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Previously on COMP541
• sequence modeling

• recurrent neural networks (RNNs)

• the vanilla RNN unit

• how to train RNNs

• the long short-term memory 
(LSTM) unit and its variants

• gated recurrent unit (GRU)

image: Oleg Soroko

Using RNNs to generate Super Mario Maker levels, Adam Geitgey
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Lecture overview
• what is attention?

• attention pre-transformers

• self-attention and transformer networks

• vision transformers

• pretraining during transformers

Disclaimer: Much of the material and slides for this lecture were borrowed from 
—Kyunghyun Cho’s slides on neural sequence modeling
—Wenhu Chen's UWaterloo CS886 class
—Justin Johnson’s EECS 498/598 class
—Philip Isola and Stefanie Jegelka's MIT 6.S898 Deep Learning class
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What is Attention?
• The notion of exploiting context is not new

– CNN – context from spatial locality (useful for images)
– RNN – context from temporal locality (useful for sequences/time-series 

data)
– Embedding priors into models forces them to pay “attention” to relevant 

features for a given problem

• What we now call “attention” in DL
– The idea of paying “attention” to the most relevant or important parts of the 

input at a given step
– Very useful in sequence-to-sequence modelling
– Ideally, we’d like to learn this!
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What is a Learned Attention Mechanism?
• An attention mechanism typically refers to function that allows a 

model to attend to different content

• There are many forms of attention mechanisms
–Additive
–Dot-product

• We have names to distinguish attention based on what is attended to
– Self-attention (intra attention)
–Cross-attention (encoder-decoder attention/inter attention)
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Sequence to Sequence
• Example Scenarios

– Text    → Text       (e.g. Q/A, translation, text summarization)
– Image → Text       (e.g. image captioning)

𝑥! 𝑥" 𝑥# 𝑥$
Input 
sequence

magic?

Output 
sequence𝑦! 𝑦" 𝑦# 𝑦$
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Sequence to Sequence
• Example Scenarios

– Text    → Text       (e.g. Q/A, translation, text summarization)
– Image → Text       (e.g. image captioning)

• How? Usually Encoder-Decoder models
– e.g. RNNs, transformers

𝑥! 𝑥" 𝑥# 𝑥$
Input 
sequence

ENCODER

Output 
sequence𝑦! 𝑦" 𝑦# 𝑦$

DECODER
state

context 
vector
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ENCODER DECODER

Sequence to Sequence with RNNs
• Encoder (LSTM) and decoder (LSTM)
• Fixed-length context vector

c

𝑠%

𝑦%

𝑠!

𝑦!
ℎ! = 𝑓(𝑥!, ℎ!"#) 𝑠! = 𝑔(𝑦!"#, 𝑠!"#, 𝑐)

Initial 
state

Context 
vector

Input: sequence 𝑥#, … , 𝑥$ Output: sequence 𝑦#, … , 𝑦$%

𝑥! 𝑥" 𝑥# 𝑥$

ℎ! ℎ" ℎ# ℎ$𝑓 𝑓 𝑓ℎ! ℎ" ℎ# ℎ$𝑓 𝑓 𝑓

I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural networks,” in Proceedings of the 27th International Conference on Neural Information Processing 
Systems (NIPS), 2014, pp. 3104–3112.

𝑦!

𝑠"𝑔

𝑦"

𝑦"

𝑠#𝑔

𝑦#

𝑦#

𝑠$

𝑦$

𝑔
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ENCODER DECODER

Sequence to Sequence with RNNs
• Encoder (LSTM) and decoder (LSTM)
• Fixed-length context vector (bottleneck)

𝑥! 𝑥" 𝑥# 𝑥$

ℎ! ℎ" ℎ# ℎ$

c

𝑠%

𝑦% 𝑦! 𝑦" 𝑦#

𝑠! 𝑠" 𝑠# 𝑠$𝑔 𝑔 𝑔

𝑦! 𝑦" 𝑦# 𝑦$
ℎ! = 𝑓(𝑥!, ℎ!"#) 𝑠! = 𝑔(𝑦!"#, 𝑠!"#, 𝑐)

Initial 
state

Context 
vector

Input: sequence 𝑥#, … , 𝑥$ Output: sequence 𝑦#, … , 𝑦$%

𝑓 𝑓 𝑓ℎ! ℎ" ℎ# ℎ$𝑓 𝑓 𝑓

BOTTLENECK

I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural networks,” in Proceedings of the 27th International Conference on Neural Information Processing 
Systems (NIPS), 2014, pp. 3104–3112. 9



Sequence to Sequence with RNNs + Attention

D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly Learning to Align and Translate,” in 3rd International Conference on Learning Representations (ICLR), 2015.

• Idea! Use a different context vector for each timestep in the 
decoder

𝑠- = 𝑔(𝑦-./, 𝑠-./, 𝒄𝒕)

• No more bottleneck through a single vector

• Craft the context vector so that it “looks at” different parts of the 
input sequence for each decoder timestep
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DECODERENCODER

Sequence to Sequence with RNNs + Attention

𝑥! 𝑥" 𝑥# 𝑥$

ℎ! ℎ" ℎ# ℎ$

𝑐!

𝑠%

𝑦%

𝑠!

𝑦!

Initial 
state

𝑓 𝑓 𝑓

𝑒!,! 𝑒!," 𝑒!,# 𝑒!,$
Alignment scores
𝑒',( = 𝑓)''(𝑠'*!	, ℎ()

𝛼!,! 𝛼!," 𝛼!,# 𝛼!,$

softmax

Attention weights
(normalize 
alignment scores)

× × × ×
Compute context vector

𝑐' =/
(

𝛼',(ℎ(+

𝑠! = 𝑔(𝑦!"#, 𝑠!"#, 𝒄𝒕)

Find 𝑠!: 	𝑡 = 1

Context 
vector

𝛼',(  represents the probability 
that the target word	𝑦' is 
aligned to, or translated from, a 
source word 𝑥(

𝛼',(  reflects the importance of 
the annotation ℎ(  with respect 
to the previous hidden state 
𝑠'*! in deciding the next state 
𝑠' and generating 𝑦'

D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly Learning to Align and Translate,” in 3rd International Conference on Learning Representations (ICLR), 2015. 11



ENCODER DECODER

Sequence to Sequence with RNNs + Attention

𝑥! 𝑥" 𝑥# 𝑥$

ℎ! ℎ" ℎ# ℎ$ 𝑠%

𝑦%

𝑠!

𝑦!

Initial 
state

Context 
vector

𝑓 𝑓 𝑓

𝑒",! 𝑒"," 𝑒",# 𝑒",$

𝛼",! 𝛼"," 𝛼",# 𝛼",$

× × × ×

softmax

Alignment scores
𝑒',( = 𝑓)''(𝑠'*!	, ℎ()

Attention weights
(normalize 
alignment scores)

Compute context vector

𝑐' =/
(

𝛼',(ℎ(+

𝑠! = 𝑔(𝑦!"#, 𝑠!"#, 𝒄𝒕)

𝑦!

𝑠"𝑔

𝑦"

𝑐"

Find 𝑠": 	𝑡 = 2

𝑐!

D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly Learning to Align and Translate,” in 3rd International Conference on Learning Representations (ICLR), 2015. 12



ENCODER DECODER

Sequence to Sequence with RNNs + Attention

𝑥! 𝑥" 𝑥# 𝑥$

ℎ! ℎ" ℎ# ℎ$

𝑐!

𝑠%

𝑦%

𝑠!

𝑦!

Initial 
state

𝑓 𝑓 𝑓

𝑒',! 𝑒'," 𝑒',# 𝑒',$

𝛼',! 𝛼'," 𝛼',# 𝛼',$

× × × ×

softmax

Alignment scores
𝑒',( = 𝑓)''(𝑠'*!	, ℎ()

Attention weights
(normalized 
alignment scores)

Compute context vector

𝑐' =/
(

𝛼',(ℎ(+

𝑠! = 𝑔(𝑦!"#, 𝑠!"#, 𝒄𝒕)

𝑦!

𝑠"𝑔

𝑦"

𝑐"

Find 𝑠': 	𝑡 = 𝑡

𝑦"

𝑠#

𝑦#

𝑐#

𝑔

𝑦#

𝑠$

𝑦$

𝑐#

𝑔

Context 
vector

𝑠'*!

𝑐'

D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly Learning to Align and Translate,” in 3rd International Conference on Learning Representations (ICLR), 2015. 13



ENCODER DECODER

Sequence to Sequence with RNNs + Attention

𝑥! 𝑥" 𝑥# 𝑥$

ℎ! ℎ" ℎ# ℎ$

𝑐!

𝑠%

𝑦%

𝑠!

𝑦!

Initial 
state

𝑓 𝑓 𝑓

𝑒',! 𝑒'," 𝑒',# 𝑒',$

𝛼',! 𝛼'," 𝛼',# 𝛼',$

× × × ×

softmax

Alignment scores
𝑒',( = 𝑓)''(𝑠'*!	, ℎ()

Attention weights
(normalized 
alignment scores)

Compute context vector

𝑐' =/
(

𝛼',(ℎ(+

𝑠! = 𝑔(𝑦!"#, 𝑠!"#, 𝒄𝒕)

𝑦!

𝑠"𝑔

𝑦"

𝑐"

Find 𝑠' 	→ 𝑡 = 𝑡

𝑦"

𝑠#

𝑦#

𝑐#

𝑔

𝑦#

𝑠$

𝑦$

𝑐#

𝑔

Context 
vector

𝑠'*!

Encoder is bi-directional: allows for the 
annotation of each word to summarize both 
preceding and following words.

All steps are 
differentiable, so we 
can backpropagate 
through everything

𝑐'

D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly Learning to Align and Translate,” in 3rd International Conference on Learning Representations (ICLR), 2015. 14



Sequence to Sequence with RNNs + Attention

Application: translation

Each pixel shows the weight 𝛼-,2 
of the annotation of the 𝑖-th 
source word for the 𝑡-th target 
word.

D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly Learning to Align and Translate,” in 3rd International Conference on Learning Representations (ICLR), 2015. 15



Sequence to Sequence with RNNs + Attention

Application: 
text translation

RNN: 
RNNenc

RNN + attention:
RNNsearch

D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly Learning to Align and Translate,” in 3rd International Conference on Learning Representations (ICLR), 2015. 16



Image Captioning with Visual Attention
• We can similarly use attention for image captioning (image → text)
• Builds directly on previous work
 

K. Xu et al., “Show, Attend and Tell: Neural Image Caption Generation with Visual Attention,” in PMLR, 2015, pp. 2048–2057. 17



ENCODER DECODER

𝛼!'

Image Captioning with Visual Attention

CNN

Input image

𝒉𝒊

Feature 
extraction

Annotation vectors
(feature vectors)

𝑒!'

𝑓)'' 7  is an MLP

𝑒'( = 𝑓att ℎ( , 𝑠'*!

𝛼'( =
exp 𝑒'(

∑,-!. exp(𝑒',)
𝑠!

𝑓att

s
o
f
t
m
a
x

𝑠%

𝑐! 𝑦%

𝑦!

Compute context vector

𝒄𝒕 =	/
(

𝛼'(𝒉𝒊	

×

𝑠! = 𝑔(𝑦!"#, 𝑠!"#, 𝒄𝒕)

[START]

A

Different context vector at 
every time step

Each context vector attends 
to different image regions.

ℎ( 	corresponds to a part of the image

K. Xu et al., “Show, Attend and Tell: Neural Image Caption Generation with Visual Attention,” in PMLR, 2015, pp. 2048–2057. 18



ENCODER DECODER

𝛼!'

Image Captioning with Visual Attention

CNN

Input image

ℎ'

Feature 
extraction

Annotation vectors
(feature vectors)

𝑒!'

𝑠!

𝑓att

s
o
f
t
m
a
x

𝑠%

𝑐! 𝑦%

𝑦!

Compute context vector

𝒄𝒕 =	/
(

𝛼'(𝒉𝒊	

×

𝑠! = 𝑔(𝑦!"#, 𝑠!"#, 𝒄𝒕)

𝑠"

𝑐" 𝑦!

𝑦"

[START] A bird

𝑠#

𝑐# 𝑦!

𝑦#

flying

𝑠$

𝑐$ 𝑦!

𝑦$

A bird flying [END]

𝑓)'' 7  is an MLP

𝑒'( = 𝑓att ℎ( , 𝑠'*!

𝛼'( =
exp 𝑒'(

∑,-!. exp(𝑒',)

ℎ( 	corresponds to a part of the image

𝑠'*!

K. Xu et al., “Show, Attend and Tell: Neural Image Caption Generation with Visual Attention,” in PMLR, 2015, pp. 2048–2057. 19



ENCODER DECODER

𝛼!'

Image Captioning with Visual Attention

CNN

Input image

ℎ'

Feature 
extraction

Annotation vectors
(feature vectors)

𝑒!'

𝑠!

𝑓att

s
o
f
t
m
a
x

𝑠%

𝑐! 𝑦%

𝑦!

Compute context vector

𝒄𝒕 =	/
(

𝛼'(𝒉𝒊	

×

𝑠! = 𝑔(𝑦!"#, 𝑠!"#, 𝒄𝒕)

𝑠"

𝑐" 𝑦!

𝑦"

[START] A bird

𝑠#

𝑐# 𝑦!

𝑦#

flying

𝑠$

𝑐$ 𝑦!

𝑦$

A bird flying [END]

𝑓)'' 7  is an MLP

𝑒'( = 𝑓att ℎ( , 𝑠'*!

𝛼'( =
exp 𝑒'(

∑,-!. exp(𝑒',)

a( 	corresponds to a part of the image

𝑠'*!

All steps are differentiable, so we can 
backpropagate through everything.

Each context vector attends to different 
image regions.

K. Xu et al., “Show, Attend and Tell: Neural Image Caption Generation with Visual Attention,” in PMLR, 2015, pp. 2048–2057. 20



Image Captioning with Visual Attention
• Visualization of the attention for each generated word

– Gives insight to “where” and “what” the attention focused on when 
generating each word

deterministic 
“soft” attention

stochastic 
“hard” attention
(requires RL)

K. Xu et al., “Show, Attend and Tell: Neural Image Caption Generation with Visual Attention,” in PMLR, 2015, pp. 2048–2057. 21



Image Captioning with Visual Attention

K. Xu et al., “Show, Attend and Tell: Neural Image Caption Generation with Visual Attention,” in PMLR, 2015, pp. 2048–2057. 22



Three Ways of Processing Sequences

x1 x2 x3

y1 y2 y3

x4

y4

Recurrent Neural Network

Works on Ordered Sequences
(+) Good at long sequences: 
After one RNN layer, hT ”sees” 
the whole sequence
(-) Not parallelizable: need to 
compute hidden states 
sequentially
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Three Ways of Processing Sequences

x1 x2 x3

y1 y2 y3

x4

y4

x1 x2 x3 x4

y1 y2 y3 y4

Recurrent Neural Network 1D Convolution

Works on Ordered Sequences
(+) Good at long sequences: 
After one RNN layer, hT ”sees” 
the whole sequence
(-) Not parallelizable: need to 
compute hidden states 
sequentially

Works on Multidimensional Grids
(-) Bad at long sequences: Need 
to stack many conv layers for 
outputs to “see” the whole 
sequence
(+) Highly parallel: Each output 
can be computed in parallel
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Three Ways of Processing Sequences

x1 x2 x3

y1 y2 y3

x4

y4

x1 x2 x3 x4

y1 y2 y3 y4

Q1 Q2 Q3

K3
K2
K1

E1,3
E1,2
E1,1

E2,3
E2,2
E2,1

E3,3
E3,2
E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→),			Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Recurrent Neural Network 1D Convolution Self-Attention

Works on Ordered Sequences
(+) Good at long sequences: 
After one RNN layer, hT ”sees” 
the whole sequence
(-) Not parallelizable: need to 
compute hidden states 
sequentially

Works on Multidimensional Grids
(-) Bad at long sequences: Need 
to stack many conv layers for 
outputs to “see” the whole 
sequence
(+) Highly parallel: Each output 
can be computed in parallel

Works on Sets of Vectors
(-) Good at long sequences: 
after one self-attention layer, 
each output “sees” all inputs!
(+) Highly parallel: Each output 
can be computed in parallel
(-) Very memory intensive
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Three Ways of Processing Sequences

x1 x2 x3

y1 y2 y3

x4

y4

x1 x2 x3 x4

y1 y2 y3 y4

Q1 Q2 Q3

K3
K2
K1

E1,3
E1,2
E1,1

E2,3
E2,2
E2,1

E3,3
E3,2
E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→),			Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Recurrent Neural Network 1D Convolution Self-Attention

Works on Ordered Sequences
(+) Good at long sequences: 
After one RNN layer, hT ”sees” 
the whole sequence
(-) Not parallelizable: need to 
compute hidden states 
sequentially

Works on Multidimensional Grids
(-) Bad at long sequences: Need 
to stack many conv layers for 
outputs to “see” the whole 
sequence
(+) Highly parallel: Each output 
can be computed in parallel

Works on Sets of Vectors
(-) Good at long sequences: 
after one self-attention layer, 
each output “sees” all inputs!
(+) Highly parallel: Each output 
can be computed in parallel
(-) Very memory intensive
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Attention is all you need
Vaswani et al, NeurIPS 2017



Attention is All you Need (2017)
• Key Idea: 

–Decouple attention from RNNs
–Use self-attention to make this efficient

• Contributions: 
–Multi-head attention
– Transformer architecture

• Highly impactful (as we’ll touch on later)

A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems (NeurIPS), 2017. 27



Feature Superposition (Polysemanticity)
• A NN neural activation often does not 

represent a single thing

• “Neural networks want to represent 
more features than they have 
neurons for”[1]

• Superposition of features: “often 
pack many unrelated concepts into a 
single neuron” [1]

• Results in decreased explainability
– A paper from Anthropic seeks to add 

explainability in LLMs [2]

[1] N. Elhage et al., “Toy Models of Superposition.” arXiv, 2022. doi: 10.48550/arXiv.2209.10652.
[2] T. Bricken et al., “Towards Monosemanticity: Decomposing Language Models With Dictionary Learning.” 2023. [Online]. Available: https://transformer-circuits.pub/2023/monosemantic-features/index.html 28

https://doi.org/10.48550/arXiv.2209.10652
https://transformer-circuits.pub/2023/monosemantic-features/index.html


Attention we’ve seen so far
Now known as “additive” recurrent attention (type of encoder-decoder attention)

𝒉𝟏 𝒉𝟐 𝒉𝟑 𝒉𝟒

𝑒'! 𝑒'" 𝑒'# 𝑒'$

𝛼'! 𝛼'" 𝛼'# 𝛼'$

softmax

𝑓att

𝒔𝒕*𝟏

𝑓att 𝑓att 𝑓att

mul + add

Alignment scores
𝑒'( = 𝑓att(𝒔𝒕*𝟏	, 𝒉𝒊)

Attention weights
𝜶𝒕 = 	softmax(𝒆𝒕)

𝒄𝒕 Context vector

𝒄𝒕 =/
(

𝛼'(𝒉𝒊

Input

𝑓att: simple feedforward 
network (e.g. MLP)

Alignment

Attention

𝒔𝒕•••

29



Issues with Recurrent Attention
• Scalability issues

– Performance degrades as the distance between words increases

• Parallelization limitations
– Recurrent processes lacks ability to be parallelized

• Memory constraints
– RNNs have limited memory and struggle with long-range dependencies

– Diluted impact of earlier elements on output as sequence progresses

• Potential solution: decouple attention from RNNs
– How? Separate the attention mechanism into smaller, self-contained 

components
30



Decoupling from RNNs
• Recall: attention determines the importance of elements to be 

passed forward in the model.
– These weights lets the model pay attention to the most significant 

parts

• Objective: a more general attention mechanism not confined to RNNs 
–We need a modified procedure to:

1. Determine weights based on context that indicate the elements to 
attend to

2. Apply these weights to enhance attended features

31



Parametrization – Recurrent Neural Nets
• Following Bahdanau et al. [2015]

• The encoder turns a sequence of tokens into a sequence of 
contextualized vectors.

• The underlying principle behind recently successful contextualized 
embeddings

– ELMo [Peters et al., 2018], 
BERT [Devlin et al., 2019] and 
all the other muppets

x1, x2, . . . , xTx
<latexit sha1_base64="Z9/H7I5ZYgNdnrx+gRsrtE3C0ro="></latexit>

Encoder Decoder

p(yl|y<l, X)
<latexit sha1_base64="pjMFZf3jTgp6JRzTYZtnGunX9ag="></latexit>

NLL

y⇤l
<latexit sha1_base64="1uItCexg0/++G2JBVfzOFkBTrz4="></latexit>

y⇤1 , y
⇤
2 , . . . , y

⇤
l�1

<latexit sha1_base64="vx/XlptpfJV8udVlOej677SJ26c="></latexit>

ht = [
�!
h t;
 �
h t], r?2`2 �!h t = _LL(xt,

�!
h t�1),

 �
h t = _LL(xt,

 �
h t+1)

<latexit sha1_base64="WdtZynw8vn0i/T8oyAgirhDM/4U="></latexit>
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Parametrization – Recurrent Neural Nets
• Following Bahdanau et al. [2015]

• The decoder consists of three stages
1. Attention: attend to a small subset of

source vectors
2. Update: update its internal state
3. Predict: predict the next token 

• Attention has become the core 
component in many recent 
advances
• Transformers [Vaswani et al., 2017], 

…

x1, x2, . . . , xTx
<latexit sha1_base64="Z9/H7I5ZYgNdnrx+gRsrtE3C0ro="></latexit>

Encoder Decoder

p(yl|y<l, X)
<latexit sha1_base64="pjMFZf3jTgp6JRzTYZtnGunX9ag="></latexit>

NLL

y⇤l
<latexit sha1_base64="1uItCexg0/++G2JBVfzOFkBTrz4="></latexit>

y⇤1 , y
⇤
2 , . . . , y

⇤
l�1

<latexit sha1_base64="vx/XlptpfJV8udVlOej677SJ26c="></latexit>

↵t0 / exp(�hh(ht0 , zt�1, yt�1))

ct =
TxX

t0=1

↵t0ht0

zt = _LL([yt�1; ct], zt�1)

p(yt = v|y<t, X) / exp(Plh(zt, v))
<latexit sha1_base64="QAGPd4LHywyn5W8GQpvTvzutNhA="></latexit>
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Side-note: gated recurrent units to attention
• A key idea behind LSTM and GRU is the additive update 

• This additive update creates linear short-cut connections 

ht = ut � ht�1 + (1� ut)� h̃t, r?2`2 h̃t = f(xt, ht�1)
<latexit sha1_base64="5wriGvWZXFVdX4URBTwRuH1fDFQ="></latexit>
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Side-note: gated recurrent units to attention
• What are these shortcuts?

• If we unroll it, we see it’s a weighted combination of all previous 
hidden vectors:

ht =ut � ht�1 + (1� ut)� h̃t,

=ut � (ut�1 � ht�2 + (1� ut�1)� h̃t�1) + (1� ut)� h̃t,

=ut � (ut�1 � (ut�2 � ht�3 + (1� ut�2)� h̃t�2) + (1� ut�1)� h̃t�1) + (1� ut)� h̃t,

XXX

=
tX

i=1

0

@
t�i+1Y

j=i

uj

1

A
 

i�1Y

k=1

(1� uk)

!
h̃i

<latexit sha1_base64="cuHZREnpiY4tg92aO0t98HoBsDw="></latexit> 35



Side-note: gated recurrent units to attention
1. Can we “free” these dependent 

weights?

2. Can we “free” candidate vectors?

3. Can we separate keys and values?

4. Can we have multiple attention 
heads?

ht =
tX

i=1

0

@
t�i+1Y

j=i

uj

1

A
 

i�1Y

k=1

(1� uk)

!
h̃i

<latexit sha1_base64="7XVTWD31JIyz3GBUw4py/GnjTYQ="></latexit>

ht =
tX

i=1

↵ih̃i, r?2`2 ↵i / exp(�hh(h̃i, xt))
<latexit sha1_base64="Fj/zphCLxbrgT8mRA0O5Xp2U9Q4="></latexit>

ht =
tX

i=1

↵if(xi), r?2`2 ↵i / exp(�hh(f(xi), xt))
<latexit sha1_base64="nanXEc2zQYGev51vQvlRCNXa0V8="></latexit>

ht =
tX

i=1

↵iV (f(xi)), r?2`2 ↵i / exp(�hh(K(f(xi)), Q(xt)))
<latexit sha1_base64="DHCBrs1oBbqSP6I674aSpLe1gBk="></latexit>

ht = [h1
t ; · · · ;hK

t ], r?2`2 hk
t =

tX

i=1

↵k
i V

k(f(xi)), r?2`2 ↵k
i / exp(�hh(Kk(f(xi)), Q

k(xt)))
<latexit sha1_base64="kcXR15P1JO0fkCILanYiu9TzVgw=">AAADMnicfZHfahNBFMZnV601/mmql95MDUIiJWS1VaEEKnohFLGFJC1kkmUye5IM2Z0ZZmZt4rJ9Fh/Cl9E78daHcDZ/IE3FA8v85jvfYYfzDVTMjW00fnj+rdt3tu5u3yvdf/Dw0U5593HHyFQzaDMZS30xoAZiLqBtuY3hQmmgySCG88HkfdE//wLacCladqagl9CR4EPOqHVSWP42Di1u4q47+sERJiyS1hzh4nrS278iFqY2uxyDhvyqVKgT3CQmTcKMN4O8bzGhsRrTkLtGpz+pDqvTkNdqG5NrJqK0VFZiAlNVXZjetVp59WRtGJ+5yzS0tVqtFJYrjXpjXvgmBEuooGWdhrveVxJJliYgLIupMd2goWwvo9pyFkNeIqkBRdmEjqDrUNAETC+brzLHz50S4aHU7hMWz9X1iYwmxsySgXMm1I7NZq8Q/9Xrpnb4tpdxoVILgi1+NExj7FZR5IIjroHZeOaAMs3dWzEbU02ZdemVSkTAJZNJQkWUEcFFBCp3IC3ZIwq0csfeEvPr5pW3aOGFDa98H8BtSMMn99rPTqJW6hcZoXqUcJHPgRT0PyOdroyOirSCzWxuQudlPXhVPzw7qBwfLHPbRk/RM1RFAXqDjtFHdIraiHlb3r536L32v/s//V/+74XV95YzT9C18v/8Bf+VBbg=</latexit>

0

1

2

3

4

→ Transformers
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Decoupling from RNNs
• RNN Notation

𝒄𝒕 Context vector for position 𝒕 in target sequence

𝒙𝒊

𝒔𝒕 Hidden states for position 𝒕 in target sequence

Input for position 𝒊 in source sequence

𝒉𝒊 Hidden states for position 𝒊 in source sequence

𝒚𝒕 Output for position 𝒕 in target sequence
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𝒐𝒋

Decoupling from RNNs
• New Notation

𝒄𝒕

𝒙𝒊

𝒔𝒕

𝒉𝒊

𝒚𝒕

𝒌𝒊

𝒒𝒋

𝒗𝒊
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𝒐𝒋

Decoupling from RNNs
• New Notation

𝒌𝒊

𝒒𝒋

𝒗𝒊

Query vector for position 𝒋 in a (same/different) arbitrary sequence

Value vector for position 𝒊 in an arbitrary sequence

Key vector for position 𝒊 in an arbitrary sequence

Output vector corresponding to position 𝒋

39



A more general attention

𝒌𝟏

𝒌𝟐

𝒌𝟑

𝑒6!

𝑒6"	

𝑒6#

softmax

𝑓att

𝑓att

𝑓att

mul + add

𝒐𝒋 Output vectors 

𝒐𝒋 =/
(

𝛼6(𝒗𝒊 	 ∈ ℝ7!

Attention

𝛼6!

𝛼6"

𝛼6#

Keys: 𝒌𝒊 ∈ ℝ7! 
Values: 𝒗𝒊 ∈ ℝ7!
Query: 𝒒𝒋 ∈ ℝ7"𝒒𝐣

𝒗𝟏

𝒗𝟐

𝒗𝟑

Goal: find the “alignment” 
or “compatibility” of keys 
with a query to scale 
values

Alignment

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝒒, 𝒌, 𝒗)

Alignment scores
𝑒(6 = 𝑓att 𝒒𝒋, 𝒌𝒊

𝑓att 7

Attention weights
𝜶𝒋 = 	softmax(𝒆𝒋)

𝑖 ∈ 1, … , 𝑁 	
j ∈ {1, … , 𝑇}
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𝒐𝟏 𝒐𝟐 𝒐𝟑

Keys: 𝒌𝒊 ∈ ℝ7! 
Values: 𝒗𝒊 ∈ ℝ7!
Query: 𝒒𝒋 ∈ ℝ7"

A more general attention

𝒌𝟏

𝒌𝟐

𝒌𝟑

softmax

mul + add

Attention

𝒗𝟏

𝒗𝟐

𝒗𝟑

𝑒!!

𝑒"!

𝑒#!

𝒒𝟏

𝑒!"

𝑒""

𝑒#"

𝑒!#

𝑒"#

𝑒##

𝛼!!

𝛼"!

𝛼#!

𝛼!"

𝛼""

𝛼#"

𝛼!#

𝛼"#

𝛼##

𝒒𝟐 𝒒𝟑

Output vectors 
𝒐𝒋 ∈ ℝ7!,

for 𝑗	𝑖𝑛	{1, … , 𝑇}

Attention weights
𝜶𝒋 = 	softmax(𝒆𝒋)

Alignment

Goal: find the “alignment” 
or “compatibility” between 
keys and queries to scale 
values

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝒒, 𝒌, 𝒗)

Alignment scores
𝑒(6 = 𝑓att 𝒒𝒋, 𝒌𝒊

𝑓att 7

𝑖 ∈ 1, … , 𝑁 	
j ∈ {1, … , 𝑇}
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Self-Attention
• Keys, values, and queries are all 

derived from the same source

Cross-Attention
• Keys-values and queries are 

derived from separate sources

Applying the Attention Mechanism

𝒙𝟏
𝒙𝟐
𝒙𝟑

𝒚𝟏
𝒚𝟐
𝒚𝟑

𝒒𝟏 𝒒𝟐 𝒒𝟑

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝒒, 𝒌, 𝒗)

𝒗𝟏 𝒗𝟐 𝒗𝟑

𝒌𝟏 𝒌𝟐 𝒌𝟑

𝒙𝟏
𝒙𝟐
𝒙𝟑

𝒒𝟏 𝒒𝟐 𝒒𝟑

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝒒, 𝒌, 𝒗)

𝒗𝟏 𝒗𝟐 𝒗𝟑

𝒌𝟏 𝒌𝟐 𝒌𝟑

Arbitrary 
transformation

Arbitrary 
inputs

** 𝒙, 𝒚 are arbitrary sequences
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Attention Mechanism in Attention is All You Need

To use a decoupled attention mechanism, it is implemented with properties:

1.  𝑓att 0 =	scaled dot-product attention

• Good representation of compatibility
• Fast and interpretable computation
• Parallelizable evaluation across all queries (can leverage GPUs)
• Scaled dot-products for stable softmax gradients in high dimensions 

(prevents large magnitudes)

2. Imposed a common dimension for keys, values, and queries

• Requirement for dot-product
• Simplifies architecture with predictable attention output shape 
• Provides consistent hidden state dimensions for easier model analysis

A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems (NeurIPS), 2017. 43



Scaled Dot-Product 
Attention

• Faster

• More space-efficient

𝒐𝟏 𝒐𝟐 𝒐𝟑

Keys: 𝒌𝒊 ∈ ℝ7!
Values: 𝒗𝒊 ∈ ℝ7!
Query: 𝒒𝒋 ∈ ℝ7!

𝒌𝟏

𝒌𝟐

𝒌𝟑

softmax

mul + add

Attention

𝒗𝟏

𝒗𝟐

𝒗𝟑

𝑒!!

𝑒"!

𝑒#!

𝒒𝟏

𝑒!"

𝑒""

𝑒#"

𝑒!#

𝑒"#

𝑒##

𝛼!!

𝛼"!

𝛼#!

𝛼!"

𝛼""

𝛼#"

𝛼!#

𝛼"#

𝛼##

𝒒𝟐 𝒒𝟑

Output vectors 
𝒐𝒋 ∈ ℝ7!

Alignment Alignment scores

𝑒(6 = 𝑓att 𝒒𝒋, 𝒌𝒊 =
𝒒𝒋 ⋅ 𝒌𝒊
𝒅𝒌

𝑓att 7 = scaled dot-product

} Share the same 
dimension

Attention weights
𝜶𝒋 = 	softmax(𝒆𝒋)

Attention in Attention is All you Need
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𝑂

Keys: 𝐾 ∈ ℝ:×7!
Values: 𝑉 ∈ ℝ:×7!
Query: 𝑄 ∈ ℝ<×7!

Matrix of outputs O ∈ ℝ$×&!

Alignment scores

𝑒'( = 𝑓att 𝒒𝒋, 𝒌𝒊 = +⋅-"

&!
 [j, i]

𝑓att 3 = scaled dot-product

Matrix containing attention 
weights

𝐴 𝑗, 𝑖 =  softmax
𝑄 ⋅ 𝐾$

𝑑.

𝒌𝟏

𝒌𝟐

𝒌𝟑

softmax

matmul

Alignment

𝒗𝟏

𝒗𝟐

𝒗𝟑

Calculate dot-products 
in parallel with matrix 
multiplication

• High concurrency on 
modern hardware 
(GPUs)

• Independently 
calculates each query

𝒒𝟏

𝛼!!

𝛼"!

𝛼#!

𝛼!"

𝛼""

𝛼#"

𝛼!#

𝛼"#

𝛼##

𝒒𝟐 𝒒𝟑

𝐾

𝑄

scale

𝑉

matmul

45
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Misconceptions about Transformers (1)
• What?

– Attention in transformers performs a vector similarity search

• Why?
– Over-simplification in terminology
– The key-query value explanation is convenient, and many don’t know to look 

past it
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Misconceptions about Transformers (1)
• What?
• Attention in transformers performs a vector similarity search

– Why?
– Over-simplification in terminology
– The key-query value explanation is convenient, and many don’t know to look 

past it

47

How do we get Q, K, and V?

What are we learning?

Is this parametric or non-parametric?



Self-Attention
• Keys, values, and queries are all 

derived from the same source

Cross-Attention
• Keys-values and queries are 

derived from separate 
sources

Learning Transformer Attention

𝒙𝟏
𝒙𝟐
𝒙𝟑

𝒚𝟏
𝒚𝟐
𝒚𝟑

𝒒𝟏 𝒒𝟐 𝒒𝟑

𝐷𝑜𝑡	𝑃𝑟𝑜𝑑𝑢𝑐𝑡
Attention

𝒗𝟏 𝒗𝟐 𝒗𝟑

𝒌𝟏 𝒌𝟐 𝒌𝟑

𝒙𝟏
𝒙𝟐
𝒙𝟑

𝒒𝟏 𝒒𝟐 𝒒𝟑

𝐷𝑜𝑡	𝑃𝑟𝑜𝑑𝑢𝑐𝑡
Attention

𝒗𝟏 𝒗𝟐 𝒗𝟑

𝒌𝟏 𝒌𝟐 𝒌𝟑

Arbitrary 
transformation

Arbitrary 
inputs

** 𝒙, 𝒚 are arbitrary sequences
Nothing to learn 

inside of this
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Self-Attention
• Keys, values, and queries are all 

derived from the same source

Cross-Attention
• Keys-values and queries are 

derived from separate sources

𝒙𝟏
𝒙𝟐
𝒙𝟑

𝒚𝟏
𝒚𝟐
𝒚𝟑

𝒒𝟏 𝒒𝟐 𝒒𝟑

𝐷𝑜𝑡	𝑃𝑟𝑜𝑑𝑢𝑐𝑡
Attention

𝒗𝟏 𝒗𝟐 𝒗𝟑

𝒌𝟏 𝒌𝟐 𝒌𝟑
𝒙𝟏
𝒙𝟐
𝒙𝟑

𝒒𝟏 𝒒𝟐 𝒒𝟑

𝐷𝑜𝑡	𝑃𝑟𝑜𝑑𝑢𝑐𝑡
Attention

𝒗𝟏 𝒗𝟐 𝒗𝟑

𝒌𝟏 𝒌𝟐 𝒌𝟑

Arbitrary 
transformation

Arbitrary 
inputs

** 𝒙, 𝒚 are arbitrary sequences

We have to 
learn these

Learning Transformer Attention
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Learning Transformer Attention

Y

X

XX

X

X

×

×

× ×

×

×=

=

=

=

=

=

Q

K

V

Q

K

V

Self-Attention Cross-Attention

** X, Y are matrices of arbitrary sequences
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Multi-Head Attention

• Builds on Scaled Dot-Product Attention

• Extension of generalized attention mentioned outlined previously

• Leverages multiple heads to attend to different things

51



Learning Multi-Head Attention

mul + add

𝒐𝒋 Output vectors 

𝒐𝒋 =/
(

𝛼6(𝒗𝒊 	 ∈ ℝ7!

Attention
𝛼6!

𝛼6"

𝒗𝟏

𝒗𝟐 Attention weights
𝜶𝒋 =  softmax(𝒆𝒋)

Why do we need multiple heads?

𝛼6#𝒗𝟑

52



=

Learning Multi-Head Attention

Output vectors 

𝒐𝒋 =/
(

𝛼6(𝒗𝒊 	 ∈ ℝ7!

Attention 𝛼6!

𝛼6"

𝒗𝟏

𝒗𝟐 Attention weights
𝜶𝒋 =  softmax(𝒆𝒋)

Why do we need multiple heads?

𝛼6#𝒗𝟑

𝑣!𝛼6!

𝑣"𝛼6"

𝑣#𝛼6#
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Learning Multi-Head Attention

Output vectors 

𝒐𝒋 =/
(

𝛼6(𝒗𝒊 	 ∈ ℝ7!

Attention

Attention weights
𝜶𝒋 =  softmax(𝒆𝒋)

Why do we need multiple heads?

+ 𝑣!𝛼6!

𝑣"𝛼6"

𝑣#𝛼6#

𝒗𝟏

𝒗𝟐

𝒗𝟑
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𝑣!𝛼6!𝑣"𝛼6"

Learning Multi-Head Attention

Output vectors 

𝒐𝒋 =/
(

𝛼6(𝒗𝒊 	 ∈ ℝ7!

Attention

Attention weights
𝜶𝒋 = 	softmax(𝒆𝒋)

Why do we need multiple heads?

𝒐𝒋𝒗𝟏

𝒗𝟐

𝒗𝟑

Since we summed through the 
𝑛 positions, we lose resolution 
in our representation
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Learning Multi-Head Attention
• Main idea:

– Learn multiple sets of weights 
matrices to attend to different things

– Preserve resolution since more 
heads increases chance that the 
information is maintained

• Allows model to jointly attend to 
information from different 
representation subspaces                   
(like ensembling)

𝑶𝟎

𝑶𝟏

𝑶𝟕
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Learning Multi-Head Attention
• To make computation efficient, weight matrices project to subspaces

𝑊c-
d ∈ ℝe./012×e3 	→ 𝑄 = 𝑋𝑊c-

d ∈ ℝf×e3 ,

𝑊c-
g ∈ ℝe./012×e3 	→ 𝐾 = 𝑋𝑊c-

g ∈ ℝh×e3 ,
𝑊c-

i ∈ ℝe./012×e3 	→ 𝑉 = 𝑋𝑊c-
i ∈ ℝh×e3 ,

where 𝑑j = 𝑑klemn/ℎ  (512/8 = 64 in paper)

• Together all heads take roughly the same computational time as one fully 
dimensioned attention head
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Learning Multi-Head Attention

𝑶𝟎

𝑶𝟏

𝑶𝟕

• Each	𝑂c- ∈ ℝ
f×e3

• ℎo ∈ 0,… , 7 , one output for each 
head

• Recall, model expects vectors of 
dimension 𝑑klemn
→ Indicates we need to reduce 
to a single 𝑂 ∈ ℝf×e./012 matrix
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Learning Multi-Head Attention

× =

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 𝑄,𝐾, 𝑉 = 𝐶𝑜𝑛𝑐𝑎𝑡 ℎ𝑒𝑎𝑑p,… , ℎ𝑒𝑎𝑑cqr 𝑊s

where ℎ𝑒𝑎𝑑c- = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(QWt4
u , KWt4

v , VWt4
w )

𝑶𝟎 𝑶𝟏 𝑶𝟐 𝑶𝟑 𝑶𝟒 𝑶𝟓 𝑶𝟔 𝑶𝟕 𝑶
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Transformer Architecture
Ways attention is used in the transformer:

• Self-attention in the encoder
– Allows the model to attend to all positions in the previous encoder layer
– Embeds context about how elements in the sequence relate to one another

• Masked self-attention in the decoder
– Allows the model to attend to all positions in the previous decoder layer up to and 

including the current position (during auto-regressive process)
– Prevents forward looking bias by stopping leftward information flow during training
– Also embeds context about how elements in the sequence relate to one another

• Encoder-decoder cross-attention
– Allows decoder layers to attend all parts of the latent representation produced by the 

encoder
– Pulls context from the encoder sequence over to the decoder”

A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems (NeurIPS), 2017. 60



Transformer Architecture
Why Self-Attention?

• Lower computational complexity

• Greater amount of the computation that can be parallelized

• Each representation encodes the positional information of the sequence
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Transformer Architecture
Why Self-Attention?

• Cheaper (more power, less parameters)

• Faster to train

𝑛	 < 	𝑑	for sequence 
representations
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Transformer Architecture

Add & Norm

Add & Norm

Add & Norm

Multi-Head 
Self-

Attention

Add & Norm

Feed 
Forward

Masked 
Multi-Head 

Self-
Attention

Add & Norm

Feed 
Forward

Input 
Embedding

Output 
Embedding

Linear

Softmax

Multi-Head 
Cross-

Attention

𝑥# 𝑥$ 𝑥%••• 𝑦# 𝑦&'#•••

Output 
Probabilities 

(for 𝑦&)

Encoder
Stack

Decoder
Stack

Generator
(prediction head)

Positional 
Encoding

Positional 
Encoding

Decoding 
Procedure

𝑦&

𝑡++
(shift right)

auto-regressive
decoding

63



Transformer Architecture

Positional 
Encoding

Positional 
Encoding

“Greedy”
𝑎𝑟𝑔𝑚𝑎𝑥

𝑦&

𝑡++
(shift right)

auto-regressive
decoding

Add & Norm

Add & Norm

Add & Norm

Multi-Head 
Self-

Attention

Add & Norm

Feed 
Forward

Masked 
Multi-Head 

Self-
Attention

Add & Norm

Feed 
Forward

Input 
Embedding

Output 
Embedding

Linear

Softmax

Multi-Head 
Cross-

Attention

𝑥# 𝑥$ 𝑥%••• 𝑦# 𝑦&'#•••

Output 
Probabilities 

(for 𝑦&)

Encoder
Stack

Generator
(prediction head)

Decoder
Stack

64



Transformer Architecture

Positional 
Encoding

Positional 
Encoding

Greedy
𝑎𝑟𝑔𝑚𝑎𝑥

𝑦&

𝑡++
(shift right)

auto-regressive
decoding×N

Decoding 
Procedure

Add & Norm

Add & Norm

Add & Norm

Multi-Head 
Self-

Attention

Add & Norm

Feed 
Forward

Masked 
Multi-Head 

Self-
Attention

Add & Norm

Feed 
Forward

Input 
Embedding

Output 
Embedding

Linear

Softmax

Multi-Head 
Cross-

Attention

𝑥# 𝑥$ 𝑥%••• 𝑦# 𝑦&'#•••

Output 
Probabilities 

(for 𝑦&)
Generator

(prediction head)

Decoder
Stack
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Transformer Architecture

Decoder

Add & Norm

Add & Norm

Add & Norm

Multi-Head 
Self-

Attention

Add & Norm

Feed 
Forward

Masked 
Multi-Head 

Self-
Attention

Add & Norm

Feed 
Forward

Input 
Embedding

Output 
Embedding

Linear

Softmax

Multi-Head 
Cross-

Attention

𝑥# 𝑥$ 𝑥%••• 𝑦# 𝑦&'#•••

Output 
Probabilities 

(for 𝑦&)
Generator

(prediction head)

Positional 
Encoding

Positional 
Encoding

Greedy
𝑎𝑟𝑔𝑚𝑎𝑥

𝑦&

𝑡++
(shift right)

auto-regressive
decoding×N

×N Decoding 
Procedure
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Transformer Architecture

Positional 
Encoding

Positional 
Encoding

×N

×N

Decoding 
Procedure

𝑦&

𝑡++
(shift right)

auto-regressive
decoding

Add & Norm

Add & Norm

Add & Norm

Multi-Head 
Self-

Attention

Add & Norm

Feed 
Forward

Masked 
Multi-Head 

Self-
Attention

Add & Norm

Feed 
Forward

Input 
Embedding

Output 
Embedding

Linear

Softmax

Multi-Head 
Cross-

Attention

𝑥# 𝑥$ 𝑥%••• 𝑦# 𝑦&'#•••

Output 
Probabilities 

(for 𝑦&)
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Transformer Architecture

Positional 
Encoding

Positional 
Encoding

×N

×N

Decoding 
Procedure

𝑦&

𝑡++
(shift right)

auto-regressive
decoding

Constant representation 
size 𝑑)*+,-	between 
model components

Add & Norm

Add & Norm

Add & Norm

Multi-Head 
Self-Attention

Add & Norm

Feed 
Forward

Masked Multi-
Head Self-
Attention

Add & Norm

Feed 
Forward

Input 
Embedding

Output 
Embedding

Linear

Softmax

Multi-Head 
Cross-

Attention

𝑥# 𝑥$ 𝑥%••• 𝑦# 𝑦&'#•••

Output 
Probabilities 

(for 𝑦&)
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Transformers 
From The Ground Up

Harvard, “The Annotated Transformer.” [Online]. Available: https://nlp.seas.harvard.edu/annotated-transformer/69
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Model Creation Helper
Clones Helper function

• What?
– Create N copies of pytorch nn.Module

• Why?
– The Transformer’s structure contains a lot of 

design repetition (like VGG) Remember these clones 
shouldn’t share parameters (for 
the most part)

Make sure to initialize all model 
parameters to keep clones 
independent 
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Getting Data into the Transformer (1)
Creating Embeddings
• What?

– Create vector representation of sequence 
vocabulary

• Why?
– Can be computed on by neural architecture
– Dimensionality usually reduced 

• ~37,000 words à 512 in paper
à More efficient computation

• How?
– Learned mapping (linear projection)

Input 
Embedding

𝑥! 𝑥" 𝑥#•••

1

•••

0

0

•••

0.67    0.13    0.22    -.012

0.67   0.33     0.22    -.012

0.21   -0.07   -0.46     .08
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Getting Data into the Transformer (1)
Implementing Embeddings

 

nn.Embedding creates a lookup 
table to map sequence vocabulary to 
unique vectors

Uses learned weights to handle this 
mapping (essentially a nn.Linear)
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Getting Data into the Transformer (2)
Positional encoding

• What?
– Add information about an element’s 

position in a sequence to its representation

• Why?
– Removes need for recurrence or 

convolution

• How?
– Element wise addition of sinusoidal 

encoding

Positional 
Encoding

+

=

𝑷𝑬𝒊𝒙𝒊

𝒛𝒊
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Getting Data into the Transformer (2)
Sinusoidal positional encoding

𝑃𝐸 𝑖, 2A = 𝑠𝑖𝑛
𝑖

10000
"#

7$%&'#

𝑃𝐸 𝑖, 2AB! = 𝑐𝑜𝑠
𝑖

10000
"#

7$%&'#

	 	 	
𝑖 ∈ 1, … , 𝑁 , 𝑙 ∈ 1, … , 𝑑CD7EA

“May allow the model to easily learn to attend by relative positions”
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Getting Data into the Transformer (2)
Implementing sinusoidal positional encoding

• Know 𝑑?@ABC at model creation 
time, so precompute positional 
encoding 

• Dim is consistent with x, so we 
use in-place addition to add 
positional context to x

75

Transformers From The Ground Up



Encoder-Decoder Sublayers (1)
Multi-Head Attention Sublayers
• What?

– Carries out multi-head attention and 
learns weights for creating keys, values, 
and queries

• Why? 
– To extract relevant context from input 

sequence
– Multiple heads provide greater resolution

• Attend to different sub-representations

• How?
– Implemented as previously discussed

Add & Norm

Multi-Head 
Self-Attention

Feed Forward

Masked 
Multi-Head 

Self-Attention

Add & Norm

Multi-Head 
Cross-

Attention

Add & Norm

Add & Norm

Add & Norm

Feed Forward
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Encoder-Decoder Sublayers (1)

77

Transformers From The Ground Up
Implementing Multi-Head Attentionc



Encoder-Decoder Sublayers (1)
Implementing Multi-Head Attentionc
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Encoder-Decoder Sublayers (2)
Position-wise Feed Forward Network
• What?

– Applies learned transformations to each position in input 
representation 
• Applied separately and identically

• Why? 
– Exploits context added by previous sublayers
– Adds depth to network so it can approximate greater 

complexity
– Increases resolution to pull out different parts of the 

superposition

• How?
– Linear MLP (FC) layers with ReLU activation in between
– Hidden space with higher dimension

𝐹𝐹𝑁 𝑥 = 	𝑚𝑎𝑥 0, 𝑥𝑊4 	+ 	𝑏4 𝑊5 	+ 	𝑏5

𝑊4 ∈ ℝ&()*+,×&-- ,𝑊5 ∈ ℝ&--×&()*+,

Feed Forward

Feed Forward

Multi-Head 
Cross-

Attention

Add & Norm

Add & Norm

Add & Norm

Multi-Head 
Self-Attention

Add & Norm
Masked Multi-

Head Self-
Attention

Add & Norm
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Encoder-Decoder Sublayers (2)
Implementing position-wise Feed 
Forward Network

• 𝑑DD = 2048 = 4	𝑑?@ABC

•
••

•
••

•
••
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Encoder-Decoder Sublayers (3)
Sublayer connections
• Residual connection (recall resnet)

– Can be less expensive to learn residuals
– Elevates vanishing gradient
– Preserves more of the input signal through skip 

connection

• Dropout (recall resnet)
– Regularizes model (combats overfitting)
– Encourages diversity of attention heads

• LayerNorm
– Combats vanishing gradient
– Combats exploding gradient

𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥	 + 𝐷𝑟𝑜𝑝𝑜𝑢𝑡 𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟 𝑥 )

Feed Forward

Feed Forward

Multi-Head 
Cross-

Attention

Add & Norm

Add & Norm

Add & Norm

Multi-Head 
Self-Attention

Add & Norm
Masked Multi-

Head Self-
Attention

Add & Norm
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Encoder-Decoder Sublayers (3)
Implementing sublayer connections

Transformers From The Ground Up
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Encoder-Decoder Layers (1)
Encoder Layer
• What?

– Composable blocks for the task of encoding an 
input sequence representation with attention

• Why?
– Easy construction of model
– Allows encoder layers to be stacked to achieve 

depth
– Repeating Multi-head attention 
à Model more complex position interactions

• How?
– Multi-head self-attention (8 heads used) sublayer
– Position-wise feed forward network sublayer
– All sublayers are surrounded by sublayer 

connections

Feed Forward

Feed Forward

Multi-Head 
Cross-

Attention

Add & Norm

Add & Norm

Add & Norm

Multi-Head 
Self-Attention

Add & Norm
Masked Multi-

Head Self-
Attention

Add & Norm
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Encoder-Decoder Layers (1)
Implementing the encoder layer

Feed Forward

Feed Forward

Multi-Head 
Cross-

Attention

Add & Norm

Add & Norm

Add & Norm

Multi-Head 
Self-Attention

Add & Norm
Masked Multi-

Head Self-
Attention

Add & Norm

𝑥
𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦
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Encoder-Decoder Layers (2)
Decoder Layer

• What?
– Composable blocks for the task of decoding 

a target sequence auto-regressively

• Same as encoder layers other than:
1. the additional multi-head attention block to 

preform cross-attention with the output 
representation from the encoder

2. the addition of masking in self-attention
àThis prevents cheating(forward looking bias)
à Model purely attends to past info

Add & Norm

Add & Norm

Add & Norm

Multi-Head 
Self-Attention

Add & Norm

Feed Forward

Masked Multi-
Head Self-
Attention

Add & Norm

Feed Forward

Multi-Head 
Cross-

Attention
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Encoder-Decoder Layers (2)
Implementing the decoder layer

Add & Norm

Add & Norm

Add & Norm

Multi-Head 
Self-Attention

Add & Norm

Feed Forward

Masked Multi-
Head Self-
Attention

Add & Norm

Feed Forward

Multi-Head 
Cross-

Attention
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The Prediction Head
Generator

• Sometimes referred to as the predictor

• A final linear mapping
– Internal Representation -> logits that capture 

maximum likelihood of next element in sequence
– In seq2seq language translation this maps back to 

vocab corpora

• Apply softmax to convert logits to probabilities Linear

Softmax
Output Probabilities 

For next area
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The Prediction Head
Implementing a generator
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Assembling the Encoder-Decoder
• Encoder-Decoder

Stack N of the sublayers

Add Generator on top

×N×N

Add & Norm

Add & Norm

Add & Norm

Multi-Head 
Self-Attention

Add & Norm

Feed Forward

Masked Multi-
Head Self-
Attention

Add & Norm

Feed Forward

Linear

Softmax

Multi-Head 
Cross-

Attention

Output Probabilities 
(for 𝑦$) 𝑦$
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Assembling the Encoder-Decoder
• Encoder-Decoder implementation
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Misconceptions about Transformers (2)
• What?

– Notion of a whole “transformer block” that is stackable in the vanilla 
transformer architecture

– Incorrect belief that encoder-decoder attention connection is layer wise

• Why?
– Incorrect understanding of stacking layers
– Pervasive amount of bad figures 
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Misconceptions about Transformers (2)

encoder

encoder

encoder

encoder

encoder 

encoder

decoder

decoder

decoder

decoder

decoder

decoder

encoder

encoder

encoder

encoder

encoder 

encoder

decoder

decoder

decoder

decoder

decoder

decoder

Incorrect Correct

𝑡F

𝑡G

𝑡$

𝑡#

𝑡"

𝑡!

𝑡!
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Assembling the Encoder-Decoder
• Encoder-Decoder implementation
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Putting it all together

Positional 
Encoding

Positional 
Encoding

×N

×N

Add & Norm

Add & Norm

Add & Norm

Multi-Head 
Self-Attention

Add & Norm

Feed Forward

Masked Multi-
Head Self-
Attention

Add & Norm

Feed Forward

Input 
Embedding

Output 
Embedding

Linear

Softmax

Multi-Head 
Cross-

Attention

𝑥! 𝑥" 𝑥#••• 𝑦! 𝑦$%!•••

Output Probabilities 
(for 𝑦$) 𝑦$
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Putting it all together

95

Transformers From The Ground Up



Training Transformers
• “Architecture alone does not make a model”

• A model expresses different properties depending on how it is 
trained
• Like nature vs. nurture, both impact what the model does
• Training is what influences parameters

Architecture + Training = Model
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Training Transformers
• Models fit to training data

• If shown examples that encourage bidirectional attention, it will learn 
that

• If shown only examples that require right attention, it may express 
more unidirectional behavior (won’t generalize as well)

• BERT uses large scale pre-training to do this
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Training Transformers
• Masked training

• Attention mechanism can build a masking support directly

• Motivation:
– Want to prevent the model from learning from future information in the 

output sequence

• Main idea:
– Since each decode layer starts with a self-attention block, we can add 

custom logic to mask out positions in target sequence which it shouldn’t see 
yet

• Implemented as rolling window
98



Training Transformers
• Masked training

−1𝑒9 is very negative, 
softmax(-1e9) à 0
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Results and Impact
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Performance
• Experimentation on text translation: (1) EN-DE and (2) EN-FR

A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems (NeurIPS), 2017. 101



Paper Impact
• Highly influential

• Paper has 113,405 citations

• Transformer architecture has been 
used as the basis for many state-of-
the-art models

• Transformer is a fundamental building 
block of all LLMs (e.g. GPT-4, LLaMA 
2, Gemini, etc.)
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How to use Attention / 
Transformers for Vision?
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Zhang et al., ”Self-Attention Generative Adversarial Networks”, ICML 2018
Wang et al., ”Non-local Neural Networks”, CVPR 2018

Input

Softm
ax

3x3 conv, 64

7x7 conv, 64, / 2

FC
 1000

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128, / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

Start from standard CNN architecture (e.g. ResNet)

Idea #1: Add attention to existing CNNs
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Input

Softm
ax

3x3 conv, 64

7x7 conv, 64, / 2

FC
 1000

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128, / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool
Start from standard CNN architecture (e.g. ResNet)

Add Self-Attention blocks between existing ResNet blocks

S
elf-A

tten
tio

n

S
elf-A

tten
tio

n

Idea #1: Add attention to existing CNNs

Zhang et al., ”Self-Attention Generative Adversarial Networks”, ICML 2018
Wang et al., ”Non-local Neural Networks”, CVPR 2018 105



Input

Softm
ax

3x3 conv, 64

7x7 conv, 64, / 2

FC
 1000

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128, / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool
Start from standard CNN architecture (e.g. ResNet)

Add Self-Attention blocks between existing ResNet blocks

S
elf-A

tten
tio

n

S
elf-A

tten
tio

n

Model is still a CNN! 
Can we replace 
convolution entirely?

Idea #1: Add attention to existing CNNs

Zhang et al., ”Self-Attention Generative Adversarial Networks”, ICML 2018
Wang et al., ”Non-local Neural Networks”, CVPR 2018 106



Input: C x H x W Output: C’ x H x W

Convolution: Output at each position is inner product of 
conv kernel with receptive field in input

Idea #2: Replace Convolution with “Local Attention”

Hu et al., “Local Relation Networks for Image Recognition”, ICCV 2019;  
Ramachandran et al., “Stand-Alone Self-Attention in Vision Models”, NeurIPS 2019 107



Input: C x H x W Output: C’ x H x W

Query: DQ

Map center of receptive field to query

Idea #2: Replace Convolution with “Local Attention”

Hu et al., “Local Relation Networks for Image Recognition”, ICCV 2019;  
Ramachandran et al., “Stand-Alone Self-Attention in Vision Models”, NeurIPS 2019 108



Input: C x H x W Output: C’ x H x W

Query: DQ

Keys: R x R x DQ

Values: R x R x C’

Map center of receptive field to query
Map each element in receptive field to key and value

Idea #2: Replace Convolution with “Local Attention”

Hu et al., “Local Relation Networks for Image Recognition”, ICCV 2019;  
Ramachandran et al., “Stand-Alone Self-Attention in Vision Models”, NeurIPS 2019 109



Input: C x H x W Output: C’ x H x W

Query: DQ

Keys: R x R x DQ

Values: R x R x C’

Attention

Output: C

Map center of receptive field to query
Map each element in receptive field to key and value
Compute output using attention

Idea #2: Replace Convolution with “Local Attention”

Hu et al., “Local Relation Networks for Image Recognition”, ICCV 2019;  
Ramachandran et al., “Stand-Alone Self-Attention in Vision Models”, NeurIPS 2019 110



Map center of receptive field to query
Map each element in receptive field to key and value
Compute output using attention
Replace all conv in ResNet with local attention

LR = “Local Relation”

Idea #2: Replace Convolution with “Local Attention”

Hu et al., “Local Relation Networks for Image Recognition”, ICCV 2019;  
Ramachandran et al., “Stand-Alone Self-Attention in Vision Models”, NeurIPS 2019 111



Input: C x H x W Output: C’ x H x W

Query: DQ

Keys: R x R x DQ

Values: R x R x C’

Attention

Output: C

Lots of tricky details, 
hard to implement, 
only marginally better 
than ResNets

Map center of receptive field to query
Map each element in receptive field to key and value
Compute output using attention
Replace all conv in ResNet with local attention

Idea #2: Replace Convolution with “Local Attention”

Hu et al., “Local Relation Networks for Image Recognition”, ICCV 2019;  
Ramachandran et al., “Stand-Alone Self-Attention in Vision Models”, NeurIPS 2019 112



Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Treat an image as a set 
of pixel values

Feed as input to 
standard Transformer

Idea #3: Standard Transformer on Pixels

Chen et al., “Generative Pretraining from Pixels”, ICML 2020 113



Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Treat an image as a set 
of pixel values

Feed as input to 
standard Transformer

Problem: Memory use!

R x R image needs R4 
elements per attention 
matrix

Idea #3: Standard Transformer on Pixels

Chen et al., “Generative Pretraining from Pixels”, ICML 2020 114



Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Treat an image as a set 
of pixel values

Feed as input to 
standard Transformer

Problem: Memory use!

R x R image needs R4 
elements per attention 
matrix

R=128, 48 layers, 16 heads 
per layer takes 768GB of 
memory for attention 
matrices for a single 
example…

Idea #3: Standard Transformer on Pixels

Chen et al., “Generative Pretraining from Pixels”, ICML 2020 115



Idea #4: Standard Transformer on Patches

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021116



Idea #4: Standard Transformer on Patches

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021117



N input patches, each 
of shape 3x16x16

Idea #4: Standard Transformer on Patches

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021118



N input patches, each 
of shape 3x16x16

Linear projection to 
D-dimensional vector

Idea #4: Standard Transformer on Patches

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021119



N input patches, each 
of shape 3x16x16

Linear projection to 
D-dimensional vector

+ + + + + + + + +

Add positional 
embedding: learned 
D-dim vector per position

Idea #4: Standard Transformer on Patches

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021120



N input patches, each 
of shape 3x16x16

Linear projection to 
D-dimensional vector

TransformerExact same as 
NLP Transformer!

+ + + + + + + + +

Add positional 
embedding: learned 
D-dim vector per position

Idea #4: Standard Transformer on Patches

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

Output vectors
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N input patches, each 
of shape 3x16x16

Linear projection to 
D-dimensional vector

Output vectors

Exact same as 
NLP Transformer!

Special extra input: 
classification token
(D dims, learned)+ + + + + + + + +

Add positional 
embedding: learned 
D-dim vector per position

Transformer

Idea #4: Standard Transformer on Patches

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021122



N input patches, each 
of shape 3x16x16

Linear projection to 
D-dimensional vector

Exact same as 
NLP Transformer!

Special extra input: 
classification token
(D dims, learned)+ + + + + + + + +

Add positional 
embedding: learned 
D-dim vector per position

Linear projection 
to C-dim vector 
of predicted class 
scores

Transformer

Idea #4: Standard Transformer on Patches

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

Output vectors
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N input patches, each 
of shape 3x16x16

Linear projection to 
D-dimensional vector

Exact same as 
NLP Transformer!

Special extra input: 
classification token
(D dims, learned)+ + + + + + + + +

Add positional 
embedding: learned 
D-dim vector per position

Linear projection 
to C-dim vector 
of predicted class 
scores

Transformer

Computer vision model 
with no convolutions!

Vision Transformer (ViT)

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

Output vectors
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N input patches, each 
of shape 3x16x16

Linear projection to 
D-dimensional vector

Exact same as 
NLP Transformer!

Special extra input: 
classification token
(D dims, learned)+ + + + + + + + +

Add positional 
embedding: learned 
D-dim vector per position

Linear projection 
to C-dim vector 
of predicted class 
scores

Transformer

Computer vision model 
with no convolutions!

Not quite: With patch size p, first layer 
is Conv2D(pxp, 3->D, stride=p)

Vision Transformer (ViT)

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

Output vectors

125



N input patches, each 
of shape 3x16x16

Linear projection to 
D-dimensional vector

Exact same as 
NLP Transformer!

Special extra input: 
classification token
(D dims, learned)+ + + + + + + + +

Add positional 
embedding: learned 
D-dim vector per position

Linear projection 
to C-dim vector 
of predicted class 
scores

Transformer

Computer vision model 
with no convolutions!

Not quite: MLPs in Transformer 
are stacks of 1x1 convolution

Vision Transformer (ViT)

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

Output vectors
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N input patches, each 
of shape 3x16x16

Linear projection to 
D-dimensional vector

Exact same as 
NLP Transformer!

Special extra input: 
classification token
(D dims, learned)+ + + + + + + + +

Add positional 
embedding: learned 
D-dim vector per position

Linear projection 
to C-dim vector 
of predicted class 
scores

Transformer

In practice: take 224x224 input image, 
divide into 14x14 grid of 16x16 pixel 
patches (or 16x16 grid of 14x14 patches)

Each attention matrix has 144 = 38,416 
entries, takes 150 KB
(or 65,536 entries, takes 256 KB)

Vision Transformer (ViT)

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

Output vectors
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N input patches, each 
of shape 3x16x16

Linear projection to 
D-dimensional vector

Exact same as 
NLP Transformer!

Special extra input: 
classification token
(D dims, learned)+ + + + + + + + +

Add positional 
embedding: learned 
D-dim vector per position

Linear projection 
to C-dim vector 
of predicted class 
scores

Transformer

In practice: take 224x224 input image, 
divide into 14x14 grid of 16x16 pixel 
patches (or 16x16 grid of 14x14 patches)

With 48 layers, 16 heads per 
layer, all attention matrices 
take 112 MB (or 192MB)

Vision Transformer (ViT)

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

Output vectors

128



BiT = ResNet152x4
ResNet-152x4

B = Base
L = Large
H = Huge

/32, /16, /14 is patch 
size; smaller patch 
size is a bigger model 
(more patches)

Vision Transformer (ViT) vs ResNets

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021129



BiT = ResNet152x4

Recall: ImageNet 
dataset has 
1k categories, 
1.2M images

When trained on 
ImageNet, ViT models 
perform worse than 
ResNets ResNets

B = Base
L = Large
H = Huge

/32, /16, /14 is patch 
size; smaller patch 
size is a bigger model 
(more patches)

Vision Transformer (ViT) vs ResNets

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021130



ImageNet-21k has 
14M images with 
21k categories

If you pretrain on 
ImageNet-21k and 
fine-tune on ImageNet, 
ViT does better: big 
ViTs match big 
ResNets

ResNets

B = Base
L = Large
H = Huge

/32, /16, /14 is patch 
size; smaller patch 
size is a bigger model 
(more patches)

Vision Transformer (ViT) vs ResNets

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021131



ResNets

JFT-300M is an 
internal Google 
dataset with 300M 
labeled images

If you pretrain on JFT 
and finetune on 
ImageNet, large ViTs 
outperform large 
ResNets

B = Base
L = Large
H = Huge

/32, /16, /14 is patch 
size; smaller patch 
size is a bigger model 
(more patches)

Vision Transformer (ViT) vs ResNets

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021132



ResNets

JFT-300M is an 
internal Google 
dataset with 300M 
labeled images

If you pretrain on JFT 
and finetune on 
ImageNet, large ViTs 
outperform large 
ResNets

ViT: 2.5k TPU-v3 
core days of training

ResNet: 9.9k TPU-v3 
core days of training

ViTs make more 
efficient use of GPU / 
TPU hardware 
(matrix multiply is 
more hardware-
friendly than conv)

Vision Transformer (ViT) vs ResNets

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021133



ResNets

Claim: ViT models have 
“less inductive bias” than 
ResNets, so need more 
pretraining data to learn 
good features

(Not sure I buy this 
explanation: “inductive 
bias” is not a well-
defined concept we can 
measure!)

ViT: 2.5k TPU-v3 
core days of training

ResNet: 9.9k TPU-v3 
core days of training

ViTs make more 
efficient use of GPU / 
TPU hardware 
(matrix multiply is 
more hardware-
friendly than conv)

Vision Transformer (ViT) vs ResNets

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021134



ResNets

How can we 
improve the 
performance of 
ViT models on 
ImageNet?

ViT: 2.5k TPU-v3 
core days of training

ResNet: 9.9k TPU-v3 
core days of training

ViTs make more 
efficient use of GPU / 
TPU hardware 
(matrix multiply is 
more hardware-
friendly than conv)

Vision Transformer (ViT) vs ResNets

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021135



Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128, / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

Input:
3 x 224 x 224

Stage 1:
64 x 56 x 56

Stage 2:
128 x 28 x 28

Stage 3:
256 x 14 x 14

In most CNNs (including 
ResNets), decrease resolution 
and increase channels as you 
go deeper in the network
(Hierarchical architecture)

Useful since objects in images 
can occur at various scales

ViT vs CNN
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Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128, / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

Input:
3 x 224 x 224

Stage 1:
64 x 56 x 56

Stage 2:
128 x 28 x 28

Stage 3:
256 x 14 x 14

In most CNNs (including 
ResNets), decrease resolution 
and increase channels as you 
go deeper in the network
(Hierarchical architecture)

Useful since objects in images 
can occur at various scales

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Input:
3 x 224 x 224

1st block:
768 x 14 x 14

2nd block:
768 x 14 x 14

3rd block:
768 x 14 x 14

In a ViT, all blocks have 
same resolution and 
number of channels

(Isotropic architecture)
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Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128, / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

Input:
3 x 224 x 224

Stage 1:
64 x 56 x 56

Stage 2:
128 x 28 x 28

Stage 3:
256 x 14 x 14

In most CNNs (including 
ResNets), decrease resolution 
and increase channels as you 
go deeper in the network
(Hierarchical architecture)

Useful since objects in images 
can occur at various scales

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Input:
3 x 224 x 224

1st block:
768 x 14 x 14

2nd block:
768 x 14 x 14

3rd block:
768 x 14 x 14

In a ViT, all blocks have 
same resolution and 
number of channels

(Isotropic architecture)

Can we build a hierarchical ViT model?

ViT vs CNN
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C	×
𝐻
4 	×

𝑊
4

3	×	𝐻	×	𝑊

Divide image into 4x4 
patches and project to 

C dimensions

Hierarchical ViT: Swin Transformer

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021139



C	×
𝐻
4 	×

𝑊
4

3	×	𝐻	×	𝑊

2𝐶	×
𝐻
8 	×

𝑊
8

Divide image into 4x4 
patches and project to 

C dimensions

Merge 2x2 
neighborhoods; 
now patches are 
(effectively) 8x8

Hierarchical ViT: Swin Transformer

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021140



Hierarchical ViT: Swin Transformer
C	×

𝐻
4 	×

𝑊
4

3	×	𝐻	×	𝑊

2𝐶	×
𝐻
8 	×

𝑊
8

Divide image into 4x4 
patches and project to 

C dimensions

Merge 2x2 
neighborhoods; 
now patches are 
(effectively) 8x8

H/4

W/4
C

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021141



Hierarchical ViT: Swin Transformer
C	×

𝐻
4 	×

𝑊
4

3	×	𝐻	×	𝑊

2𝐶	×
𝐻
8 	×

𝑊
8

Divide image into 4x4 
patches and project to 

C dimensions

Merge 2x2 
neighborhoods; 
now patches are 
(effectively) 8x8

H/4

W/4
C

4C
H/8

W/8

Concatenate 
groups of 
2x2 features

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021142



Hierarchical ViT: Swin Transformer
C	×

𝐻
4 	×

𝑊
4

3	×	𝐻	×	𝑊

2𝐶	×
𝐻
8 	×

𝑊
8

Divide image into 4x4 
patches and project to 

C dimensions

Merge 2x2 
neighborhoods; 
now patches are 
(effectively) 8x8

H/4

W/4
C

4C
H/8

W/8

H/8

W/8
2C

Concatenate 
groups of 
2x2 features

Linear 
projection 
from 4C to 
2C channels 
(1x1 conv)

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021143



C	×
𝐻
4 	×

𝑊
4

3	×	𝐻	×	𝑊

2𝐶	×
𝐻
8 	×

𝑊
8

4𝐶	×
𝐻
16
	×

𝑊
16

Divide image into 4x4 
patches and project to 

C dimensions

Merge 2x2 
neighborhoods; 
now patches are 
(effectively) 8x8

Merge 2x2 
neighborhoods; 
now patches are 

(effectively) 16x16

Hierarchical ViT: Swin Transformer

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021144



C	×
𝐻
4 	×

𝑊
4

3	×	𝐻	×	𝑊

2𝐶	×
𝐻
8 	×

𝑊
8

4𝐶	×
𝐻
16
	×

𝑊
16

8𝐶	×
𝐻
32
	×

𝑊
32

Divide image into 4x4 
patches and project to 

C dimensions

Merge 2x2 
neighborhoods; 
now patches are 
(effectively) 8x8

Merge 2x2 
neighborhoods; 
now patches are 

(effectively) 16x16

Merge 2x2 
neighborhoods; 
now patches are 

(effectively) 32x32

Hierarchical ViT: Swin Transformer

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021145



C	×
𝐻
4 	×

𝑊
4

3	×	𝐻	×	𝑊

2𝐶	×
𝐻
8 	×

𝑊
8

4𝐶	×
𝐻
16
	×

𝑊
16

8𝐶	×
𝐻
32
	×

𝑊
32

Divide image into 4x4 
patches and project to 

C dimensions

Merge 2x2 
neighborhoods; 
now patches are 
(effectively) 8x8

Merge 2x2 
neighborhoods; 
now patches are 

(effectively) 16x16

Merge 2x2 
neighborhoods; 
now patches are 

(effectively) 32x32

Problem: 224x224 image 
with 56x56 grid of 4x4 
patches: attention matrix 
has 564 = 9.8M entries

Hierarchical ViT: Swin Transformer

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021146



C	×
𝐻
4 	×

𝑊
4

3	×	𝐻	×	𝑊

2𝐶	×
𝐻
8 	×

𝑊
8

4𝐶	×
𝐻
16
	×

𝑊
16

8𝐶	×
𝐻
32
	×

𝑊
32

Divide image into 4x4 
patches and project to 

C dimensions

Merge 2x2 
neighborhoods; 
now patches are 
(effectively) 8x8

Merge 2x2 
neighborhoods; 
now patches are 

(effectively) 16x16

Merge 2x2 
neighborhoods; 
now patches are 

(effectively) 32x32

Problem: 224x224 image 
with 56x56 grid of 4x4 
patches: attention matrix 
has 564 = 9.8M entries

Solution: don’t use full 
attention, instead use 
attention over patches

Hierarchical ViT: Swin Transformer

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021147



With H x W grid of tokens, each attention 
matrix is H2W2 – quadratic in image size

Swin Transformer: Window Attention

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021148



With H x W grid of tokens, each attention 
matrix is H2W2 – quadratic in image size

Rather than allowing each token to attend to all 
other tokens, instead divide into windows of 
M x M tokens (here M=4); only compute 
attention within each window

Swin Transformer: Window Attention

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021149



With H x W grid of tokens, each attention 
matrix is H2W2 – quadratic in image size

Rather than allowing each token to attend to all 
other tokens, instead divide into windows of 
M x M tokens (here M=4); only compute 
attention within each window

Total size of all attention matrices is now:
M4(H/M)(W/M) = M2HW

Linear in image size for fixed M!
Swin uses M=7 throughout the network

Swin Transformer: Window Attention

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021150



Problem: tokens only interact with other tokens within the 
same window; no communication across windows

151

Swin Transformer: Window Attention

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021151



Solution: Alternate between normal windows and shifted 
windows in successive Transformer blocks

Block L: Normal windows Block L+1: Shifted Windows

Ugly detail: 
Non-square 
windows at 
edges and 
corners

Swin Transformer: Shifted Window Attention

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021152



Solution: Alternate between normal windows and shifted 
windows in successive Transformer blocks

Block L: Normal windows Block L+1: Shifted Windows

Detail: Relative Positional Bias

ViT adds positional embedding to 
input tokens, encodes absolute 
position of each token in the image

Swin Transformer: Shifted Window Attention

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021153



Solution: Alternate between normal windows and shifted 
windows in successive Transformer blocks

Block L: Normal windows Block L+1: Shifted Windows

Detail: Relative Positional Bias

ViT adds positional embedding to 
input tokens, encodes absolute 
position of each token in the image

Swin does not use positional 
embeddings, instead encodes 
relative position between patches 
when computing attention:

Standard Attention:

𝐴 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾<

𝐷
𝑉

𝑄,𝐾, 𝑉:𝑀"	×	𝐷 (Query, Key, Value)

Swin Transformer: Shifted Window Attention

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021154



Solution: Alternate between normal windows and shifted 
windows in successive Transformer blocks

Block L: Normal windows Block L+1: Shifted Windows

Detail: Relative Positional Bias

ViT adds positional embedding to 
input tokens, encodes absolute 
position of each token in the image

Swin does not use positional 
embeddings, instead encodes 
relative position between patches 
when computing attention:

Attention with relative bias:

𝐴 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾<

𝐷
+ 𝐵 𝑉

𝑄,𝐾, 𝑉:𝑀"	×	𝐷 (Query, Key, Value)
𝐵:𝑀"	×	𝑀" (learned biases)

Swin Transformer: Shifted Window Attention

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021155
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Swin Transformer: Speed vs Accuracy

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021156
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Bonus: Swin Transformer can also 
be used as a backbone for object 
detection, instance segmentation, 
and semantic segmentation!

Swin Transformer: Speed vs Accuracy

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021157



Liu et al, “Swin Transformer V2: Scaling 
up Capacity and Resolution”, CVPR 2022

Fan et al., “Multiscale Vision Transformers”, 
ICCV 2021

MViT Swin-V2

Li et al, “Improved Multiscale Vision Transformers 
for Classification and Detection”, arXiv 2021

Improved MViT

Other Hierarchical Vision Transformers
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Recap of Transformers
• Three key ideas

– Tokens
– Attention
– Positional encoding
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Tokens: A new data structure
• A token is just transformer lingo for a vector of neurons (note: GNNs also operate over 

tokens, but over there we called them “node attributes” or node “feature descriptors”)

• But the connotation is that a token is an encapsulated bundle of information; with 
transformers we will operate over tokens rather than over neurons

A new data structure: Tokens
• A token is just transformer lingo for a vector of neurons (note: GNNs also operate over 
tokens, but over there we called them “node attributes” or node “feature descriptors”) 

• But the connotation is that a token is an encapsulated bundle of information; with 
transformers we will operate over tokens rather than over neurons

array of neurons

x
<latexit sha1_base64="qs7zOlksqv4NNZKed59cy1KO4ZM="></latexit><latexit sha1_base64="qs7zOlksqv4NNZKed59cy1KO4ZM="></latexit><latexit sha1_base64="qs7zOlksqv4NNZKed59cy1KO4ZM="></latexit><latexit sha1_base64="qs7zOlksqv4NNZKed59cy1KO4ZM="></latexit>

array of tokens

t
<latexit sha1_base64="5stcGrXqsoASK8xcqONY8G/32M8=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhhrNBtebW3TnIKvEKUoMCzUH1qz+MWRpxhUxSY3qem6CfUY2CST6r9FPDE8omdMR7lioaceNn88QzcmaVIQljbZ9CMld/b2Q0MmYaBXYyT2iWvVz8z+ulGF77mVBJilyxxUdhKgnGJD+fDIXmDOXUEsq0sFkJG1NNGdqSKrYEb/nkVdK+qHtu3bu/rDVuijrKcAKncA4eXEED7qAJLWCg4Ble4c0xzovz7nwsRktOsXMMf+B8/gD3JZEY</latexit><latexit sha1_base64="w9W1987jyYCglqugohyzztGZ6b8=">AAACFnicjVC7SgNBFL3rM8ZX1NJmMAhWYVcELYM2lgrmgckSZiezyZDZ2WXmrhCW/IWFjb9iI2Irdv6Ns8kWmlh4YOBwzr3cOSdIpDDoul/O0vLK6tp6aaO8ubW9s1vZ22+aONWMN1gsY90OqOFSKN5AgZK3E81pFEjeCkZXud964NqIWN3hOOF+RAdKhIJRtNJ9N6I4DMIMJ71K1a25U5BF4hWkCgX+N96rfHb7MUsjrpBJakzHcxP0M6pRMMkn5W5qeELZiA54x1JFI278bBprQo6t0idhrO1TSKbqz42MRsaMo8BO5jHMvJeLf3mdFMMLPxMqSZErNjsUppJgTPKOSF9ozlCOLaFMC/tXwoZUU4a2ybKN7s0HXSTN05rn1rzbs2r9suisBIdwBCfgwTnU4RpuoAEMFDzCM7w6T86L8+a8z0aXnGLnAH7B+fgG6kiYkQ==</latexit><latexit sha1_base64="w9W1987jyYCglqugohyzztGZ6b8=">AAACFnicjVC7SgNBFL3rM8ZX1NJmMAhWYVcELYM2lgrmgckSZiezyZDZ2WXmrhCW/IWFjb9iI2Irdv6Ns8kWmlh4YOBwzr3cOSdIpDDoul/O0vLK6tp6aaO8ubW9s1vZ22+aONWMN1gsY90OqOFSKN5AgZK3E81pFEjeCkZXud964NqIWN3hOOF+RAdKhIJRtNJ9N6I4DMIMJ71K1a25U5BF4hWkCgX+N96rfHb7MUsjrpBJakzHcxP0M6pRMMkn5W5qeELZiA54x1JFI278bBprQo6t0idhrO1TSKbqz42MRsaMo8BO5jHMvJeLf3mdFMMLPxMqSZErNjsUppJgTPKOSF9ozlCOLaFMC/tXwoZUU4a2ybKN7s0HXSTN05rn1rzbs2r9suisBIdwBCfgwTnU4RpuoAEMFDzCM7w6T86L8+a8z0aXnGLnAH7B+fgG6kiYkQ==</latexit><latexit sha1_base64="w9W1987jyYCglqugohyzztGZ6b8=">AAACFnicjVC7SgNBFL3rM8ZX1NJmMAhWYVcELYM2lgrmgckSZiezyZDZ2WXmrhCW/IWFjb9iI2Irdv6Ns8kWmlh4YOBwzr3cOSdIpDDoul/O0vLK6tp6aaO8ubW9s1vZ22+aONWMN1gsY90OqOFSKN5AgZK3E81pFEjeCkZXud964NqIWN3hOOF+RAdKhIJRtNJ9N6I4DMIMJ71K1a25U5BF4hWkCgX+N96rfHb7MUsjrpBJakzHcxP0M6pRMMkn5W5qeELZiA54x1JFI278bBprQo6t0idhrO1TSKbqz42MRsaMo8BO5jHMvJeLf3mdFMMLPxMqSZErNjsUppJgTPKOSF9ozlCOLaFMC/tXwoZUU4a2ybKN7s0HXSTN05rn1rzbs2r9suisBIdwBCfgwTnU4RpuoAEMFDzCM7w6T86L8+a8z0aXnGLnAH7B+fgG6kiYkQ==</latexit>

array of neurons        array of tokens 
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Tokens: A new data structure
• A token is just transformer lingo for a vector of neurons (note: GNNs also operate over 

tokens, but over there we called them “node attributes” or node “feature descriptors”)

• But the connotation is that a token is an encapsulated bundle of information; with 
transformers we will operate over tokens rather than over neurons
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Tokenizing the input data
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should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued
tokens in this chapter, it’s

easy to imagine tokens
that are any kind of

structured group. We
just need to define how

basic operators, like
summation, operate over

these groups (and,
ideally, in a di↵erentiable

manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

Tokenizing the input data

e.g., linear projection

• When operating over neurons, we represent 
the input as an array of scalar-valued 
measurements (e.g., pixels) 

• When operating over tokens, we represent 
the input as an array of vector-valued 
measurements

tokens
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input

• When operating over neurons, we represent 
the input as an array of scalar-valued 
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• When operating over tokens, we represent 
the input as an array of vector-valued 
measurements

 e.g., linear projection 
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Tokenizing the input data
• You can tokenize anything.

• General strategy: chop the input up into chunks, project each chunk to a vector.
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sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.
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should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.
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sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?
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The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:
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should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued
tokens in this chapter, it’s

easy to imagine tokens
that are any kind of

structured group. We
just need to define how

basic operators, like
summation, operate over

these groups (and,
ideally, in a di↵erentiable

manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.
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this, all subsequent layers will operate over tokens, until the output layer, which will make
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pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
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should direct their attention to the neurons on the layer before that represent the color of
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these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.
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Transformers
• Transformers takeover the communities since their introduction.

Computer 
Vision

Natural 
Lang. Proc.

Speech Reinf. 
Learning

Graphs / 
Science

164



Pre-training in NLP (before Transformers)

word embeddings
word2vec 

[Mikolov et al., 2013]

contextualized
word embeddings via LM

ELMo
[Peters et al., 2018]

• Data: Monolingual Corpus 

• Task: predict next token given 
previous tokens (causal): 

• Usual models: LSTM, Transformer.

Background: 
Language Modeling
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• Word embeddings ⇒ Contextualized word embeddings

Neural Embedding Models (Mikolov et al. 2013)
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Pre-training in NLP (during Transformers)

word embeddings
word2vec 

[Mikolov et al., 2013]

contextualized
word embeddings via LM

ELMo
[Peters et al., 2018]

• Data: Monolingual Corpus 

• Task: predict next token given 
previous tokens (causal): 

• Usual models: LSTM, Transformer.

Background: 
Language Modeling
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• Word embeddings ⇒ Contextualized word embeddings ⇒ Transformers

• Transformer-based models take over the language modelling / NLP domain

Neural Embedding Models (Mikolov et al. 2013)
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Distributed representations of words and phrases and their compositionality [Mikolov vd.'13]

CBoW model Skip-gram model

Image credit: Ed Grefenstette

contextualized
word embeddings via

masked LM +
next sentence prediction

BERT
[Devlin et al., 2019]
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Pre-training in NLP (during Transformers)
Decoder-only

GPT
Encoder-only

BERT
Enc-Dec

T5

[The_] [cat_] [MASK] [on_] [MASK] [mat_]

[*]    [*]   [sat_]  [*]  [the_]    [*]

[START] [The_] [cat_]

[sat_]

Translate EN-DE: This is good.

Summarize: state authorities dispatched…

Is this toxic: You look beautiful today!

Das ist gut.

A storm in Attala caused 6 victims.

This is not toxic.
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Vision Transformer 
(ViT)

Many prior works attempted to introduce 
self-attention at the pixel level.

For 224px², that's 50k sequence length, too 
much!

Thus, most works restrict attention to local 
pixel neighborhoods, or as high-level 
mechanism on top of detections.

The key breakthrough in using the full 
Transformer architecture, standalone, was to 
"tokenize" the image by cutting it into 
patches of 16px², and treating each patch as 
a token, e.g. embedding it into input space.

Pre-training in Vision (during Transformers)

Transformer-based models take over the 
vision domain!

168Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021



Largely the same story as in computer vision.
But with spectrograms instead of images.

[The_] [detective_] [invest]

[igat]

Add a third type of block using convolutions, and slightly 
reorder blocks, but overall very transformer-like.

Exists as encoder-decoder variant, or as 
encoder-only variant with CTC loss.

Pre-training in Speech (during Transformers)

Gulati et al. Conformer: Convolution-augmented Transformer for Speech Recognition. In INTERSPEECH 2020

Transformer-based models take over the 
speech domain!
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Summary
● Attention is used to focus on parts of inputs/outputs

● It can be content/location-based and hard/soft

● Its three main distinct uses are
– connecting encoder and decoder in sequence-to-sequence task
– achieving scale-invariance and focus on image processing
– self-attention can be a basic building block for neural nets, often 

replacing RNNs and CNNs [recent research, take it with a grain of salt]

● ViTs are an evolution, not a revolution. We can still fundamentally 
solve the same problems as with CNNs.

● Matrix multiply is more hardware-friendly than convolution, 
so ViTs with same FLOPs as CNNs can train and run much faster
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Next lecture: 
Graph Neural Networks
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