


Artificial faces synthg

Previously on COMP547

* Motivation & Definition of Implicit Models

 Original GAN (Goodfellow et al, 2014)

» Evaluation: Parzen, Inception, Fréchet
* Theory of GANs
* GAN Progression

» Conditional GANs, Cycle-Consistent
Adversarial Networks

 GANs and Representations

* Applications




Lecture overview

 Energy-based models

 Score-based Models
* Denoising Diffusion Models

Disclaimer: Much of the material and slides for this lecture were borrowed from

—Stefano Ermon and Aditya Grover's Stanford CS236 class
—Yang Song and Stefano Ermon’s talk titled "Generative Modeling by Estimating Gradients of the Data Distribution”

—Jascha Sohl-Dickstein’s talk "Deep Unsupervised Learning using Nonequilibrium Thermodynamics'
—Sangwoo Mo's talk titled “Introduction to Diffusion Models”



Lecture overview

Inspired by their work, we further investigated the relationship between diffusion models and

° E n e rgy_ba S e d m Od e | S score-based generative models in an ICLR 2021 paper [20]. We found that the sampling

method of diffusion probabilistic models can be integrated with annealed Langevin dynamics

1 S CO re—ba Se d M Od e | S of score-based models to create a unified and more powerful sampler (the Predictor-Corrector

sampler). By generalizing the number of noise scales to infinity, we further proved that score-

° D eno I g | N g D Iff us | on M Od e | g based generative models and diffusion probabilistic models can both be viewed as
discretizations to stochastic differential equations determined by score functions. This work
bridges both score-based generative modeling and diffusion probabilistic modeling into a
unified framework.

Collectively, these latest developments seem to indicate that both score-based generative
modeling with multiple noise perturbations and diffusion probabilistic models are different
perspectives of the same model family, much like how wave mechanics and matrix mechanics

are equivalent formulations of quantum mechanics in the history of physics °. The perspective
_of score matching and score-based models allows one to calculate log-likelihoods exactly, -
solve inverse problems naturally, and is directly connected to energy-based models,
Schrodinger bridges and optimal transport [(47]. The perspective of diffusion models is naturally

Disclaimer: Much of the material and slides fc connected to vaes, lossy compression, and can be directly incorporated with variational
—Stefano Ermon and Aditya Grover's Stanford CS236 probabilistic inference. This blog post focuses on the first perspective, but | highly recommend

—Yang Song and Stefano Ermon’s talk titled "Generati interested readers to learn about the alternative perspective of diffusion models as well (see a

. " .. - t blog by Lilian Weng)
__Jascha Sohl-Dickstein’s talk 'Deep Unsupervised Le, e blogbyLilanWeng).

—Sangwoo Mo's talk titled “Introduction to Diffusion Models” https://yang-song.github.io/blog/2021/score/

ti gy e



https://yang-song.github.io/blog/2021/score/
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Parameterizing probability distributions

* Probabllity distributions p(az) are a key building block in generative

modeling.
1. Non-negative: p(xz) >0
x) =

2. Sum-to-one: > p(x) =1 lor [ p(x)dz = 1 for continuous variables)

« Coming up with a non-negative function pe(X) IS not hard.
Given any function fg(x), we can choose

- go(x) = fo(x)?



Parameterizing probability distributions

* Probabllity distributions p(az) are a key building block in generative
modeling.
1. Non-negative: p(xz) >0
2. Sum-to-one: > p(x) =1 lor [ p(x)dz = 1 for continuous variables)
Sum-to-one is key!

» Total “volume" is fixed: increasing p(xirain) guarantees that Tirain
becomes relatively more likely (compared to the rest)
* Problem:
— go(x) > 0 is easy, but gg(x) might not sum-to-one.

- > 9o(x) = Z(0) # 1 in general, so go(x) is not a valid probability mass
function or density



Parameterizing probability distributions

* Problem: gg(x) > 0 is easy, but g (X) might not be normalized

« Solution: pe(X) — Volun}le(g@)ge(x) — fgg(lx)dxge(x)

Then by definition [ pg(x)dx =1
. Example. Choose gy (x) so that the volume is analytically as a function of 8.

_ (== M)Q

- Y(uo)(T) =€ 227 Volume is: e 2% dr = /2m0? _ Gaussian
2 gx(x) = e=?*. Volume is: fo e *dx = 5 — Exponential

3. go(x) = h(z)expid - T(x)}. Volume is exp{ A(0) }, where
A(0) = log [ h(z)exp{d - T(x)}dx — Exponential family
 Normal, Poisson, exponential, Bernoulli
* beta, gamma, Dirichlet, Wishart, etc.
» Function forms gg(X) need to allow analytical integration. Despite being
restrictive, they are very useful as building blocks for more complex
distributions.
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Likelihood based learning

* Problem: ggo(x) > 0 is easy, but gg(x) might not be normalized

» Solution: pg(x) = Volurgle(gg)ge (x) = 90 (1x)dx99 (%)

Typically, choose gg(x) so that we know the volume analytically. More
complex models can be obtained by combining these building blocks.
1. Autoregressive: Products of normalized objects py(x)pg:(x)(Y)

Jx f Po(X)Pyr (x) ( )dXdyzfxpe(X)/pef(x)( )dy dx = [ pe(x)dx =1
y

N\ 7
-~

=1
2. Latent variables: Mixtures of normalized objects ong(x) + (1 — Oé)pef (X)

Jeape(x) + (1 —a)pe (x)dx = a+ (1 —a) =1

10



Likelihood based learning

* Problem: ggo(x) > 0 is easy, but gg(x) might not be normalized

» Solution: pg(x) = Volurgle(gg)ge (x) = 90 (1x)dx99 (%)

Typically, choose gg(x) so that we know the volume analytically. More
complex models can be obtained by combining these building blocks.
1. Autoregressive: Products of normalized objects py(x)pg:(x)(Y)

Jx f Po(X)Py (x) ( )dXdyzfxpe(X)/pef(x)( )dy dx = [ pe(x)dx =1
y

N\ 7
-~

=1
2. Latent variables: Mixtures of normalized objects ong(x) + (1 — Oé)pef (X)

Jeape(x) + (1 —a)pe (x)dx = a+ (1 —a) =1

11



Energy-based model

po(x) = fexp(flé,(x))dx exp (fo(x)) = ﬁe) exp (fo(x))

The output of fg is a scalar value between —oo and .

e The volume/normalization constant

Z(0) = [exp (fo(x))dx

s also called the partition function. Why exponential (and not e.g. fo(x)?%)?

1.

Want to capture very large variations in probability. log-probability is the natural scale we
want to work with. Otherwise need highly non-smooth fy.

Exponential families. Many common distributions can be written in this form.
These distributions arise under fairly general assumptions in statistical physics
(maximum entropy, second law of thermodynamics).

. —fe (X) is called the energy, hence the name.

* Intuitively, configurations x with low energy (high f4(x)) are more likely.
12



Energy-based model

po(x) = fexp(flé,(x))dx exp (fo(x)) = ﬁe) exp (fo(x))

* Pros:
— extreme flexibility: can use pretty much any function fy(x) you want

« Cons:
— Sampling from pg(X) is hard
— Evaluating and optimizing likelihood pg(x) is hard (learning is hard)
— No feature learning (but can add latent variables)

» Curse of dimensionality: The fundamental issue is that computing Z(6)
numerically (when no analytic solution Is available) scales exponentially
In the number of dimensions of x.

 Nevertheless, some tasks do not require knowing Z(6)

13



Applications of Energy-based models

po(x) = fexp(flé,(x))dx exp (fo(x)) = ﬁe) exp (fo(x))

- Given x, x' evaluating pg(x) or pg (X) requires Z(6).
* However, their ratio

po(x) __ exp (fo(x) — fo (X))

po(x')
does not involve Z(6).

* This means we can easily check which one is more likely. Applications:

— Anomaly detection
— Denoising

14



Applications of Energy-based models

I | |

RN R0 avm

x| v x| v
E cat “class” noun k € P é
object recognition sequence labeling Image restoration

* Given a trained model, many applications require relative comparisons.
Hence Z(0)is not needed.

15
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Ising Model

* There is a true image vy € {0, 1}¥*3, and a corrupted image x € {0, 1}3*3. We know X,
and want to somehow recovery.

Markov Random Field

v\ v} vJ

%“@Q@

ypl
e" pixels

* \We model the joint probability distribution p( X) a

p(y,x) = 7 CXp (Zi Vi (Ti,Yi) + Z(z‘,j)eE Vij (Yi yj))

- Yy (xz', yz) . the I-th corrupted pixel depends on the i-th original pixel
- wij (yi, yj) . neighboring pixels tend to have the same value

« How did the original image y look like? Solution: maximize p(y|x). Or equivalently,
maximize ply, X).

17
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Product of Experts

- Suppose you have trained several models gy, (X), 79, (X), tg, (X) . They can be
different models (PixelCNN, Flow, etc.)

« Each one is like an expert that can be used to score how likely an input x Is.

« Assuming the experts make their judgments indpendently, It Is tempting to
ensemble them as

Po (X)QQQ (X)TQ:B (X)

* To get a valid probability distribution, we need to normalize

DP61,02,05 (X) — 2(91,192,93)61@1 (X)T@Q (X)t93 (X)

* Note: similar to an AND operation (e.g., probability i1s zero as long as one model
gives zero probability), unlike mixture models which behave more like OR

19



Product of Experts

Young
(EBM)

Young

AND
Female
(EBM)

Young ~~
AND Female
AND Smiling |

Young
AND Female
AND Smiling
AND Wavy Hair
(EBM)

Image source: Du et al., 2020.
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Restricted Boltzmann machine (RBM)

« RBM: energy-based model with latent variables

* Two types of variables:
— x € {0, 1} are visible variables (e.g., pixel values)
—z € {0, 1M are latent ones

e The joint distribution Is
Pwbe(x,2) = 2 exp (xI Wz +bx + cz) = £ exp (D" Y. " xizjw;; + bx + cz)

Hidden units

Visible units

 Restricted because there are no visible-visible and hidden-hidden
connections, I.e., X; X; Or z; z; terms In the objective

22
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Deep Boltzmann Machines

» Stacked RBMSs are one of the first deep generative models:

Deep Boltzmann machine

« Bottom layer variables v are pixel values. Layers above (h) represent
“higher-level” features (corners, edges, etc.).

» Early deep neural networks for supervised learning had to be pre-trained
like this to make them work.

24



Deep Boltzmann Machines: Samples

‘ #‘:rl \ o= £
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Image source: Salakhutdinov and Hinton, 2009. 4
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Energy-based model

po(x) = fexp(flé,(x))dx exp (fo(x)) = ﬁe) exp (fo(x))

* Pros:
— can plug in pretty much any function fg(x) you want

« Cons:
— Sampling is hard
— Evaluating likelihood (learning) is hard
— No feature learning

» Curse of dimensionality: The fundamental issue is that computing Z(6)
numerically (when no analytic solution Is available) scales exponentially
In the number of dimensions of x

27



Computing the normalization constant is hard

« As an example, the RBM joint distribution is

Pwb.e(X,2) = 5 exp (x' Wz + bx + cz)
where

— X € {0, 1}" are visible variables (e.qg., pixel values)
— z € {0, 1}M are latent ones

* The normalization constant (the “volume”) is

Z(W,b,c) = er{o,l}n ZzE{O,l}m exp (XTWZ + bx + cz)

* Note: it is a well-defined function of the parameters W, b, ¢, but no simple closed-form.
Takes time exponential In n, m to compute. This means that evaluating the objective
function py . (X, 2) for likelihood-based learning is hard.

 Observation: Optimizing the likelihood py . (X, Z) is difficult, but optimizing the un-
normalized probability exp (x! Wz + bx + cz) (wrt trainable parameters W, b, ¢) is easy.

28



Training intuition

* push down *
after training
fe I > fe
> X
. . ex X : )
e Goal: maximize p{fQZ<(9t)ra1n )} . Increase numerator, decrease denominator.

 Intuition: because the model is not normalized, increasing the un-normalized log-
probability fo (Xtrain) Oy changing 8 does not guarantee that X¢rain becomes
relatively more likely (compared to the rest).

* \We also need to take into account the effect on other “wrong points” and try to
“push them down” to also make Z(6) small.

29



Constrastive Divergence

push down *
after training

| B fy

> X

\\\\\\ g answer octans
train

: : eXp{fQ (X rain )}
. Gogl: maximize Z(Qt)

* Idea: Instead of evaluating.Z () exactly, use a Monte Carlo estimate.

- Contrastive divergence algorithm: sample Tsample ~ Pg take step on
Vo (fo (Ztrain ) — fo (Tsample )). Make training data more likely than typical
sample from the model.

30



Contrastive Divergence

« Maximize log-likelihood: maxyg fg (Ttrain ) — log Z(0)
» Gradient of log-likelihood:
Vo fo (Tirain ) — Vo log Z(0)
Vo fo (Terain ) — g5
Vofo (Ttrain ) — ﬁ | Voexp{fo(x)}dx
Vo fo (Tirain ) — ﬁ fexp {f@(ib)} vaQ(CC)dﬂf
Vofo (Tiraim ) — f eXp}{ggx)}Vefg (x)dx

v@f@ (-Ttrain ) — Eacsample [VHfQ (xsample )]
v&f& (xtrain ) — VHfH (zsample ) ’

where Lsample ™~ €XP {f9 (xsample )} /Z(@)
* How to sample?

el

31



Sampling from energy-based models

po(x) = fexp(flé,(x))dx exp (fo(x)) = ﬁe) exp (fo(x))

* No direct way to sample like in autoregressive or flow models. Main
ISsue: cannot easily compute how likely each possible sample Is

 However, we can easily compare two samples x,x’.

» Use an iterative approach called Markov Chain Monte Carlo:
1. Initialize x° randomly, t = 0

2. Let x’=x'+noise

o |f fo(X') > fo(x), let xt+1 = X’

* Else let x*1 = x’ with probability exp(fg(x’) — fo(x)
3. Goto step 2

* \Works In theory, but can take a very long time to converge

32



Sampling from energy-based models

 For any continuous distribution pg(x), suppose we can compute its
gradient (the score function) V4 log pg(x)

 Let mt(x) be a prior distribution that is easy to sample from.
* Langevin MCMC.

~x¥ ~ (%)

—Repeat x!T! ~ x! + eV logpg (xt) + V/2ez! for t =0,1,2,--- , T — 1,
where z* ~ N(0,1).

—lfe—>0and T — oo, we have X1 ~ pg(x) .

» Note that for energy-based models
Vx log pg(x) = Vi fo(x) — Vi log Z(0)

J/

=0

— vfo (X)

33



Modern energy-based models

Face samples Image source: Nijkamp et al. 2019 34



Modern energy-based models

ImageNet samples

Image source: Du et al. 2019 4
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Representations of Probability Distributions

Implicit models: directly represent the sampling process

Random AR
Generator

» Cons: hard to train, no likelihood, no principled model comparisons

38



Representations of Probability Distributions

Explicit models: represent a probability density/mass function p(x)

o

Bayesian networks

SEEe—
> <

v

\
\

4

)

(e.qg., VAESs)

X2 o 1]
1 |
) O O O
{fv.Y"
\ Aol - B

O OO0O0O0
O OOO0OO0
OO0 @OO0O

olfeYe)e
O/6i® ® O

O®® OO0

MRF

QO .o 0

models

Autoregressive

Data space X Latent space Z

Flow models

* Cons: need to be normalized — balance expressivity and tractability

39



Representation of Probability Distributions

Alternative: The gradient of a probability density wrt the input dimensions
Vxlogp(x) Score

NOT the aradient:w.r.t. model

vy
0.25F ¥ o
P \
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- & . \
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(pdf and score)
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Score Estimation

. - i.i.d.
* Given: i.1.d. Samp|eS {X17 X2y 7XN} 1}\'/ pdata(x)
» Task: Estimating the score Vylog pgata(x)
« Score Model: A trainable vector-valued function Sg(x) : R” — R”

* Objective: How to compare two vector fields of scores?
e

—

S
—~ Average

vx log pdata(x) I
Fuclidean distance
over the space

S0 (X)

41



Score Estimation

. . d.
* Given: i.1.d. Samp|eS {X17 X2y XN} 1}\'/ pdata(x)
» Task: Estimating the score Vylog pgata(x)
« Score Model: A trainable vector-valued function Sg(x) : R” — R”

* Objective: How to compare two vefjor fields of scores?

1 2
§]Epdata | Vx 1og plata(x) — s6(x)|[5]

(Fisher divergence)
* Integration by parts

E

1

Paata | 5 Hsa(x)H; +trace(vx36(x))] Score I\/Iatchlng

Hyvarinen (2005)

%Z 5 o3 + trace(Vcso(x:))



From Scores to Samples: Langevin Dynamics
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Score-Based Generative Modeling
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Adding Noise to Data for Well-Defined Scores

» Scores can be undefined when
— The support of data distribution is on a low-dimensional manifold
— The data distribution Is discrete

e Solution: adding noise

Unstable! 64646 Stable!

."'-I

0.0e81+0

. 1 .1y

) ) A o)
W -le+S - '
O 0.0e4+0

— |
049 f { i f ; P
Rt {CHD
ry, : 7 9t A
\ [ .Z2GTL

10k 20k 30k 40k 50k O 10k 20k 30k 40k 50k

# of kerations # of lterations

Data unperturbed Data perturbed with A/(0; 0.0001)

LOS
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Challenge in Low Data Density Regions

Data density Data scores Estimated scores

1

N
2 1 2
i]Epdata[”Vx logpdata(x) - 39(")”2] ~ IN ; ”Vx logpdata(xi) — SG(Xi)llz
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Adding Noise to Data for Better Score Estimation

 Random noise provides samples in low data density regions.

Perturbed density

Perturbed scores
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Sample Quality vs. Estimation Accuracy
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Joint Score Estimation via

Noise Conditional Score Networks
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Lecture overview

 Energy-based models

 Score-based Models
— Probability Distribution and Score functions
— Score-based Generative Models
— Sampling from a Score-based Model
— Latent Score-based Generative Models

* Denoising Diffusion Models
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Joint Scores to

Samples
* Sample using 01,092, -+ ,07, sequentially with Langevin dynamics.

» Samples used as initialization for the next level.

Annealed Langevin Dynamics

« Anneal down the noise level.

»-c‘ciu .-‘.«%voﬁs re A \o\ e
? ‘ - ."O.v‘o. r R B R B K A AT
v £ ¥ cf *oo \
~ S " ‘“ ‘PR A A g A A A——
‘.‘ ‘Q\~\OAA - A A A A — \ \
-, . ., T
e R S et
Lt e o S
- .®
0\‘0“00"‘ 000. 'l.”"« Y W Y Y N Ow- * ﬁ * \ \
o~
S EEEEE.
”ﬁ » ‘o . P v T VY % -
AR S . VY bR
« Ygivm L&t v v w
°s . .. ) s [ PR SR AGI A A
d 4 =i ¢ ﬂ 3 | T T T
O NN Y Y Yooy
fd 4 49 .vr’tﬂv 11/044 «ooowv\
£ A b AR R N e WS A
\ \ ‘ %J ’ I  } - A & “ vy s ’ .0 . y ‘.‘
A S O B VR S A St 8L
-
\ \ ‘ * » 4 - Ay = o.oo oooo.oo.o
\ \ ‘ * \ —— e = e o aog. f'....?.. 2
[t P s
— - - e W OO. .Ol ’..00 >
\ \ \ e i ‘0' &8 oo‘. 18
\ . «* loooo
\ - oo, v = oooa v &
P e e P . P G i B SRS

AN 0 b 2. ” \‘\\\\.lo\sd\b\\o.l\\h\
.~ 8 : .\Oﬂb o » m bwt\ol\i\&\b\\\\\\
- inae, *, A e e
s Mo S W
-m T.l.‘.“.‘ut“‘.\\\\
L - ..O‘Q.‘I‘I‘ll\o ® \
e e v
v § - N.‘ JOAQ.-‘.O‘I‘.. ¥ ‘
b B T T 2 b
g ed & T N Ve u - -
fou 10”..‘ Y rotvodol - w ® ' « ‘ ‘ \ \
. e W TN R N LI O I O
4 4 1&. A P % % e v o “c O S
> [ O P | —.”oo‘./ oro » oo.» X o - o< v »
2 L
7 oA r“ 'o’ o’ » n )oo; T e .o r \o.w
\0\0‘0$ | ’o'o . & M AP O el o~ 2
L4 F Y An W o DR
2F b bod o o 0% e e e
- = bt .
“.:».\\erv:,a
\ ” \‘I.“".."' - \” . . - ™
- L k3
\\ \ \\‘\.\t\h\'n“‘ v C‘ ‘.0 -
“\\\\_\\1\1\\\‘ \ion\o\ e o B -o
A TN T XA € 4 dek b v N N

. .
n\.‘\b\lll\b\oﬂ‘ﬂl\bo\
. °

«?%e -~ ° ™
; ..‘-*.\‘\0‘\\\0\\

RN
- ‘o‘o‘. * %0 ”
BT N~ < ey T
.ohu BV %< % 4,2 A

<7 Ty v % - s s s
/1 ﬁo LS fo.foi. v ;hoo. - Mo.o\ boo\
“ \ ‘o* .—OO Ao oflou . e ooo- o.oo >
N. f lefafet Pty d AR e ...\
R E LW Wi e
\ \ \.\o‘ “ .? o..o.. 2% e .oo % L
\ho\\\\k“m\~o~.o. ‘oooa
IRRSEPEE T
v\ \ \ \ MOON\ LA \oﬂo\oq \0..0.0 Lo 004.4
\NY%oo\o 7 ..Q.o\ P 4 \o.l.os 4 PRUER g

52



ing

Sampli

Experiments

Ry

ALY

i

.
»

-

W

Q.‘c!
A g

g

..bi“..ﬂ“ ¥

v
L% B |

ot

’

53



Experiments: Sample Quality

CIFAR-10 Unconditional

Model Inception Score FID score
(higher is better) | (lower is better)

PixelCNN 4.60 65.93
EBM 6.02 40.58
SNGAN 8.22 + 0.05 21.7
Progressive GAN 8.80 + 0.05 -

NCSN (ours) 8.87 £0.12 25.32



Experiments: Inpainting
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Inpainting

Experiments:
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Reversing the SDE for sample generation

_ Forward SDE (data — noise)

* One can generate samples by reversing () dx = £(x, )dt + g(t)dw ,@
the perturbation process with annealed
Langevin dynamics.

* For infinite noise scales, we can e e
analogously reverse the perturbation dx = [f(x,t) — ¢* (£)Vx log pi (x)] dt + g(t)dw @
process for sample generation by using Reverse SDE (noise — data)
the reverse SDE.

—— Stochastic process

Perturbing data to noise with a continuous- Generatlng data from noise by reversing the
time stochastic process. perturbation procedure.



1024 x 1024 samples on FFHQ dataset







Sample Quality

Table 2: NLLs and FIDs (ODE) on CIFAR-10.

Table 3: CIFAR-10 sample quality.

Model NLL Test | FID |

RealNVP (Dinh et al., 2016) 3.49 -
iResNet (Behrmann et al., 2019) 3.45 -
Glow (Kingma & Dhariwal, 2018) 3:35 -
MintNet (Song et al., 2019b) 3.32 -
46.37

Model FID| IS1
Conditional
BigGAN (Brock et al., 2018) 14.73 9.22

StyleGAN2-ADA (Karras et al., 2020a) 2.42 10.14

Unconditional

StyleGAN2-ADA (Karras et al., 2020a) 2.92 9.83
NCSN (Song & Ermon, 2019) 25.32 8.87 + .12
NCSNv2 (Song & Ermon, 2020) 10.87 8.40 £ .07

Residual Flow (Chen et al., 2019) 3.28

FFJORD (Grathwohl et al., 2018) 3.40 -
Flow++ (Ho et al., 2019) 3.29 -
DDPM (L) (Ho et al., 2020) <3.70° 13.51
DDPM (Lsimpie) (Ho et al., 2020) < 3.75°  3.17
DDPM 3.28 3.37
DDPM cont. (VP) 3.21 3.69
DDPM cont. (sub-VP) 3.05 3.56
DDPM++ cont. (VP) 3.16 3.93
DDPM-++ cont. (sub-VP) 3.02 3.16
DDPM++ cont. (deep, VP) 3.13 3.08
DDPM++ cont. (deep, sub-VP) 2.99 2.92

DDPM (Ho et al., 2020) 3.17 946 + .11
DDPM++ 2.78 9.64
DDPM++ cont. (VP) 2.55 9.58
DDPM-++ cont. (sub-VP) 2.61 9.56
DDPM-++ cont. (deep, VP) 2.41 9.68
DDPM++ cont. (deep, sub-VP) 2.41 9.57
NCSN++ 2.45 9.73
NCSN++ cont. (VE) 2.38 9.83

NCSN++ cont. (deep, VE) 2.20 9.89
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Lecture overview

 Energy-based models

 Score-based Models
— Probability Distribution and Score functions
— Score-based Generative Models
— Sampling from a Score-based Model
— Latent Score-based Generative Models

* Denoising Diffusion Models
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Latent Score-based Generative Models

» Score-based generative models (SGMs) are applied directly in data
space and often require 1000s of network evaluations for sampling.

* |dea: Can we train SGMs in a latent space?

Encoder R p(zo) Latent Space Diffusion p(z1)

Datax

X
N
D

Reconst. < < —
p(x|zo) Decoder KL(q(zo|x)||p(zo)) Latent Space Denoising
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Latent Score-based Generative Models

L(x,0,0,9) = Ey, (5,x) |~ log py(x | 20)] + KL(gg(20 | x)[|re(z0))

— Mg (z0|x) [_ log py (x|z0)] +1Eq¢ (zo|x) [log 94 (2o |x)] +EQ¢(ZO |x) [— log pe (Zo)]
reconstr:gion term negative ergorder entropy cross;;tropy

* A simple expression for the cross-entropy term in the variational loss

» A parameterization of the latent space score function, which mixes a
Normal distribution with a learnable SGM.

Also employs a SDE-based variance reduction importance
sampling schemes to stably train deep LSGMs.
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Latent Score-based Generative Models

The evolution of the latent variables under the reverse-time generative process by
feeding latent variables from different stages along the process to the decoder to map
them back to iImage space
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Latent SGM (LSGM) Samples

-

(a) CIFAR-10 (b) CelebA-HQ-256

(d) MNIST
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Traversing in the latent space of LSGM.

CIFAR-10 - CelebA-HQ-256
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LSGM Sample Quality

Table 2: Generative performance on CIFAR-10. Table 3: Generative results on CelebA-HQ-256. ° L S G I\/l O b-t a | NS -t h e S OT A

Method NLL/| FID)| Method NLL| FID|
LSGM (FID) <343 210 FID score of 2.10 on
LSGM <0.70 7.22
MOt io% o Qurs VAE Backbone  0.70  30.87 :
anc =7, : i - _
VDVAE [21] 287 - VAEBM [76] : 20.38 '
AR ) Saw B NaEDy L e previous GANs and
VAEs  NCP.VAE [56] . 2408 DC-vak 1] _ e SGMs.
BIVA [48] 3.08 - Score SDE [2] - 7.23
DC-VAE [77] - 17.90 ..
NG — 5% Flows  GLOW [85] 103 6893 * On CelebA-HQ-256, it is
Rec. Likelihood [40] 3.18 9.36 _ . .
Score  DSM-ALS [39] 365 - CHEEED & e 0.1 on a par with previous
DDPM [1] 375 3.17 Adv. LAE [87] - 19.21 _ _
Improved DDPM [26] 2.94 11.47 GANs VQ-GAN [64] i 10.70
DE (NCSN++) [2] - 2. :
— —— to 600x faster in
ANF [18] 305 - ;
mpling.
DistAug aug [78] 2.53 42.90 S a p g
Sp. Transformers [79] 2.80 -
Aut. Reg. 6-VAE [80] 283 -
PixelSNAIL [81] 285 -
Pixel CNN-++ [82] 202 -
AutoGAN [83] - 1242
GANS G 1cGAN2-ADA [84] -  2.92
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Conclusion

» Score-based generative modeling

— No need to be normalized / invertible
» Flexible architecture choices
— No minimax optimization
 stable training
* a natural measurement of training progress / model comparison

 Adding noise and annealing the noise levels are critical

» Better or comparable sample quality to GANSs.
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Related Work

» Generative Stochastic Networks (Bengio et al. (2013), Alain et al. (2016))
— Sampling starts close to data points.
— Need MCMC during training with walkback.

* Nonequilibrium Thermodynamics (Sohl-Dickstein et al. (2015)), Infusion
Training (Bordes et al. (2017)), Variational Walkback (Goyal et al. (2017))
— Likelihood-based training.

— Need MCMC during training.
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Experiments: Nearest Neighbors




Future Directions

* How to apply score-based generative modeling to discrete data’
» Theoretical guidance on how to choose noise levels?
» Better architecture for higher resolution image generation?

* Improved score estimation?
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Image: Professor Farnsworth (Futurama)

Good news, everyone!

* Assignment 2 deadline Is Q a)

extended to Friday, April 8.

* Project proposals deadline Is
extended to Sunday, April 10

&



Lecture overview

Energy-based models
 Score-based Models

Denoising Diffusion Models
— Diffusion Probabilistic Models
— Denoising Diffusion Probabilistic Models
— Denoising Diffusion Implicit Model
— Applications
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Lecture overview

 Energy-based models
 Score-based Models

* Denoising Diffusion Models
— Diffusion Probabilistic Models
— Denoising Diffusion probabilistic Models
— Denoising Diffusion Implicit Model
— Applications
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Observation 1: Diffusion Destroys Structure

* Dye density represents probability density

» Goal: Learn structure probability density

* Observation: Diffusion destroys structure

Data distribution  =———  Uniform distribution
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ldea: Recover Structure by Reversing Time

 \What if we could reverse time?

» Recover data distribution by starting from uniform
distribution and running dynamics backwards

Data distribution — < ———— Uniform distribution
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Observation 2: Microscopic Diffusion is Time
Reversible

* Microscopic view

 Brownian motion

* Position updates are small Gaussians
— Both forwards and backwards in time

Nanoparticles in water
Video credit: Rutger Saly s



Overview of Diffusion Probabilistic Models

+ (Gaussian noise

ﬁ

Denoising model

_

Clean Noisy

Slide adapted from Kiaming Song 79



Diffusion Probabilistic Models

Different noise levels

+ Gaussian

noise I

Many denoising

' models

Slide adapted from Kiaming Song 80



Overview of Diffusion Probabilistic Models

» Destroy all structure in data distribution using diffusion process

» L earn reversal of diffusion process

— Estimate function for mean and covariance of each step in the reverse diffusion
process (binomial rate for binary data)
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Diffusion Probabilistic Models

» Diffusion model aims to learn the reverse of noise generation procedure

—Forward step: (lteratively) Add noise to the original sample
—The sample X converges to the complete noise X7 (e.g., N(0,1))

p()xtllxt
@ @ — O H

\__—’

;)
!)

Forward (d|ffu3|on) process
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Diffusion Probabilistic Models

» Diffusion model aims to learn the reverse of noise generation procedure

—Forward step: (lteratively) Add noise to the original sample
—The sample X converges to the complete noise X7 (e.g., N(0,1))

—Reverse step: Recover the original sample from the noise
—Note that It Is the “generation” procedure

Reverse process

pGthlxt
@ @ — O H

s_——’

;)
’)

Forward (d|ffu3|on) process
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Diffusion Probabilistic Models

» Diffusion model aims to learn the reverse of noise generation procedure

—Forward step: (lteratively) Add noise to the original sample

—Technically, it is a product of conditional noise distributions q(X¢|x¢_1)
» Usually, the parameters S, are fixed (one can jointly learn, but not beneficial)
* Noise annealing (i e., reducing noise scale B, < B,) Is crucial to the performance

q (x1.7 | X0) Hq Xt | Xe—1), q(x¢|xe—1) =N (Xt; v 1-— ﬁtXt—1,5t1>

84



Diffusion Probabilistic Models

» Diffusion model aims to learn the reverse of noise generation procedure

—Forward step: (lteratively) Add noise to the original sample

—Technically, it is a product of conditional noise distributions q(X¢|x¢_1)
» Usually, the parameters S, are fixed (one can jointly learn, but not beneficial)
* Noise annealing (i e., reducing noise scale B, < B,) Is crucial to the performance

q (x1.7 | X0) Hq Xt | Xe—1), q(x¢|xe—1) =N (Xt; v 1-— ﬁtXt—1,5t1>

—Reverse step: Recover the original sample from the noise

— |t is also a product of conditional (de)noise distributions pg(x¢=1|x¢)

—Use the learned parameters: denoiser uy (main part) and randomness X,
T

po (Xo0.7) == p (XT) Hpe (xe—1 [ %¢), po(xe—1 | x¢) =N (Xe—1; g (X, 1) , X (X4, 1))
t=1 85



Diffusion Probabilistic Models

» Diffusion model aims to learn the reverse of noise generation procedure
— Forward step: (lteratively) Add noise to the original sample
— Reverse step: Recover the original sample from the noise

(x1.7 | X0) Hq (x¢ | xe—1), q(x¢ ]| xp—1) =N (Xt; v1-— tht—laﬁtl)

— Training: Minimize varlat|ona| lower bound of the model

E [— log pg (XO)] < Eq [— log qiil(;olzio)]
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Diffusion Probabilistic Models

» Diffusion model aims to learn the reverse of noise generation procedure
— Forward step: (lteratively) Add noise to the original sample
— Reverse step: Recover the original sample from the noise

(x1.7 | X0) Hq (x¢ | xe—1), q(x¢ ]| xp—1) =N (Xt; v1-— tht—laﬁtl)

— Training: Minimize varlat|ona| lower bound of the model

E [— log pg (XO)] < Eq [— log qiil(jolzio)]

|t can be decomposed to the step-wise losses (for each step t)

IE:q[pKL (g (X7 | Xo) |lp (%)) ‘|‘ZDKL q (xt—1 | x¢,%0) |[po (X¢-1 | Xt)z\—logpe (%0 | xl)/]

LT Li 4 Lo
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Diffusion Models as a kind of VAE

chﬁ 21!913 q(b ZQ\zl

po(z|z1)  po(z1|z2)

A Hierarchical VAE A Diffusion Probabilistic Model

IE:q[pKL (g (X7 | Xo) |lp (%)) ‘|‘ZDKL q (xt—1 | x¢,%0) |[po (X¢-1 | Xt)z\—logpe (%0 | Xlz]

LT Li_1 LO
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Diffusion Probabilistic Models

» Diffusion model aims to learn the reverse of noise generation procedure

— Training: Minimize variational lower bound of the model
|t can be decomposed to the step-wise losses (for each step t)

Eq[Dkw (¢ (x7 | %0) |lp (x7)) + ZPKL (q (x¢—1 | X¢,%0) [lpo (x¢—1 | x¢)) —logpg (%0 | x1)]

LT Lt—l LO

— Here, the true reverse step q(x:_1|x¢,Xo) can be computed as a closed form of g,
* Note that we only define the true forward step

q (Xt—l \ Xt,XO) =N (Xt—l; [t (Xt,XO) aB?I)
where [, (x¢,%0) := %0 + Bx

— Since all distributions above are Gaussian, the KL divergences are tractable
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Diffusion Probabilistic Models

» Diffusion model aims to learn the reverse of noise generation procedure

— Network: Use the image-to-image translation (e.g., U-Net) architectures
« Recall that input is x, and output Is x,4, both are images
* |t is expensive since both input and output are high-dimensional

* Note that the denoiser uq4 (x;, t) shares weights, but conditioned by step t

Gy

)Zx downsampling
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Diffusion Probabilistic Models

» Diffusion model aims to learn the reverse of noise generation procedure

— Sampling: Draw a random noise x; then apply the reverse step p(X¢—1|X¢)

|t often requires the hundreds of reverse steps (very slow)

— Early and late steps change the high- and low-level attributes, respectively

W

%
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Diffusion Probabilistic Models — CIFAR10

FYEED- FEEEEE POEEDT EENaER=
RELILDEYy EEEEEE MEILOEY DEREIEEE
BT HEE GREEEEE AVEEE =2E0N3
EEAYOE EERENE EREEYEOE 5NSXN-
HA<AELSD HEREED H<BRLD SAYEEE
EEEGOE EEEENE EEAENRRE N0 JSEE
(a) el e () =8 v (d)l(i .

Figure 3. The proposed framework trained on the CIFAR-10 (Krizhevsky & Hinton, 2009) dataset. (a) Example holdout data (similar to training
data). (b) Holdout data corrupted with Gaussian noise of variance 1 (SNR = 1). (c¢) Denoised images, generated by sampling from the posterior
distribution over denoised images conditioned on the images in (b). (d) Samples generated by the diffusion model.
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Lecture overview

 Energy-based models
 Score-based Models

* Denoising Diffusion Models
— Diffusion Probabilistic Models
— Denoising Diffusion Probabilistic Models
— Denoising Diffusion Implicit Model
— Applications
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Denoising Diffusion Probabilistic Model

 DDPM reparametrizes the reverse distributions of diffusion models
— Key idea: The original reverse step fully creates the denoiser ugy(x;, t) from x,

* However, X, and x, share most information, and thus it is redundant
— Instead, create the residual €4(x,,t) and add to the original x,

e Set 29(xt,t) = 0't21

Training resembles denoising score matching
Sampling resembles Langevin Dynamics

Initiated the diffusion model boom!
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Denoising Diffusion Probabilistic Model

 DDPM reparametrizes the reverse distributions of diffusion models
— Key idea: The original reverse step fully creates the denoiser ugy(x;, t) from x,

* However, X, and x, share most information, and thus it is redundant
— Instead, create the residual €4(x,,t) and add to the original x,

e Set Eg(xt,t) = O’?I

— Formally, DDPM reparametrizes the learned reverse distribution as
1

P (X¢,t) = Ja (Xt - \/16_t 5 €0 (Xtyt)>

and the step-wise objective L., can be reformulated as

Et,xo,e [ }E — 69(\/671‘,)((] T vV 1 — ateat) Hzl
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Denoising Diffusion Probabilistic Model

Algorithm 1 Training Algorithm 2 Sampling
1: repeat 1: x7 ~ N(0,I)
2: xo ~ q(xo) 2: fort=1T,...,1do
3: ¢~ Uniform({L,...,T}) 3: z~N(0,I)ift > 1,elsez=0
4: €~ N(O, I) . __ 3 1—oy
5: Take gradient descent step on 4 X1 = = (X — g €0(Xt t)) T 02

Vo ||e — €o(v@rxo + VI — die, t)|° 5: end for

6: until converged 6: return xo

| =" — | ! ’
el

BEEE S = ¢ o« O XN NN N

N . N - — . v
P - ) o . A o L
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Denoising Diffusion Probabilistic Model

Algorithm 1 Training Algorithm 2 Sampling
1: repeat 1: x7 ~ N(0,I)
2: xo ~ q(xo) 2: fort=1T,...,1do
3: ¢~ Uniform({L,...,T}) 3: z~N(0,I)ift > 1,elsez=0
4: €~ N(O, I) . __ 3 1—oy
5: Take gradient descent step on 4 X1 = = (X — g €0(Xt t)) T 02

Vo ||e — €o(v@rxo + VI — die, t)|° 5: end for

6: until converged 6: return xo

| =" — | ! ’
el

BEEE S = ¢ o« O XN NN N

N . N - — . v
P - ) o . A o L
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Denoising Diffusion Probabilistic Model

Algorithm 1 Training Algorithm 2 Sampling Algorithm 1 Annealed Langevin dynamics.

s wepeat 1: x7 ~ N(0,I) Require: {0;}" ¢ T.

% ;(0 ’\[’IQ(}(O) 1 T 2: fort=1,..., 1do 1: Initialize Xq

4 ezf\}l(lomil)n({ """ ) 3: 2~ N(OI)ift>1elsez=0 2. fori ¢ 1to L do

5: Take gradient descent step on 4 X1 = ﬁ Xt — %69 (Xt,t)) + o012 it ?i <t— € '10'%2/%%(1 > «; 18 the step size.

Vo |le — eo(varxo + VI — aue, t)||” 5: end for ort <+ 1to7 do
6: until con|\|/erged H 6: return xo 9 Draw z; ~ N OSO, I)
: .. . . _ _ 6: Xt ¢ Xp—1 + Ezse(it—l,o'i) + \/Q; 2
(Like Denoising Score Matching)  (Like Annealed Langevin Dynamics) 7 eisd foi

8 X0 — X7
9: end for

* Training Is like Denoising Score Matching. Eeincn

« Sampling is like Annealed Langevin Dynamics.

» Can we think of a denoising diffusion model as a model trained to
optimally step through the annealing levels of the Langevin sampling
procedure’

Slide adapted from John Thickstun 9g



Denoising Diffusion Probabilistic Model

EAiimm v SPNE S S WEEEE R
e T RE -S| el
R R 6w Bl o B LEESRE 7 1 2T IR P
B T = S DA N ISAERET D,

IMIWHWGI i A MMEAT R =
il élﬂgﬂﬂﬁlﬂilﬂzildh
hﬂh“ﬂ!wml%ﬁﬂ.llH.mll
= sk BN e W=l .l M E Y
Aﬂﬁﬁllﬁzﬂllllﬁﬂﬂﬂﬂﬁﬂ
SIS e AT\ e O R A

Unconditional CIFAR10 samples. Inception Score=9.46, FID=3.17.
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Table 1: CIFAR10 results. NLL measured in bits/dim.

Model IS FID NLL Test (Train)
Conditional

EBM [11] 8.30 37.9

JEM [15] 8.76 38.4

BigGAN [3] 9.22 14.73

StyleGAN2 + ADA (28] 10.06 2.67

Unconditional

Diffusion (original) [50] < 5.40
Gated PixelCNN [56] 4.60 65.93 3.03 (2.90)
Sparse Transformer [7] 2.80
PixellQN [40] 5.29 49.46

EBM [11] 6.78 38.2

NCSNv2 [53] 31.75

NCSN [52] 8.87+0.12 25.32

SNGAN [36] 8.224+0.05 21.7

SNGAN-DDLS [4] 9.0940.10 15.42

StyleGAN2 + ADA [28] 9.74 + 0.05 3.26

Ours (L, fixed isotropic 22) 7.67£0.13 13.51 < 3.70 (3.69)
Ours (Lgimple) 9.461+0.11 3.17 <:3.75(3.72)

Distortion (RMSE)

80

60

40

20

Denoising Diffusion Probabilistic Model

...l ® o
0.5 1
Rate (bits/dim)
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Denoising Diffusion Probabilistic Model
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Denoising Diffusion Probabilistic Model
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Lecture overview

 Energy-based models
 Score-Based Models

* Denoising Diffusion Models
— Diffusion Probabilistic Models
— Denoising Diffusion Probabilistic Models
— Denoising Diffusion Implicit Model
— Applications
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Denoising Diffusion Implicit Model

* DDIM roughly sketches the final sample, then refine it with the reverse
process

* Motivation:
— Diffusion model is slow due to the iterative procedure
— GAN/VAE creates the sample by one-shot forward operation
— Can we combine the advantages for fast sampling of diffusion models?

* Technical spoiller:
Instead of naively applying diffusion model upon GAN/VAE,
DDIM proposes a principled approach of rough sketch + refinement

104



Denoising Diffusion Implicit Model

 DDIM roughly sketches the final sample, then refine it with the reverse process
— Key idea:
* Given x,, generate the rough sketch x, and refine q(x;_1|x¢, Xg)
« Unlike original diffusion model, it is not a Markovian structure

Q=96 @ =006

:133’.730 .’L'() £E2|$1 w()

(J("B'z\wl)

Figure 1. Graphical models for diffusion (left) and non-Markovian (right) inference models.
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Denoising Diffusion Implicit Model

 DDIM roughly sketches the final sample, then refine it with the reverse process
— Key idea: Given xt generate the rough sketch x, and refine ¢(x;—1|x¢, Xo)

2 9
@ @ — @—

q 333’3” 330 q 332|331 -’B()

— Formulation: Define the forward distribution ¢(x:—1|X¢, X0) as

Lt — 4/ OtL0
Qo (T1—1 | @1, T0) = (\/at 1T + \/1 — g1 — 0} - Ao afI)

then, the forward process is derived from Bayes’ rule

4o (wt 1 | mtamO) 4o (wt ‘ ZB())
4o (wt—l | mO)

4o (wt \ Lt 17330)
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Denoising Diffusion Implicit Model

 DDIM roughly sketches the final sample, then refine it with the reverse process
— Key idea: Given x,, generate the rough sketch x, and refine q(x:—1|x¢,Xo)

% 2 9
@ @ —— @— @

q 333’3” 330 q 332|331 -’B()

5 "'.9'
3 g. 2

4o (CBt—l | iBt,CL’O) 4o (CL’t \ wo)
9o (T1—1 | o)

— Formulation: Forward process is ¢ (z: | x:—1, o) =

(t
. x; — V1 — o€’ (@
and reverse process is ;1 = ,/Ttl( i \@t o t)> +§/1 o :af-egt)(thJr e

random noise

~ ~ -~ “direction pointing to @x; ”

”predicted xy”

— Training: The variational lower bound of DDIM is identical to the one of DDPM
* |t is surprising since the forward/reverse formulation is totally different
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Denoising Diffusion Implicit Model

» DDIM significantly reduces the sampling steps of diffusion model
— Creates the outline of the sample after only 10 steps (DDPM needs hundreds)

sample timesteps sample timesteps
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Denoising Diffusion Implicit Model

N —
o o

total steps
o
o

100 §

1000 §

Generating CIFAR10 samples Generating CelebA samples
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total steps

Denoising Diffusion Impl

Step O

10

20

wu
o

100

1000

Generating LSUN Church samples

Step 0

Generating LSUN Bedroom samples
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Denoising Diffusion Implicit Model

» DDIM significantly reduces the sampling steps of diffusion model
— Creates the outline of the sample after only 10 steps (DDPM needs hundreds)

Table 1: CIFARI10 and CelebA image generation measured in FID. n = 1.0 and ¢ are cases of
1 (although Ho et al. (2020) only considered 7' = 1000 steps, and S < 7' can be seen as
simulating DDPMs trained with S steps), and n = 0.0 indicates DDIM,

CIFARIO (32 x 32) CelebA (64 x 64)
S 10 20 50 100 1000 10 20 50 100 1000

0.0 | 13.36 6.84 4.67 4.16 4.04 1733 13.73 917 6.53 3.51
02 | 1404 7.11 4.77 4.25 4.09 17.66 14.11 9.51 6.79 3.64
051 1666  8.35 D2 4.46 4.29 1986 16.06 11.01 8.09 4.28
1.0 | 41.07 1836  8.01 5.78 4.73 33.12 2603 1848 1393 5098

o 36743 133.37 3272 9599 3.17 | 299.71 18383 71.71 4520  3.26
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Lecture overview

Energy-based models
 Score-based Models

Denoising Diffusion Models
— Diffusion Probabilistic Models
— Denoising Diffusion Probabilistic Models
— Denoising Diffusion Implicit Model
— Applications

112



Diffusion Models for Image Generation

» Beat BIgGAN and StyleGAN on generating high-resolution images

Model FID sFID Prec Rec

LSUN Bedrooms 256 x256

DCTransformer' [42] 640 6.66 0.44 0.56

DDPM [25] 4.89 9.07 0.60 045

IDDPM [43] 424 821 0.62 0.46

StyleGAN [27] 235 6.62 0.59 048

ADM (dropout) 1.90 5.59 0.66 0.51

ImageNet 512 x512

BigGAN-deep [5] 843 8.13 0.88 0.29
model (FID 3.85) ADM 2324 10.19 0.73 0.60

ADM-G (25 steps) 841 9.67 0.833 047
ADM-G 772 6.57 0.87 0.42
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Diffusion Models for Density Estimation

» Beat autoregressive models on likelihood score

CIFAR-10 without data augmentation ImageNet 64x64
State-of-the-art models in each of the 5 past years State-of-the-art models in each of the 5 past years
53 (lower is better) (lower is better)
a7 Autoregressive models
311 Autoregressive models [ |
I 3607 Gated pixelc
= PixelRNN z ated PixelCNN
» 3.0 8
[ 1 3.55
3 Image 9
€ 2.9+ Transformer & 1 50
o Sparse Sparse e
g 5% Transformer Transformer g Sparse Roiiting
o T 3.45 4 Transformer - - sformer
g g VDM
(ours)

£ 2.7 ]

2.6 1 3.35 -

2.5 3.30 -

2016-2017 2018 2019 2020 2021 2016-2017 2018 2019 2020 2021
Year Year
(a) CIFAR-10 without data augmentation (b) ImageNet 64x64

Figure 1: Autoregressive generative models were long dominant in standard image density estimation benchmarks. In

contrast, we propose a family of diffusion-based generative models, Variational Diffusion Models (VDMs), that
outperforms contemporary autoregressive models in these benchmarks.



Diffusion Models for Image Editing

Stroke Painting to Image Stroke-based Editing

Source Input (guide) . Output

Figure 1: Stochastic Differential Editing (SDEdit) is a unified image synthesis and editing frame-
work based on stochastic differential equations. SDEdit allows stroke painting to image, image

compositing, and stroke-based editing without task-specific model training and loss functions. e



Diffusion Models for Image Editing

“a man with red hair” “a vase of flowers” 116



Diffusion Models for Super Resolution

Input : 64x64

Results of a SR3 model (64%x64 — 512x512), trained on FFHQ, and applied to images outside of

the training set.
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Diffusion Models are also effective for
non-visual domains

WA\ Al MWM:WWW

Qddta.(il?o) q(z1|zo) q(z2|z1) d1ffus1onprocess q(zr|zT-1)

G ) o 6

reverse process
pe(xolwl) 331|-’172 Pe rT— 1|SBT DPlate nt(-’ET)

generated at t=0 t=T/4 t=T/2  t=T(stationary)

https://github.com/heejkoo/Awesome-Diffusion-Models
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https://github.com/heejkoo/Awesome-Diffusion-Models

Diffusion Model is All We Need?

* Trilemma of generative models: Quality vs. Diversity vs. Speed

— Diffusion model produces diverse and high-quality samples,
but generations Is slow

High
Quality

Samples

Generative
Adversarial 7 ‘,.
Networks - \

-y Denoising
:  Diffusion
4 "\ Models

}

Variational Autoencoders.,
Normalizing Flows
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Summary

* New golden era of generative models
— Competition of various approaches: GAN, VAE, flow, diffusion models
— Also, lots of hybrid approaches (e.g., score SDE = diffusion + continuous flow)

* Which model to use? 4 High \y "
. . Generative | ‘ Quality | \ Denoising
— Diffusion model seems to be a nice option Networks ¢\ Samples /; , Bt
for high-quality generation ._// %, |

— However, GAN is (currently) still a
more practical solution which needs (
fast sampling (e.g., real-time apps.)

Fast
Sampling

Variational Autoencoders,
Normalizing Flows
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Next lecture:
Strengths and Weaknesses of
Current Models



