‘\ X2 ’
Divide image into 4x4 Merge 2x2 Merge 2x2 Merge 2x2
patches and project to neighborhoods; neighborhoods; neighborhoods;
C dimensions now patches are now patches are now patches are
(effectively) 8x8 (effectively) 16x16 (effectively) 32x32

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows"”, CVPR 2021

Swin Transformer: Window Attention

With H x W grid of tokens, each attention
matrix is H?W? — quadratic in image size

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows"”, CVPR 2021

Swin Transformer: Window Attention

With H x W grid of tokens, each attention
matrix is H?W? — quadratic in image size

Rather than allowing each token to attend to all
other tokens, instead divide into windows of
M x M tokens (here M=4); only compute
attention within each window

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows"”, CVPR 2021

Swin Transformer: Window Attention

With H x W grid of tokens, each attention
matrix is H?W? — quadratic in image size

Rather than allowing each token to attend to all
other tokens, instead divide into windows of
M x M tokens (here M=4); only compute
attention within each window

Total size of all attention matrices is now:
M4 (H/M)(W/M) = M2HW

Linear in image size for fixed M!
Swin uses M=7 throughout the network

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows"”, CVPR 2021

Swin Transformer: Window Attention

Problem: tokens only interact with other tokens within the
same window: no communication across windows

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows"”, CVPR 2021 151

Swin Transformer: Shifted Window Attention

Ugly detall:
Non-square
windows at
> edges and
corners

Block L: Normal windows Block L+1: Shifted Windows

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows"”, CVPR 2021

Swin Transformer: Shifted Window Attention

Block L: Normal windows Block L+1: Shifted Windows

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows"”, CVPR 2021

Detail: Relative Positional Bias

VIT adds positional embedding to
iInput tokens, encodes absolute
position of each token in the image

Swin Transformer: Shifted Window Attention

Block L: Normal windows Block L+1: Shifted Windows

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows"”, CVPR 2021

Detail: Relative Positional Bias

VIT adds positional embedding to
iInput tokens, encodes absolute
position of each token in the image

Swin does not use positional
embeddings, instead encodes
relative position between patches
when computing attention:

Standard Attention:

A = Soft (QKT>V
=Jo0j7tmax \/.5

0,K,V:M? x D (Query, Key, Value)

Swin Transformer: Shifted Window Attention

Detail: Relative Positional Bias

VIT adds positional embedding to
iInput tokens, encodes absolute
position of each token in the image

Swin does not use positional
embeddings, instead encodes
relative position between patches
> when computing attention:

Attention with relative bias:

A = Soft (QKT+B>V
= Softmax

VD
0,K,V:M? x D (Query, Key, Value)

B: M? x M? (learned biases)

Block L: Normal windows Block L+1: Shifted Windows

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows"”, CVPR 2021

Swin Transformer: Speed vs Accuracy

-o-RegNetY -e-EffNet ViT+Distillation (DelT) Swin

Q0
o1

+

Q0
W

00]

Q0
)

Accuracy (ImageNet Top1)
00)
N

~
(@)

0 5 10 15
Speed (ms/image on V100)

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows"”, CVPR 2021

20

Swin Transformer: Speed vs Accuracy

-o-RegNetY -e-EffNet ViT+Distillation (DelT) Swin

85
34 0= -
83
« Bonus: Swin Transformer can also

be used as a backbone for object
detection, instance segmentation,
and semantic segmentation!

00]

Q0
)

Accuracy (ImageNet Top1)
(00
N

~
(@)

0 5 10 15 20
Speed (ms/image on V100)

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows"”, CVPR 2021

Other Hierarchical Vision Transformers

MVIT Swin-V2 Improved MVIT

(‘Dog’, |) ‘Running’

‘Dog’
q k v UV —
B [we | [w¥ | [w ||e=[CAtention]
Parameterized t ; ! | I
T
e

<
.
B"’
=
=
5
3
A
Tz
g

b1 MVIT MVIT | | FPN| MVIT
=

(a) Image classification (b) Object detection (c) Video recognition

Fan et al., “Multiscale Vision Transformers”, Liu et al, “Swin Transformer V2: Scaling Li et al, “Improved Multiscale Vision Transformers
ICCV 2021 up Capacity and Resolution”, CVPR 2022 for Classification and Detection”, arXiv 2021

Recap of Transformers

* Three key ideas
— Tokens
— Attention
— Positional encoding

Output
Probabilities
|l Softmax
t
| Linear
4)
[Add & Norm J<=~
Feed
Forward
| I
s I ~ | Add & Norm J<~
> Add & Norm Mult-Head
Feed Attention
Forward ? I N x
A []ﬂ
Add & Norm
Nx I
~>| Add & Norm J e
Multi-Head Multi-Head
Attention Attention
A 2 At
_ J _ _J)
Positional Positional
Encodi P ¢ i
ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

159

Tokens: A new data structure

» A token is just transformer lingo for a vector of neurons (note: GNNs also operate over
tokens, but over there we called them “node attributes” or node “feature descriptors”)

» But the connotation is that a token is an encapsulated bundle of information; with
transformers we will operate over tokens rather than over neurons

array of neurons array of tokens

PS
OO0000O
e+
|OO0O00] [OO00] [©O00]

160

Tokens: A new data structure

» A token is just transformer lingo for a vector of neurons (note: GNNs also operate over
tokens, but over there we called them “node attributes” or node “feature descriptors”)

» But the connotation is that a token is an encapsulated bundle of information; with
transformers we will operate over tokens rather than over neurons

set of neurons set of tokens

[O000O] [OO0O] [OOOO]
[O000O] [OO0O] [OOOO]
[O000O] [OO0O] [OOOO]

'S
0000
0000
0000
0000

e+

|OO0O00] [OO00] [©OO0]

161

Tokenizing the input data

tokens ‘ e.g., linear projection

.
.
.
.
"""
nus®

patches ‘

* \When operating over neurons, we represent
the input as an array of scalar-valued
measurements (e.q., pixels)

* \When operating over tokens, we represent
the input as an array of vector-valued

. measurements
INput

162

Tokenizing the input data

* You can tokenize anything.

» General strategy: chop the input up into chunks, project each chunk to a vector.

tokens

patches

input

tokens

byte pairs

input

J | Inl
(. bt
[Th][re] ... [wW][.]
bt bt

Three gui neaf ow .

tokens

sound
snippets

input

I
"t

163

Transformers

 Transformers takeover the communities since their introduction.

Output
Probabilities

Nx
Nx
Masked
Muti-Head Muti-Head
Attertion Aftantion
¥) A)
\ J
Positional ®—O ¢ Positional
Encoding Encoding
hiput Output
Embeddng Embedding
Inputs Cutputs

{shifted right)

Computer
Vision

Muti-Head
Attertion

Output
Probabilities

Fead
Forward

Muti-Head
Attention

Masxed
Muti-Head
Aftantion

L¥

) A)

Nx

J/

Positional
Encoding ®_O g

I Embeddng

hput Output
Embedding

]]

Inputs Cutputs

{shifted right)

Natural

Positional
Encoding

Lang. Proc.

Add & Norm
Feed
Forward

Nx | (a8 Norm]

Output
Probabilitios

[Add & Nerm |

Multi-Head
Attenton

N

Masked

Multi-Head
Attantion
LN ¥
S J
Positional D 69—® Positional
Encoding Encading
Input Output
Embeddng Embedding
Inputs Qutputs

(shifted right)

Speech

Output
Probabilitios

Add & Norm
Feed
Forward

N
N | ~{CAdd 8 Norm]
Add & Norm Mosked
Mult-Head
Attention
(¥)
\ J
Positional D 69—® Positional
Encoding Encading
Input Output
Embeddng Embedding
Inputs Qutputs

(shifted right)

Reinf.
Learning

Output
Probabilities

Nx

Masxed
Muti-Head
Aftantion

Muti-Head
Attertion

¥) A)

\ J

Positional

Encoding

Positional
®_O g Encoding

hiput Output
Embeddng Embedding
Inputs Cutputs

{shifted right)

Graphs /
Science

164

Image credit: Noe Casas

Pre-training in NLP (before Transformers)

I:’(‘Nn I‘"’n-2:n+2) Tq T2

</s>
(C000) e, Sy
S——— softma] softma softmax
. JP I T
Softmax project.) L project.) project.
(e]eYol®) 1 | T
embed embedz embeds
/ - \ | | |
6 8 6 6 Model
ol |0 ol O
Q| 10 oo N .
g9 Wi i 1
wn-2 Wn-1 wn+1 Wn+2 = 1 -
word embeddings contextualized
word2vec word embeddings via LM
[Mikolov et al., 2013] ELMo

[Peters et al., 2018]

* Word embeddings = Contextualized word embeddings

165

Image credit: Noe Casas

Pre-training in NLP (during Transformers)

| he | | will | | br | | late | | [SEP] | | you | | should | | leave | | now | | [SEP] | Output tokens
f f i f f 1 f
(SOﬁmaX] {SOﬁmaXJ [soﬁmax][soﬁmax] (soﬂmax] (soﬁmax] [soﬂmax] (soﬁmax] (soﬁmax] (soﬁmax]

ro'ect.] (project,] [project.] (project.] [project.] (project.] (project.] (projeot.] (pro'ect.] (project.]

T (pro j

® ¢ P P P ¢ P é P

{ Self-attention Layers
Token CLS h MAS b Jat SEP) MAS [SEP
embeddings [] © [i © ate [] ! Al]
+ + + + + +

Positional
iciri- B | BRI | || || || || |F | : |

+ + +
Segment
el 7 | | I e |

. 15% of tokens
contextualized get masked

word embeddings via
masked LM +

next sentence prediction

BERT
[Devlin et al., 2019]

* \Word embeddings = Contextualized word embeddings = Transformers
* Transformer-based models take over the language modelling / NLP domain

166

Pre-training in NLP (during Transformers)

Decoder-only
GPT

[sat]

Output
Probabilities

=
o)

(R
Add & Norm

Feed
Forward

Add & Norm

Masked
Multi-Head
Attention

, VI)

\ —

@ Positional
Encoding

Qutput
Embedding

I

Outputs
(shifted right)

[START] [The_] [cat]

[*]

[The_]

Encoder-only

[*]

BERT

[sat_] [*]

Positional
Encoding

[cat] [MASK]

L

s ™\
Add & Norm

Feed
Forward

\—

f—>| Add & Norm |

Attention

Multi-Head

S

_‘

[on_]

[the_] [*]

[MASK] [mat]

Enc-Dec
Das ist gut. T5

A stormin Attal a caused 6 victins.

This is not toxic. —
utput

Probabillities

| Add & Norm |
Feed

Forward

Add & Norm

(—{Add & Norm) (Wiuit-Head
Feed Attention

Forward iz Nx

N l Add & Norm
* | ~{ Add & Norm) R

Multi-Head Multi-Head
Attention Attention

_ J . _J)

Positional Positional
: D @& I
Encoding Encoding

l Input] Output]

Embedding Embedding
Inputs Qutputs

(shifted right)

Translate EN-DE: This is good.
Summari ze: state authorities dispatched...

Is this toxic: You | ook beautiful today! 167

Pre-training in Vision (during Transformers)

Many prior works attempted to introduce
self-attention at the pixel level.

For 224px?, that's bOk sequence length, too
much!

Thus, most works restrict attention to local
pixel neighborhoods, or as high-level
mechanism on top of detections.

The key breakthrough in using the full
Transformer architecture, standalone, was to
"tokenize" the image by cutting it into
patches of 16px2, and treating each patch as
a token, e.g. embedding it into Input space.

Transformer-based models take over the
vision domain!

Dosovitskiy et al.,

Class
Bird

Coar

Patch + Position
Embedding

* Extra learnable
[class] embedding

T
e 5 18
i s

“An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021 168

Ball [

Vision Transformer

MLP (ViT)

Head

| —

Transformer Encoder

;ﬁééiéééééé

Linear Projection of Flattened Patches

T 1] T |
P

.
A s

e

Pre-training in Speech (during Transformers)

Largely the same story as in computer vision.
But with spectrograms instead of images.

|
i

Add a third type of block using convolutions, and slightly
reorder blocks, but overall very transformer-like.

Exists as encoder-decoder variant, or as
encoder-only variant with CTC loss.

Transformer-based models take over the
speech domain!

[igat]
Output
Probabilities
Softmax
7
Add & Norm
Feed
Forward
g 1 N\ | Add & Norm z
(e Cad s o) Mult-Head
Feed Attention
Forward) Nx
1
Nix Add & Norm
r—>| Add & Norm | Wiacked
Multi-Head Multi-Head
Attention Attention
At At
_‘ J . e’)
Positional D & Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

shifted right

(!
| | [The] [detective] [invest]
!
| |

Gulati et al. Conformer: Convolution-augmented Transformer for Speech Recognition. In INTERSPEECH 2020

169

Summary

Attention is used to focus on parts of inputs/outputs

It can be content/location-based and hard/soft
Its three main distinct uses are

connecting encoder and decoder In seguence-to-sequence task
achieving scale-invariance and focus on image processing

- self-attention can be a basic building block for neural nets, often
replacing RNNs and CNNs [recent research, take it with a grain of salt]

ViTs are an evolution, not a revolution. We can still fundamentally
solve the same problems as with CNNs.

Matrix multiply i1Is more hardware-friendly than convolution,
so ViTs with same FLOPs as CNNs can train and run much faster

170

Next lecture:
Graph Neural Networks

