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Previously on COMP541

» content-based attention

* |ocation-based attention

* soft vs. hard attention

* case study: Show, Attend and Tell
* self-attention

 case study: Transformer networks




Lecture overview

» graph structured data
» graph neural nets (GNNs)

 GNNs for "classical” network problems

 Disclaimer: Much of the material and slides for this lecture were borrowed from

—Yujia Li and Oriol Vinyals' tutorial on Graph Nets
—Thomas Kipf's talk on structured deep models: deep Learning on graphs and beyond
—Minji Yoon's CMU 10707 slides



Deep Learning

IMAGENET

Grid games

Speech data |

Natural language Sentence
processing (NLP)

Predicate / Verb Phrase

Prepositional Phrase

Noun Phrase

A s

Article Noun Verb Preposition Article Noun

[ I I | I
The cat sat on the mat.

Deep neural nets that exploit:
 translation equivariance (weight sharing)
* hierarchical compositionality



Modeling Structured Data

Unstructured Data Data with Rigid Structure Graph Structured Data

sequences

output
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Modeling Structured Data

Unstructured Data Data with Rigid Structure Graph Structured Data

seqguences ?
output
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What is a graph

» A graph is composed of
— Nodes (also called vertices)
— Edges connecting a pair of nodes

presented In an adjacency matrix
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What is a graph

» A graph is composed of
— Nodes (also called vertices)
— Edges connecting a pair of nodes

presented In an adjacency matrix
* Nodes can have feature vectors
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Graph structured data |

* A lot of real-world data does not “

Social networks

Citation networks @
Communication networks
Multi-agent systems

Protein interaction
networks

Standard deep learning architectures
like CNNs and RNNs don’t work here!

live” on grids =
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Graph Neural Networks have a large
Impact on... @ o

Aug 15,2018 - 8 minread

DeepMInd > Blog > Traffic prediction with advanced Graph Neural Networks

PinSage: A new graph convolutional neural
network for web-scale recommender systems

@ o Ruining He | Pinterest engineer, Pinterest Labs
Traffic prediction with
advanced Graph Neural
Networks

Web image search gets better with graph neural
networks

A new approach to image search uses images returned by traditional search
methods as nodes in a graph neural network through which similarity signals are
inking in cross-modal retrieval.

Food Discovery with Uber Eats: RO | edlerice y
Using Graph Learning to Power PUBLICATION
Recommendations | o
- P-Companion: A principled
Q @ framework for diversified
S Y complementary product
~ AW =N (@) _ b
D= @A) recommendation
S @ D)a\/== (o) | - | |
o w — A . -, By Junheng Hao, Tong Zhao, Jin Li, Xin Luna Dong, Christos Faloutsos, Yizhou Sun, Wei Wang
=/ = by & 70 2020
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Graph Neural Networks have a large
Im paCt On"_ npj | computational materials

Explore content v  About the journal v  Publish with us v

GCN-RL Circuit Designer: Transferable
Transistor Sizing with Graph Neural

nature > npj computational materials > articles > article

Networks a nd Re|nf0rcement Lea rnlng Article ] Open Access | Published: 03 June 2021
Hanrui Wang?, Kuan Wang?, Jiacheng Yang?, Linxiao Shen2, Nan Sun?, Ben0hmarking graph neural networks for materials
Hae-Seung Lee?, Song Han? .
IMassachusetts Institute of Technology Chem|5try
2UT Austin

Victor Fung &, Jiaxin Zhang, Eric Juarez & Bobby G. Sumpter

Illil' I'IAN LLAla

Hardwara, Al and Neural-nets

TEXAS

e inibovaste of Yrnsn at Anarze

npj Computational Materials 7, Article number: 84 (2021) | Cite this article

7807 Accesses | 7 Citations | 41 Altmetric | Metrics

W . iew all journals earch Q ogin
The next big thing: the use of graph neural nature View aljournals  Search Q0 Login @)
networks to d|scover par‘ncles Explore content v  About the journal v Publish with us v

September 24, 2020 | Zack Savitsky i . z
0l & : O share| | O Tweet| | (R Email nature > articles > article
Machine learning algorithms can beat the world’s hardest video games in minutes and solve complex equations

faster than the collective efforts of generations of physicists. But the conventional algorithms still struggle to Article | Published: 09 June 2021

ick out stop signs on a busy street. (] ]
P RPY y A graph placement methodology for fast chip design
Object identification continues to hamper the field of machine learning — especially when the pictures are
multidimensional and complicated, like the ones particle detectors take of collisions in high-energy physics Azalia Mirhoseini £, Anna Goldie &5, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen Wang,

experiments. However, a new class of neural networks is helping these models boost their pattern recognition
abilities, and the technology may soon be implemented in particle physics experiments to optimize data
analysis.

Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, Jiwoo Pak, Andy Tong, Kavya Srinivasa, William

Hang, Emre Tuncer, Quoc V. Le, James Laudon, Richard Ho, Roger Carpenter & Jeff Dean
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Graph Neural Networks have a large
Impact on...

nature

Explore content v About the journal v  Publish with us v Subscribe

] IR
Irwm institute for pure & applied mathematics

nature > news > article

NEWS | 01 December 2021 Deep Learning and
DeepMind’s Al helps untangle the Combinatorial Optimization

mathematics of knots

The machine-learning techniques could benefit other areas of maths that involve large data
sets.

Patterns ¢? CellPress -

OPEN ACCESS

Neural algorithmic reasoning

Petar Velickovi¢'* and Charles Blundell’
DeepMind, London, Greater London, UK
*Correspondence: petarv@google.com
https://doi.org/10.1016/j.patter.2021.100273

We present neural algorithmic reasoning—the art of building neural networks that are able to execute algo-
rithmic computation—and provide our opinion on its transformative potential for running classical algorithms
on inputs previously considered inaccessible to them.
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A very hot research topic

deep learning

reinforcement learnin
graph neural networ!

LAY
robustnes

neural network
self supervised learn ng
0
g

generalizat
unsupervised learnin
interpretabili
few shot learnin
transfer learning
. contrastive learnin
generative adversarial networ
natural language process
deep reinforcement learn
federated learn
adversarial robustness
neural architecture search
data augmentation
generafive models

continual learnin

computer visio
optimization
regularization
machine Iearnlng

a

o =3 |
[(el(e (o]

variational mferesr;]ce
adversarial trainin
) transformer:
semi supervised learnin
deep neural networ
. exploration
disentanglement
adversarial examples
multi task learning
classification
knowledge distillation
. transformer
convolutional neural network
image classification
. attention
uncertainty estimation
variational autoencoders
generative m%%er{

deep learning theo
recurrent neural hetworl
pruning

ICLR 2021 Submission Top 50 Keywords

o

(o))
o

100

150

200

Location:West Exhibition Hall A

3¢, 1334

143

(1 17 Subsession

21—

deep learning
.. gan
optimization
neural network
generative models
unsupervised learning
reinforcement learnin
=g convolutional neural networ
8 recurrent neural network
machine learning
E, multitask learnin
@ neural architecture searc
~ representation learning
adversarial robustness
_ robustness
selfsupervised learning
nlp
transformer

graph neural network

250

-4

A keyword usage (2020 - 2019)

-3 -2 -1 0 1 2
% usage

Slide credit: P. Veli¢kovié
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Recipe for a good model for graphs

* Handle different types of graph prediction problems
Requires: Representations for graphs, nodes and edges

» Handle graphs of varying sizes and structure
Requires: A parametrization independent of graph size and structure

* Handle arbitrary node ordering
Requires: A model invariant to node permutations

« Utilize graph structure
Requires: A mechanism to communicate information on graphs

14



What is Graph Neural Network?



Problem definition

* Given
— A graph
— Node attributes
— (part of nodes are labeled)

* Find
— Node embeddings

* Predict
— Labels for the remaining nodes

16



Graph Neural Networks (GNNs)

Target Node Xp

“Homophily: connected nodes
are
related/informative/similar”

17



Graph Neural Networks (GNNs)

“Homophily: connected nodes
are
related/informative/similar”
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Graph Neural Networks (GNNs)

“Homophily: connected nodes
are
related/informative/similar”
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Graph Neural Networks (GNNs)

\
XC XF
5 —
XE hA




Graph Neural Networks (GNNs)

\
Xrp
) —
/
hy

Friend
recommendation

Product
recommendation

Fraud detection

Churn prediction

21



Graph Neural Networks (GNNs)

Target Node XB




Graph Neural Networks (GNNs)

Target Node Xa

23



Graph Neural Networks (GNNs)

Target Node Xa




Graph Neural Networks (GNNs)

Target Node

15t layer

Oth layer

25



Graph Neural Networks (GNNs)

Target Node XB

2nd layer 1st layer




Graph Neural Networks (GNNs)

1. Aggregate messages from neighbors

h,(,l): node embedding of v at [-th layer
N (v) : neighboring nodes of v

f(l): aggregation function at I-th layer h(l+1) “ 0
mf,l) : message vector of v at [-th layer 4 e hc
w

m® = £O (D, (1P u € M (a)) )
= £O (L hP PR

Neighbors of node A
N(A) =1{B,C,D}

27



Graph Neural Networks (GNNs)

1. Aggregate messages from neighbors

m{) = fO (hﬁl), {hg):u EN (A)})

- 70 (10 HORORY) T
h(l+1) I
A G o — — h( )
C
Ao S

2. Transform messages ™

~
l
gW: transformation function at I-th layer 0 h(D)
RO = g Y

Neighbors of node A
N(A) =1{B,C,D}

28



Graph Neural Networks (GNNs)

In each layer [,
for each target node v:

1. Aggregate messages
m® = fO (h,(,l), {hg):u €EN (v)})

2. Transform messages

[+1 l
1 = O

2nd [ayer

15t layer

Oth layer

29



Graph Neural Networks (GNNs)

In each layer [,
for each target node v:

1. Aggregate messages
m® = fO (h,(,l), {hg):u €EN (v)})

2. Transform messages

[+1 l
1 = O

h,2)
o-£3

2nd [ayer

he')
“” p 0
-————l e
\ ~

hym %

15t layer

EINN NN IS S I I B B S S S S S S S e e e e



Graph Neural Networks (GNNs)

In each layer [,
for each target node v:

1. Agg regate messages
(l) _lf(l)l(h(l) {h(l) u € N(v)})

2. Transform messages
h(l+1)
v

GNN models mostly differ

in how these functions are
defined..

h,2)

2nd [ayer

15t layer

Oth layer

31



Graph Neural Networks (GNNs)

In each layer [,
for each target node v:

1. Aggregate messages
m® = fO (h,(,l), {hg):u €EN (v)})

2. Transform messages

[+1 l
1 = O

2nd [ayer

15t layer

Oth layer

32



Graph Neural Networks (GNNs)

Graph Convolutional
Networks!

1. Aggregate messages

1
D _ E 0 (2)
m,’ = h,, hA

2. Transform messages
hl(}l*'l) - O'(W(l) 5 (l))

[1] Kipf, Thomas N., et al. "Semi-supervised nd
classification with graph convolutional networks." 2 Iayer

1st layer Oth layer



Recap: Convolutional neural networks (on grids)

Single CNN layer
with 3x3 filter:

Q L
O~+O

0 6o

Vincent Dumoulin)

34



Recap: Convolutional neural networks (on grids)

Single CNN layer

with 3x3 filter:
hyg h;

Q O
oo

0 6o,

Vincent Dumoulin)
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Recap: Convolutional neural networks (on grids)

Single CNN layer

with 3x3 filter:
hyg h;

O O
O~+O

0 6o,

h; € RF are (hidden layer) activations of a pixel/node

Vincent Dumoulin)

36



Recap: Convolutional neural networks (on grids)

Single CNN layer

with 3x3 filter:
hy h;

O | O Update for a single pixel:

« Transform messages individually W ; h;

Y ¥
O30

A ‘E « Add everything up Z W;h;
O, i

h; € RF are (hidden layer) activations of a pixel/node

(Animation by
Vincent Dumoulin)

37



Recap: Convolutional neural networks (on grids)

Single CNN layer

with 3x3 filter:
hy h;

O | O Update for a single pixel:

« Transform messages individually W ; h;

Y ¥
O30

A ‘E « Add everything up Z W;h;
O, i

h; € RF are (hidden layer) activations of a pixel/node

(Animation by
Vincent Dumoulin)

Full update:
hi*) =4 (Wé”hg” + W 4. 4 wg”hg”)

38



Graph Convolutional Networks (GCNs)

Consider this
undirected graph:

® @,
O @
O O

Kipf & Welling (ICLR 2017), related previous works by Duvenaud et al. (NIPS 2015) and Li et al. (ICLR 2016)

39



Graph Convolutional Networks (GCNs)

Consider this Consider update
undirected graph: for node in red:

O O O O
O O O O
O O O O

Kipf & Welling (ICLR 2017), related previous works by Duvenaud et al. (NIPS 2015) and Li et al. (ICLR 2016)

40



Graph Convolutional Networks (GCNs)

Consider this Consider update
undirected graph: for node in red:

Kipf & Welling (ICLR 2017), related previous works by Duvenaud et al. (NIPS 2015) and Li et al. (ICLR 2016)

41



Graph Convolutional Networks (GCNs)

Consider this Consider update
undirected graph: for node in red:

Update 1
rule: hz('lH) =0 (hq(;l)wt()l) + Z ..hg'l)wgl))

N; : neighbor indices C;4 + norm. constant (fixed/trainable)
Kipf & Welling (ICLR 2017), related previous works by Duvenaud et al. (NIPS 2015) and Li et al. (ICLR 2016)

42



Graph Convolutional Networks (GCNs)

Consider this Consider update Desirable properties:
undirected graph: fOI’ node iﬂ red: * \Weight sharing over all locations

Invariance to permutations
O * Linear complexity O(E)

® O O 8 _ | |
* Applicable both in transductive
O O O and inductive settings

Update

rule: h§l+1) = O h(l)W<l) + _h(l)ng)

N; : neighbor indices C;4 + norm. constant (fixed/trainable)
Kipf & Welling (ICLR 2017), related previous works by Duvenaud et al. (NIPS 2015) and Li et al. (ICLR 2016) 43



Graph Convolutional Networks (GCNs)

Consider this Consider update Desirable properties:
UHdireCted graph: fOI’ node iﬂ red: * \Weight sharing over all locations

* |nvariance to permutations
O » Linear complexity O(E)

O O O % . | .
* Applicable both in transductive
O O O and inductive settings
O Q O O Limitations:

* Requires gating mechanism /

residual connections for depth

Update l l * Only indirect support for edge
b — o [ W+ h( 'wi features

rule: -
JEN; v

N; : neighbor indices C;4 + norm. constant (fixed/trainable)
Kipf & Welling (ICLR 2017), related previous works by Duvenaud et al. (NIPS 2015) and Li et al. (ICLR 2016) 44



Graph Neural Networks (GNNs)

Graph Convolutional
Networks!

1. Aggregate messages

1
D _ E 0 (2)
m,’ = h,, hA

2. Transform messages
hl(}l*'l) - O'(W(l) 5 (l))

[1] Kipf, Thomas N., et al. "Semi-supervised nd
classification with graph convolutional networks." 2 Iayer

1st layer Oth layer



Graph Neural Networks (GNNs)

Graph Isomorphism
Networks!?!

1. Aggregate messages
m1(;l) e Z h-,(l,l) hA(Z)

u € N (v)u{v} o

2. Transform messages

[2] Xu, KeyL"JIu, et al. "How powerful are graph neural 2nd |ayer 1st |ayer
networks?.

Oth layer

46



Graph Neural Networks (GNNs)

Simplified Graph
Convolutional Networks!?]

1. Aggregate messages
ol &
v v +1]

hg) hA(Z)

UuUE J\;)U{v} o

2. Transform messages
h§l+1) — W(l) 5 m1()1)

[3] Wu, Felix, et al. "Simplifying graph convolutional nd st
S e 2" layer 1t layer

Oth layer

47



GCNs with edge embeddings

( Legend: [: Node embedding [ I]: Edge embedding =% : MLPJ

4 B a

\

l - . S L1 l
h3\ —{ ] fe | @g ! fv
: ~ I g e P e |EE ] —
h, < —l B o — I
- s | -EE Y
—~um | "6
Node-to-edge (v—e) Edge-to-node (e —v)
. Ja ! el (T 1l
Formally: v — e :h ij) = feo (_hi, hj,x(i,j)])

RIS B
e — v h; —fv<

Zz’eNj hlz’,j)’ Xj])

Battaglia et al. (NIPS 2016), Gilmer et al. (ICML 2017), Kipf et al. (ICML 2018)
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GCNs with edge embeddings

( Legend: [: Node embedding [ I]: Edge embedding = : MLPJ

Formally: v — e :hli’j) = f (

RIS B
e — v h; —f,U<

/ﬁl/E-
—aE:
| o
N mle
] —
B ¢ AN

\

J

Node-to-edge (v—e)

7~

.

N\

mE| X~

TTHED

"

J

Edge-to-node (e —v)

i, h, % 5])

Zz’eNj hlz’,j)’ Xj])

Battaglia et al. (NIPS 2016), Gilmer et al. (ICML 2017), Kipf et al. (ICML 2018)

Pros:

Supports edge features
More expressive than GCN
As general as it gets (?)
Supports sparse matrix ops

49



GCNs with edge embeddings

( Legend: [: Node embedding [ I]: Edge embedding = : MLPJ

Pros:
i A g i « Supports edge features
;5\/“ E-\E\ * More expressive than GCN
- ® ../E. 1 LI ] * As general as it gets (?)
hé , —{1 | fel B HE A fvl « Supports sparse matrix ops
~ |
l [ Q_ ] amm _> - [ [{m Q _>
h) - e — Bl - [— Cons:
Rl [ , — 2 « Need to store intermediate
a3 (4:3) E./ edge-based activations
= ‘ . K - Difficult to implement with
Node-to-edge (v— e€) Edge-to-node (e — )

subsampling
* |n practice limited to small graphs

Formally: v — e :hli’j) = fé (hi, hé-,X(z',ﬁ])

e — v :h§-+1 — f?lJ ( ZiENj hlivj)’XjD

Battaglia et al. (NIPS 2016), Gilmer et al. (ICML 2017), Kipf et al. (ICML 2018)




Computation graphs




Computation graphs

Shared
PaAramMeEelerS o o e e e e e e e e e e e e e e R e o e o e e e

< N - _— --.-- _— N N BN B N N S B S B S . -

[ 4

Shared |
parameters |

\
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Batch execution

Batch size = 3

l 1 =1
hw(z) = U(W(l) © (|N(v)+1|2ueN(v)U{v}h1& )))



Batch execution

l 1 |
by = oW o (oS e vy P )

IIIIIIIIIIIIIIII

HO: = o((A+ DHCOWD)

Node embedding matrix
(row-normalized) Adjacency matrix

Batch size = 3



Batch execution

Batch size = 3

Fixed

Trainable



Downstream tasks

* Node-level prediction

B \‘
A

Dy

R
S A
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Downstream tasks

* Node-level prediction

» Edge-level prediction

D and E are related enough
to be connected?

57



Downstream tasks

* Node-level prediction
» Edge-level prediction

» Attribute-level prediction

58



Downstream tasks

* Node-level prediction
» Edge-level prediction
» Attribute-level prediction

» Graph-level prediction

‘-------_\

-------_'

4
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Downstream tasks

* Node-level prediction

» Edge-level prediction

* Attribute-level prediction /

» Graph-level prediction

’-----

\------—,

&
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Downstream tasks

 Node-level prediction
» Edge-level prediction
» Attribute-level prediction

* Graph-level prediction

61



Node-level prediction tasks

@ reddit

amaZon
N—

|  Classify papers into topics on citation networks
- \\.  Cluster posts into subgroups on Reddit networks
o .ﬁ. » Classify products into categories on Amazon

co-purchase graphs

62



Graph-level prediction tasks

Graph classification
(ex) sum, average, min/max pooling

hg = READOUT(RY, A, ..., h{?)) [

o

/




Graph-level prediction tasks

Graph classification

* Predict
properties of
a molecule
(graph) where
nodes are atoms
and edges are
chemical bonds

64




More on aggregation and
Transformation operations



Graph Neural Networks — Width

Target Node Xs

66



Graph Neural Networks (GNNs)

Target Node XB

Should we
aggregate all
neighbors?

67



Graph Neural Networks (GNNs)

Target Node XB

How many
hops should
we xplore?

68



Graph Neural Networks (GNNs)

Target Node XB

N b N A

0 Y |

l | D
\ Xc

| How should

N WX,

0 o we aggregate
K\ J neighbors?

69



Graph Neural Network Architectures

« \Width
— Which neighbors should we aggregate messages from?
* Depth
— How many hops should we check?
* Aggregation ,/0
— How should we aggregate messages from neighbor . N
Q“\:::G
o
"0



Graph Neural Network Architectures

* Width

— Which neighbors should we aggregate messages from?




Aggregation Width in GNNs

* |f we aggregate all neighbors, GNNs have scalablility issues
* Neighbor explosion @

—In L -layer GNNs, one node aggregates information from O(K%)
nodes where K Is the average number of neighbors per node
&

72



Aggregation Width in GNNs

* |f we aggregate all neighbors, GNNs have scalablility issues

* Neighbor explosion
— Hub nodes who are connected to a huge number of nodes




Aggregation Width in GNNs

* Limit the neighborhood expansion by sampling
a fixed number of neighbors

74



Aggregation Width in GNNs

 Random sampling
— Assign same sampling probabilities to all neighbors
— GraphSage!4

* Importance sampling

— Assign different sampling probabilities to all neighbors
— FastGCNDBI LADIES®! AS-GCNVI, GCN-BS®l, PASSIE]

[4] Will Hamilton, et al. “Inductive representation learning on large graphs”

[5] Jie Chen, et al. “Fastgcn: fast learning with graph convolutional networks via importance sampling”

[6] Difan Zou, et al. “Layer-Dependent Importance Sampling for Training Deep and Large Graph Convolutional Networks”
[7] Wenbing Huang, et al. “Adaptive sampling towards fast graph representation learning”

[8] Zigi Liu, et al. “Bandit Samplers for Training Graph Neural Networks"”

[9] Minji Yoon, et al. “Performance-Adaptive Sampling Strategy Towards Fast and Accurate Graph Neural Networks”
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Aggregation Width in GNNs

Importance sampling

. assign higher sampling probabilities to neighbors who

 Minimize variance in sampling
— FastGCNDB!, LADIES!®!, AS-GCN!!, GCN-BS!®!

 Maximize GNN performance
— PASS

[4] Will Hamilton, et al. “Inductive representation learning on large graphs”

[5] Jie Chen, et al. “Fastgcn: fast learning with graph convolutional networks via importance sampling”

[6] Difan Zou, et al. “Layer-Dependent Importance Sampling for Training Deep and Large Graph Convolutional Networks”
[7] Wenbing Huang, et al. “Adaptive sampling towards fast graph representation learning”

[8] Zigi Liu, et al. “Bandit Samplers for Training Graph Neural Networks"”

[9] Minji Yoon, et al. “Performance-Adaptive Sampling Strategy Towards Fast and Accurate Graph Neural Networks”
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Graph Neural Network Architectures

* Depth

— How many hops should we check?




Aggregation Depth in GNNSs

* Informative neighbors could be indirectly connected with a target
node

80



Aggregation Depth in GNNSs

* Informative neighbors could be indirectly connected with a target node
» Can't we just look multiple hops away from the target node?

8 N

81



Aggregation Depth in GNNSs

 2-layer or 3-layer GNNs are commonly used in real worlds

Wasn't it Deeeep
Learning?

82



Aggregation Depth in GNNSs

* \\When we increase the depth L more than this, GNNs face neighbor
explosion O(K%)

— Over-smoothing

— Over-squashing

83



Aggregation Depth in GNNs

Over-smoothing!1

* \When GNNs become deep,
nodes share many neighbors &

* Node embeddings become indistinguishable

[10] Qimai Li, et al. “Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning”

84



Aggregation Depth in GNNSs

* Over-smoothing!1dl
* Node embeddings of Zachary's karate club network with GNNs

® ® [ ] , : g ] ...“..
* o ® e © .: © a L ¢ .
. e ® o @ . ° 3 » L ... beg [ ] °
° o'. * e : b o "
(a) 1-layer (b) 2-layer (c) 3-layer (d) 4-layer (e) 5-layer

[10] Qimai Li, et al. “Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning”
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Aggregation Depth in GNNSs

Mitigate over-smoothing

PairNorm!1!

» Keep total pairwise squared distance (TPSD) constant across layers
* Push away pairs that are not connected

Connected pairs Disconnected pairs
TPSD(X) =} Y Il %l3 Y Il x]||2
(L])EE P fpee

lllllllllllllllllllllllllllllllllllllllllllllllll

[11] Lingxiao Zhao, et al. “PairNorm: Tackling Oversmoothing in GNNs"
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Aggregation Depth in GNNSs

Mitigate over-smoothing

PairNorm!1]
cora-GCN

1.0 — PairNorm(Sl)
-=-=QOriginal
0.8 =l
@ T\h\ —
®0.6{ TN -
= \ =
o \
O |
< 0.4 t:;
% RN e i
7 e
0-2 %;:;%—{/-v”’_____________:’N»
0.0 '
10 20 30
Layer

[11] Lingxiao Zhao, et al. “PairNorm: Tackling Oversmoothing in GNNs"



Aggregation Depth in GNNSs

Over-squashing!12l

* A node’s exponentially-growing neighborhood is compressed into a
fixed-size vector

.
*,
.
-
D

....... Bottleneck

.
.
LN
.
.
e

l//—‘\
- s X
.

o
-
n
»

[12] Uri Alon, et al. “On the Bottleneck of Graph Neural Networks and its Practical Implications”
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Aggregation Depth in GNNSs

Over-squashing!12l

\ f_)‘a . )
/ A L4

h
11
0.9 I
~ 08|
Depth 0.6 I . .
T Acc (.5 —@— GGNN (train) |
8% —@— GAT (train)
0.2 |—9— GIN (train) .
0.(1) —A— GCN (train) | : 032
A 7= 2 3 4 5 6 7 8
..... } r (the problem radius)
\\{ @O® (@(@@@
Hints

[12] Uri Alon, et al. “On the Bottleneck of Graph Neural Networks and its Practical Implications”



Aggregation Depth in GNNs

Decoupling the two concepts of depths in GNNs!'3!

* Depth-1: neighborhood that each node aggregates information from
* Depth-2: number of layers in GNNs

[13] Hanging Zeng, et al. “"Decoupling the Depth and Scope of Graph Neural Networks”
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Aggregation Depth in GNNSs

Decoupling the two concepts of depths in GNNs!'3!

* Depth-1: neighborhood that each node aggregates information from
* Depth-2: number of layers in GNNs

Depth of neighborhood
(Depth-1)

G, = SAMPLE(G)

[13] Hanging Zeng, et al. “Decoupling the Depth and Scope of Graph Neural Networks”
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Aggregation Depth in GNNSs

Decoupling the two concepts of depths in GNNs!'3!

* Depth-1: neighborhood that each node aggregates information from
* Depth-2: number of layers in GNNs

Depth of neighborhood
(Depth-1)

Depth of GNN
(Depth-2)

G, = SAMPLE(G)

[13] Hanging Zeng, et al. “Decoupling the Depth and Scope of Graph Neural Networks”
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Graph Neural Network Architectures

» Aggregation
— How should we aggregate messages from neighbor

93



Aggregation strategy in GNNs

In each layer [ :

Aggregate over neighbors

IIIII

lllll

Transform messages
[ -
hy = g®(my ™)

94



Aggregation strategy in GNNs

« GCNIT

— Average embeddings of neighboring nodes

[1] Kipf, Thomas N., et al. "Semi-supervised classification with graph convolutional networks."
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Aggregation strategy in GNNs

e GATI4I

— Different weights to different nodes in a neighborhood
— Multi-head attention

exp (LeakyReLU (5’1“ Wh, ||Wﬁj])) e concatlave
Q5 = — - B o
! D ikent BXD (LeakyReLU (é’T[thHth])) & = N P

[14] Petar Velickovic., et al. "GRAPH ATTENTION NETWORKS." -



Aggregation strategy in GNNs

In each layer [ :

Aggregate over neighbors
m{b =Ef(’)§(h1(,l_1), {hl(f_l):u € ]V’(v)})

v

lllll

IIIII

O =

Any neural network module can fit in
1-layer MLP is commonly used
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Aggregation strategy in GNNs

Power of GNNs

Power of aggregation strategies

99



Aggregation strategy in GNNs

* By measuring the power of GNNs, we can find the best aggregation
strategy!!

oy

~ L a
\h— . ;
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Aggregation strategy in GNNs

* By measuring the power of GNNs, we can find the best aggregation
strategy!!

* But.. what is the power of GNNs and how can we measure it?

~
0

P

2/
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Aggregation strategy in GNNs

« How powerful are Graph Neural Networks?!2!

 Metric

— Graph-level prediction task
— Can a GNN model distinguish two non-isomorphic graphs?

S I

[2] Keyulu Xu., et al. "How Powerful are Graph Neural Networks?" 02



Aggregation strategy in GNNs

« How powerful are Graph Neural Networks?!2!

 Metric

— Graph-level prediction task
— Can a GNN model distinguish two non-isomorphic graphs?

B R

[2] Keyulu Xu., et al. "How Powerful are Graph Neural Networks??”
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Aggregation strategy in GNNs

« How powerful are Graph Neural Networks?!2!
— Any aggregation-based GNN is at most as powerful as the WL test!']

— Maximum power = aggregation strategy is injective e et

f(x1) = f(x2) = x1 = x3

[2] Keyulu Xu., et al. "How Powerful are Graph Neural Networks?"
[15] Boris Weisfeiler and AA Leman. “A reduction of a graph to a canonical form and an algebra arising during this reduction”
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Aggregation strategy in GNNs

« How powerful are Graph Neural Networks?!2!
— Any aggregation-based GNN is at most as powerful as the WL test!!®!
— Maximum power = aggregation strategy Is injective
— (ex) summation

DO ¢ { e
T s S I' I ¢

Mean and Max both fail, while Sum can distinguish them!!

[2] Keyulu Xu., et al. "How Powerful are Graph Neural Networks?" [05



Aggregation strategy in GNNs

* Can we make more powerful GNNs?
— Very active area, with many open problems
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Aggregation strategy in GNNs

* Can we make more powerful GNNs?
« Augment nodes with randomized/positional features!'®!

input graph
input graph

input same .
layer color....x

what GNNs see

(a) Identical Features. (b) Random Features.

[16] Ryoma Sato, et al. "Random Features Strengthen Graph Neural Networks” 07



Aggregation strategy in GNNs

* Can we make more powerful GNNs?
« Augment nodes with randomized/positional features!'®!

W
A

[17] Giorgos Bouritsas, et al. "Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting” o8



Aggregation strategy in GNNs

* Can we make more powerful GNNs?

* Directly aggregates k-hop information by using adjacency matrix
powers!isl

(8)
- KX u =
_‘\C_ X _/_,,/--@\,,\ /—\X \ (:&\ -
T g(i+1) = T H(i+]) e
H(+D) = o(AHEW(0) H+) = o (205 OWD | AlpOw?)] )
0 1

(a) Traditional graph convolution. (b) Our mixed feature model.

[18] Sami Abu-El-Haija, et al. "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing”
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Aggregation strategy in GNNs

* Can we make more powerful GNNs?

» Extending local aggregation in GNNs from star patterns to general

subgraph patterns!®!

1

4

A A's Subgraph 8

NS S N
7

/ 6\ /7 \ L&-} :
Nl £
8 9 10 8

8

ST

B B's Subgraph 8

[19] Lingxiao Zhao, et al. "From Stars to Subgraphs: Uplifting Any GNN with Local Structure Awareness”
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Aggregation strategy in GNNs

 [20] proves that there isn't a clear single "winner” aggregator

Theorem 1 (Number of aggregators needed). In order to discriminate between multisets of size n
whose underlying set is R, at least n aggregators are needed.

[20] Gabriele Corso, et al. "Principal Neighbourhood Aggregation for Graph Nets”

111



Aggregation strategy in GNNs

 Homophily assumption
— Connected nodes are similar/related/informative

112



Aggregation strategy in GNNs

 Homophily assumption
— Connected nodes are similar/related/informative

 How can we deal with heterophilous networks?(21.22]
— Connected nodes have different class labels and dissimilar features

[21] Jiong Zhu., et al. "Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs”
[22] Yao Ma, et al. “IS HOMOPHILY A NECESSITY FOR GRAPH NEURAL NETWORKS?"
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Graph Neural Network Architectures

« \Width
— Which neighbors should we aggregate messages from?
* Depth
— How many hops should we check?
* Aggregation ,/0
— How should we aggregate messages from neighbor . N
Q“\:::G
o
"0



Neural Architecture Search for GNNs

* \Which width, depth, and aggregation strategy are proper for a given
graph and task?

Dimension d 02 |
Width? o7 -
Depth? o1 22| |82
Aggregation? ot N\ | /o3
g N——
o[£ 4 g:z'l'z::]

Nonlinearity l

115



Neural Architecture Search for GNNs

* Finding proper width, depth, and aggregation strategy for a given
graph and task automatically'!-2-3!

Here is the GNN you
requested

>

oy

NS
o —

A
o

[23] Minji Yoon., et al. "Autonomous Graph Mining Algorithm Search with Best Speed/Accuracy Trade-off” [24] Kaixiong
Zhou, et al. “Auto-GNN: Neural Architecture Search of Graph Neural Networks”
[25] Yang Gao, et al. “GraphNAS: Graph Neural Architecture Search with Reinforcement Learning”
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Neural Architecture Search for GNNs

e AutoGMI23]

: )
Dimension d 12 0.3 ! : AutoGM- '
i = o1 . SIEa : .AutoGM—Z : utoGM-3 :
I [ 104 05 0.1 Lk
| ‘gi . 0.7 04 o 82 (‘)7’ AUtOGM 1 I GCN 1 Constraint 3
| ;3’8, ‘os ’ o 06 02 - 0.66 - P e : GraphSage : (t<0.1)
7 3 ) - 0.4
0.1 05 o (S} | | [
" , 63 47 — |04 | 0.7 g 0.63 - [ ! I Constraint 2
. 0 .‘ ‘ 3 : : ' (t<0.01)
g; f Aggregation A < 0.60- | 1 :
0.4 I i I I Constraint 1
0. Width W
F S~ - 0-; '\ /, 0.3 05 07 ] 0.57 - : : : (t<0.004)
by TR o - 0.1 J ; iwi
et o[ el ] e '
(<5 0,(5 0.8 I ! . I . . ” I
Loz o S 0.005 0.009 0.013 0.017
Nonlinearity [ Inference Time (s)
Step 1: define a hyperparameter space Step 2: explore the space efficiently

[23] Minji Yoon., et al. "Autonomous Graph Mining Algorithm Search with Best Speed/Accuracy Trade-off”
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How to train GNNs?



How to train GNNSs

« Semi-supervised learning
— Input node features are given for all nodes in a graph
— Only a subset of nodes have labels
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How to train GNNSs

« Unsupervised learning!26
— Contrastive learning

Original graph (X,A)

YN E RN ERN _.|
4
(B g
BaAAAAAAanAAAnAAnnnD
‘
n
FEFENEN N
*
" E
BoAnAArnAanAnnAanAnnAanAnnnnS>

Corrupted graph (X,A)

[26] Petar Velickovi¢., et al. "DEEP GRAPH INFOMAX"
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How to train GNNSs

* Transfer learning
— Transfer a pre-trained GNN model between graphs[27]

Pre-trained GNN f

K <

Facebook network

[27] Jiezhong Qiu, et al. "GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training"
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How to train GNNSs

 Transfer learning
— Transfer between different node types across a heterogeneous graph|[28]

[28] Minji Yoon, et al. "Zero-shot Domain Adaptation of Heterogeneous Graphs via Knowledge Transfer Networks "
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Applications to
“classical” network problems



One fits all: Classification and link prediction
with GNNs/GCNs

Input: Feature matrix X & RNXE, preprocessed adjacency matrix A

Hidden layer Hidden layer
Input ® e > Output
N [ » — ~
ReLU | e—¢&—° RelU
— LD 2] L D e
X =HO 8 A 7 — HN
*—se *—¢

I#ana(AHm“NQ
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One fits all: Classification and link prediction
with GNNs/GCNs

Input: Feature matrix X & RNXE, preprocessed adjacency matrix A
- Hidden layer ~ Hidden layer Node classification:
[ | A softmax (zy,)
i T s e.g. Kipf & Welling (ICLR 2017)
Input i ® e > | Output
° .,; '° ReLU | e— " ReLU
— . \ X PP L\ e
X =HY : . Z —H N

gD — 4 ( AHu)W(z))
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One fits all: Classification and link prediction
with GNNs/GCNs

Input: Feature matrix X & RNXE, preprocessed adjacency matrixA

Hidden layer Hidden layer Node classification:

[ A ] softmax (zy, )
i I TRl e.g. Kipf & Welling (ICLR 2017)
Input ’ ) ) ’o ~ Output
1 I roly | 2 | ReLu (e ] Graph classification:

Lok e P s O P T .. = softmax (Y], zn)
L, T & ] ) ' e.g. Duvenaud et al. (NIPS 2015)
X — HO 8 " 7 — g
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One fits all: Classification and link prediction

with GNNs/GCNs

Input: Feature matrix X € RV *F

Hidden layer
s

Hidden layer

—

7 — )

, preprocessed adjacency matrix A

Node classification:

softmax (zy )
e.g. Kipf & Welling (ICLR 2017)

Graph classification:
softmax () | Zn)

e.g. Duvenaud et al. (NIPS 2015)

Link prediction:
p(Aij) = o (2 2;)

Kipf & Welling (NIPS BDL 2016)
“Graph Auto-Encoders”
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What do learned representations look like?

Forward pass through untrained 3-layer GCN model

2-dim output per node

Parameters initialized randomly 016 |
@
- 4 0.08} )
0.06 |-
® ® 0.04} ® o
e ° %
. e ® — oioz| o & : )
o & e o &’ %
° * ®
g o I— 0.00 |
® ® ° °®
o 9 o ¢ -0.02 ®
1 » ¢ ® ° -0.04 ®
® o 9 o
-0.06 | @) .
® e [Zachary's Karate Club] ® ]
-0.08

-0.2 -0.1 0.0 0.1 0.2 0.3 0.4
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Semi-supervised classification on graphs

« Setting: O S
Some nodes are labeled (black circle)
All other nodes are unlabeled S S
¢ e O
* Task: (o] o o
Predict node label of unlabeled nodes 0 ® p o : ®
o ® o ¢
[ ] ® ®
» O
@ °®o ¢
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Semi-supervised classification on graphs

« Setting: O S
Some nodes are labeled (black circle)
All other nodes are unlabeled S S
¢ e O
* Task: (o] o o
Predict node label of unlabeled nodes 0 ® p o : ®
o ® o ¢
[ ] ® ®
» O
@ °®o ¢
® g

Evaluate loss on labeled nodes only:

Y set of labeled node indices

F
[ = — >: >:Y}f hlzlf Y label matrix

leyr f=1 Z, GCN output (after softmax)
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Toy example (semi-supervised learning)

1.0

0.5

0.0}

=0.5}

-1.0}

-1.0

-0.5

0.0

0.5
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Application: Classification on citation networks

Input: Citation networks (nodes are papers, edges are < _
citation links, optionally bag-of-words features on nodes) \ 1

Target: Paper category (e.g. stat.ML, cs.LG, ...)

Model: 2-layer GCN K
Z = f(X,A) = softmax(fl ReLLU (AXW(O)) W(l))

(Figure from: Bronstein, Bruna, LeCun,
Szlam, Vandergheynst, 2016)

Kipf & Welling, Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017 13



Application: Classification on citation networks

Input: Citation networks (nodes are papers, edges are  «
citation links, optionally bag-of-words features on nodes) \ 1

Target: Paper category (e.g. stat.ML, cs.LG, ...)

Model: 2-layer GCN
Z =f(X,A) = softmax(fl ReLLU (AXW(O)) W(l))

—

Classification results (accuracy)
Method Citeseer  Cora Pubmed  NELL A |

ManiReg [3] 60.1 59.5 70.7 21.8 ! (VRN N
SemiEmb [24] 59.6 59.0 71.1 26.7 /A
noinput _—~LP [27] 45.3 63.0 63.0 26.5 j
features -DeepWalk [18] 43.2 67.2 65.3 58.1 /

Planetoid™* [25] 64.7 (26s) 75.7(13s) 77.2(25s)  61.9 (185s)
GCN (this paper) 70.3 (7s) 81.5(4s) 79.0(38s) 66.0 (48s) (Figure from: Bronstein, Bruna, LeCun,

GCN (rand. splits) 67.9+0.5 80.14+0.5 789+0.7 5844+1.7 Szlam, Vandergheynst, 2016)
Kipf & Welling, Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017
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Still many open problems..

* And many more chances to do groundbreaking research

« ex) other graph formats
— 3-dimensional graphs
— Temporal graphs
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Next Lecture:
Pretraining Language Models



