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Synthetic image sampled from BigGAN, Flow++ and

VQ-VAE-2 trained onslmageNet

Previously on COMP547

* Autoregressive models
 Flow models
e | atent Variable models

* Implicit models
 Diffusion Models




Lecture overview

 Motivation

» Reconstruct from a corrupted (or partial) version
* Proxy tasks in computer vision

» Contrastive Learning

Disclaimer: Much of the material and slides for this lecture were borrowed from
—Pieter Abbeel, Peter Chen, Jonathan Ho, Aravind Srinivas’ Berkeley CS5294-158 class
—Aaron Courville's Université de Montréal IFT6268 class



Lecture overview

* Motivation
» Reconstruct from a corrupted (or partial) version
* Proxy tasks in computer vision

» Contrastive Learning



Course so far...

* Density modelling
— Autoregressive, Normalizing Flows, Variational Inference

* Implicit models
— Generative Adversarial Networks

» Applications of generative modelling



Today...

* How do learn rich and useful features from raw unlabeled data that
can be useful for several downstream tasks?

* \What are the various pretext (proxy) tasks that can be used to learn
representations from unlabeled data?

 How can we improve data-efficiency and performance of
downstream tasks with a good pre-trained network?



" 1 ] "
Learning “really useful” representations
Tasks
* Longstanding dream of the Deep Learning ol
commun ity: interaction
. . Dial
— Use unsupervised learning to learn some feature et
representation that can be used to support effective *Generation .
supervised learning (like classification) Translation
: Anomaly
Input detection
Retrieval

Representation — Semantic

Segmentation
Extract —
Information ~,, Classification

More utiliy = better
(Task) Generalization & Understanding



We don’'t need generation/reconstruction

Interesting thing

Not interesting thing

* Generative models (in principle) care about all the pixels



Representation Learning for Supervised
Learning

* Using generative models (AEs, VAEs, etc) have largely been
iIneffective with two exceptions:

1. Natural Language Modelling (all SOTA models are build on BERT-like
representations)

2. Inthe very small dataset regime, unsupervised learning can actually help.

» Gradient-based supervised training with the right model (e.g. CNNs
for vision problems) has been very difficult to beat with
unsupervised methods.



It's worth asking ... Why?

A speculative answer:

* Most (essentially all) existing unsupervised methods learn features
that are overwhelmingly low-level (nonsemantic).

— The features describe superficial aspects of the data and preserve few of
the invariances that one would want from a representation learning scheme.

* Modern supervised learning methods (i.e. with NN) learn layers of
representations that learn the relevant axes of variance in the data.

— Eg. Higher level features of a CNN trained to recognize car makes and
models should be relatively invariance to color but very sensitive to subtle
differences in shape.

10



Self-Supervised Learning

» A version of unsupervised learning where data provides the
supervision.

* [n general, withhold some part of the data and the task a neural
network to predict it from the remaining parts.

» Detalls decide what proxy loss or pretext task the network tries to
solve, and depending on the quality of the task, good semantic
features can be obtained without actual labels.

11



Motivation

» Supervised learning success story I1s heavily because of the utility of
pre-trained classifier features for commercially useful downstream
tasks like segmentation, detection, etc.

* Recipe Is clear: Collect a large labeled dataset, train a model, deploy.
Good data and sufficient data are what you need.

» Goal of self-supervised learning:
— Learn equally good (if not better) features without supervision

— Be able to deploy similar quality systems without relying on too many labels
for the downstream tasks

— Generalize better potentially because you learn more about the world

12
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How.Much Information Does the Machine Need to'Predict?

i Y LeCun

# "Pure” Reinforcement Learning (cherry)

» The machine predicts a scalar
reward given once in a while.

> A few bits for some samples

# Supervised Learning (icing)

» The machine predicts a category
or a few numbers for each input

» Predicting human-supplied data
» 10-10,000 bits per sample

# Unsupervised/Predictive Learning (cake)

» The machine predicts any part of
its input for any observed part.

» Predicts future frames in videos / U=
» Millions of bits per sample

# (Yes, I know, this picture is slightly offensive to RL folks. But I'll make it up)

» LeCun’s original cake

analogy slide, presented
at his keynote speech In

NIPS 2016.
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Y. LeCun

How Much Information is the Machine Given during Learning?

P “Pure” Reinforcement Learning (cherry)

» The machine predicts a scalar reward given once in a
while.

» A few bits for some samples

P Supervised Learning (icing)

» The machine predicts a category or a few numbers
for each input

-

» Predicting human-supplied data
» 10—10,000 bits per sample

P Self-Supervised Learning (cake génoise)

» The machine predicts any part of its input for any
observed part.

P Predicts future frames in videos » Updated version at (ISSCC 2019, where he
replaced “unsupervised learning” with

» Millions of bits per sample “self-supervised learning”.




Self-Supervised/Predictive Learning

» Predict any part of the input from any
other part.

» Predict the future from the past.

» Predict the future from the recent past.

» Predict the past from the present.
» Predict the top from the bottom.

» Predict the occluded from the visible

» Pretend there is a part of the input you
don’t know and predict that.

«— Past

Future —

Present

Slide by Yann LeCun 15



What/Why Self-Supervision?

Self-supervision: Recover useful/semantic representations by
training models to answer specific questions about the data.

 Good:

— Can procedurally generate potentially infinite amounts of annotation.
— We can borrow tricks from supervised learning without labels.
— Focus on only the information that you need (e.g., not pixels).

— Answering these questions requires more fundamental understanding
of data.

* Not so good: designing good questions also requires some
fundamental understanding of the data (e.g., structure).

16



Lecture overview

 Motivation

* Reconstruct from a corrupted (or partial) version

— Denoising Autoencoder
— In-painting
— Colorization, Split-Brain Autoencoder

* Proxy tasks in computer vision

» Contrastive Learning

17



Denoising Autoencoder

—| Encoder

-

Noisy input

Compressed
representation

|

Decoder

o L

The feature we want to
extract from the image

Denoised image

18



Denoising Autoencoder

y
/[Q Q Oj\ / /éH(;,\Z)
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Vincent etal. 2010



Denoising Autoencoder

e Additive isotropic Gaussian noise (GS): X|x ~ N (x,0°I);

e Masking noise (MN): a fraction v of the elements of x (chosen at random for each example)
1s forced to O;

e Salt-and-pepper noise (SP): a fraction v of the elements of x (chosen at random for each
example) is set to their minimum or maximum possible value (typically O or 1) according to
a fair coin flip.

Vincent et al. 2010 4



Denoising Autoencoder

Vincent et al. 2010



Emphasizing corrupted dimensions

L o(X,2) Z X;—Z;) )—l—B( z (xj—zj)z)

JEI(X)
Lna(x,z) = oc(— Z [leogzj—}—(l—xj)log(l—zj)])
JEJ(X)

+B (— )3 [leogzj+(1—Xj)log(l—zj)])
j#I (%)

Vincent et al. 2010 ,,



Stacked Denoising Autoencoder

Vincent et al. 2010 4,



Denoising Autoencoder

b \\\
OO
Oo0) b
o
o000 ()

Vincent et al. 2010 ,,



Denoising Autoencoder

(a) No destroyed inputs (b) 25% destruction (c) 50% destruction

Vincentetal. 2010



Denoising Autoencoder

Dataset SVM,,; | SVM,oy DBN-1 SAA-3 DBN-3 SdA-3 (v)
basic 3.03£0.15 | 3.69+0.17 | 3.94+0.17 | 3.46%0.16 | 3.11£0.15 | 2.80+0.14 (10%)
rot 11.11+£0.28 | 15.42+£0.32 | 14.69+0.31 | 10.30+£0.27 | 10.30+£0.27 | 10.29+0.27 (10%)
bg-rand | 14.58+0.31 | 16.62+£0.33 | 9.80£0.26 | 11.28+0.28 | 6.73+0.22 | 10.38%0.27 (40%)
bg-img 22.61£0.37 | 24.01£0.37 | 16.15+£0.32 | 23.00+0.37 | 16.31+0.32 | 16.68+0.33 (25%)
rot-bg-img | 55.18+0.44 | 56.41£0.43 | 52.21+0.44 | 51.93+£0.44 | 47.39+0.44 | 44.49+0.44 (25%)
rect 2.15+0.13 | 2.15+0.13 | 4.71£0.19 | 2.41+0.13 | 2.60+£0.14 | 1.99+0.12 (10%)
rect-img | 24.04+0.37 | 24.0520.37 | 23.69+0.37 | 24.05+0.37 | 22.50+0.37 | 21.59+0.36 (25%)
convez 10.13+0.34 | 19.8240.35 | 19.92+0.35 | 18.41+0.34 | 18.6320.34 | 19.06+0.34 (10%)

Vincent et al. 2010
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Predict missing pieces

Pathak et al. 2016



Encode>

Context Encoders

Encoder Features

@

»-

®

»-

i

»

Channel-wise
Fully
Connected

J

Decoder Features

Pathak et al. 2016
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Context Encoders

(a) Center Region (b) Random Blocks (c) Random Shapes

Pathak et al. 2016 5,



Context Encoders

Lrec(z) =M © (z — F((1 - M) ©x))|l3

[fadv — ngX 43x€X[lOg(D(x))

A

+1log(1 = D(F((1—-M)©x)))

L = )\reccrec -+ )\advﬁadv

Pathak et al. 2016 4



Context Encoders

64
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. 2016
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Context Encoders

Input Image L2 Loss Adversarial Loss Joint Loss

Pathak et al. 2016 4,



Context Encoders

Pretraining Method Supervision Pretraining time Classification Detection Segmentation
ImageNet [ 7] 1000 class labels 3 days 78.2% 56.8% 48.0%
Random Gaussian initialization < 1 minute 53.3% 43.4% 19.8%
Autoencoder - 14 hours 53.8% 41.9% 25.2%
Agrawal et al. [ '] egomotion 10 hours 52.9% 41.8% -
Doersch et al. [ '] context 4 weeks 55.3% 46.6 % -
Wangetal. [ "] motion 1 week 58.4% 44.0% -

Ours context 14 hours 56.5% 44.5% 29.7 %

Table 2: Quantitative comparison for classification, detection and semantic segmentation. Classification and Fast-RCNN
Detection results are on the PASCAL VOC 2007 test set. Semantic segmentation results are on the PASCAL VOC 2012
validation set from the FCN evaluation described in Section 5.2.3, using the additional training data from [ ' *'], and removing
overlapping images from the validation set [ ].

Pathak et al. 2016



Predicting one view from another

X

Raw Data

Corrupted
Raw Data

Denoising Autoencoder

J

Slide credit: Richard Zhang 3¢



Predicting one view from another

Raw Data

S

Cross-Channel Autoencoder

Slide credit: Richard Zhang 37



Predicting one view from another

Grayscale image: L channel Color information: ab channels
X € RHEXWX1 ? c IRHXWXQ
L — | (| F —_—|  ab

Slide credit: Richard Zhang  3g



Predicting one view from another

Grayscale image: L channel Concatenate (L,ab) channels
X € ]RHxle - (X,Y)
L — | || F|||| =] ab

Slide credit: Richard Zhang 39



Predicting one view from another

Ground Truth L2 regression Pixelwise
classification

Slide credit: Richard Zhang 49



Predicting one view from another

Grayscale image: Lchnnl Concatenate (L,ab) cannls 2 h.w
X € RExWx1 (X’Y) ,
e
|
v
(Z,Z) SN Zg (Znwq)
; = h,w,q 108 h,w,
HW ! ’

Slide credit: Richard Zhang 4



Predicting one view from another

<)

~ Split-Brain Autoencoder

Slide credit: Richard Zhang 45



Predicting one view from another

Input Image X

Slide credit: Richard Zhang 43



Predicting one view from another

RGB channels HHA depth channels

Input e - e g TS Predicted
RGB-HHA ' RGB-HHA
image \ image

-/ ~—

HHA depth channels RGB channels

Slide credit: Richard Zhang 44



Lecture overview

 Motivation

» Reconstruct from a corrupted (or partial) version

* Proxy tasks in computer vision
— Relative patch prediction
— Jigsaw puzzles
— Rotation

» Contrastive Learning

45



Relative Position of Image Patches

Unsupervised Visual Representation Learning by Context Prediction

Carl Doersch’?  Abhinav Gupta! Alexei A. Efros?

! School of Computer Science 2 Dept. of Electrical Engineering and Computer Science
Carnegie Mellon University University of California, Berkeley

Task: Predict the relative position of the second patch with respect to
the first

Slide credit: Andrew Zisserman 45



Relative Position of Image Patches

Doersch,
Gupta, Efros

Slide credit: Andrew Zisserman 47



Relative Position of Image Patches

EL < 8 possible locations

- L ™ L ™ a
uuuuuuuuuuu o

A

‘Classifierl

CNN CNN

Sample Second Patch

Unsupervised visual representation learning by context prediction,
Carl Doersch, Abhinav Gupta, Alexei A. Efros, ICCV 2015
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Relative Position of Image Patches

Include a
gap

Jitter the patch
locations

49



Solving Jigsaw Puzzles

Noroozi and Favaro, 2016

50



Solving Jigsaw Puzzles

- A
) — - 3 ‘ P
—

Shod

-—.H—-i-—»} o4, /ﬂ/ S
w

S

O

fcg8 softmax

Permutation Set

index permutation Reorder patches according to
the selected permutation

~N

(0]

L R T

64 9.4,68325,1,7

0

»

cé

11x11x96  5x5x256 3x3x384 3x3x384 3x3x256

Noroozi and Favaro, 2016 5



Rotation

90° rotation

270° rotation

180° rotation

0° rotation

270° rotation

52



Rotation

| Objectives: A

ConvNet 7 Maxumze prob |
model F( ) |

@ o ¥ Predlct 0 degrees rotation (y=0) |
otated 1mage:

ConvNet ] Maxmnze prob 1

model F( )

Predlct 90 degrees rotation (y=1) |

—» g(X,y=0)

Rotate 0 degrees

*ﬂ’ glx,y=1) —»

Rotate 90 degrees

Rotated image: X' |

{ ConvNet p Maximize prob. |
model F(.) | F*(Xx?)

—» g(X,y=2)

Image X Rotate 180 degrees _ 5 = | Predict 180 degrees rotation (y=2) |
Rotated image: X |
oy | ConvNet | Maximize prob. |
g(x,y=3) model F(.) }—4—’{ X)) 1 |
Rotate 270 degrees —— :

I Predict 270 degrees rotation (y=3) |

Rotated image: X°

Gidaris, Singh, and Komodakis. Unsupervised representation learning by predicting image rotations. ICLR 2018



Rotation

# Rotations

Rotations

CIFAR-10 Classification Accuracy

4
8
2
2

0°, 90°, 180°, 270°

0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°
0°, 180°

90°, 270°

89.06
88.51
87.46
85.52
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Rotation

Method Conv4 Conv5S
ImageNet labels from (Bojanowski & Joulin, 2017) | 59.7 297
Random from (Noroozi & Favaro, 2016) A | 12.0
Tracking Wang & Gupta (2015) 38.8 29.8
Context (Doersch et al., 2015) 45.6 30.4
Colorization (Zhang et al., 2016a) 40.7 A2
Jigsaw Puzzles (Noroozi & Favaro, 2016) 45.3 34.6
BIGAN (Donahue et al., 2016) 41.9 322
NAT (Bojanowski & Joulin, 2017) - 36.0
(Ours) RotNet 50.0 43.8

55



Rotation

Method Convl Conv2 Conv3d Conv4 Conv5
ImageNet labels 19.3 36.3 44.2 48.3 50.5
Random 11.6 17.1 16.9 16.3 14.1
Random rescaled Krihenbiihl et al. (2015) LV 23.0 24.5 23.2 20.6
Context (Doersch et al., 2015) 16.2 23.3 30.2 al.7 29.6
Context Encoders (Pathak et al., 2016b) 14.1 20.7 21.0 19.8 15.5
Colorization (Zhang et al., 2016a) 12.5 24.5 30.4 3l.3 30.3
Jigsaw Puzzles (Noroozi & Favaro, 2016) 18.2 28.8 34.0 33.9 27.1
BIGAN (Donahue et al., 2016) 17.7 24.5 31.0 29.9 28.0
Split-Brain (Zhang et al., 2016b) 1 29.3 35.4 35.2 32.8
Counting (Noroozi et al., 2017) 18.0 30.6 34.3 325 257
(Ours) RotNet 18.8 31.7 38.7 38.2 36.5

56



Rotation

Classification Detection Segmentation
(%mAP) (%emAP) (%omloU)

Trained layers fc6-8 all all all
ImageNet labels 78.9 79.9 56.8 48.0
Random 533 43.4 19.8
Random rescaled Krihenbiihl et al. (2015) | 39.2 56.6 45.6 32.6
Egomotion (Agrawal et al., 2015) 31.0 54.2 43.9

Context Encoders (Pathak et al., 2016b) 34.6 56.5 44.5 29,7
Tracking (Wang & Gupta, 2015) 55.6 63.1 47 .4

Context (Doersch et al., 2015) 55.1 65.3 311

Colorization (Zhang et al., 2016a) 61.5 65.6 46.9 35.6
BIGAN (Donahue et al., 2016) 52.3 60.1 46.9 34.9
Jigsaw Puzzles (Noroozi & Favaro, 2016) - 67.6 % o 37.6
NAT (Bojanowski & Joulin, 2017) 56.7 65.3 49 .4

Split-Brain (Zhang et al., 2016b) 63.0 67.1 46.7 36.0
ColorProxy (Larsson et al., 2017) 65.9 38.4
Counting (Noroozi et al., 2017) - 67.7 51.4 36.6
(Ours) RotNet 70.87 72.97 54.4 39.1




Temporal coherence of color

Task: given a color video ...
Colorize all frames of a gray scale version using a reference frame

reference frame gray-scale video

Slide credit: Andrew Zisserman g



Temporal coherence of color

Slide credit: Andrew Zisserman 59



Temporal coherence of color

Slide credit: Andrew Zisserman g



Tracking emerges from colorization

Reference Frame Input Frame

Reference Colors Target Colors

61



Tracking emerges from colorization

Grayscale Video Embeddings

A Ci Reference
o Colors

Reference A
Frame @

S— EEEEY AN
Frame A ﬁ

exp(f;' f;) A - ( )
A = v C: — A;sc; min L | ¢, A;c;
ooy eexn(fl ) z; : f : zz: :

@ P Predicted
ij Colors




Tracking emerges from colorization

RGB

Color
Channels

Quantized [l
Color %.°

Slide credit: Andrew Zisserman g3



Tracking emerges from colorization

Reference Frame Future Frame (gray) Predicted Color True Color

64



Tracking emerges from colorization

Image credit: Google Al Blog post g5



Lecture overview

 Motivation

» Reconstruct from a corrupted (or partial) version
* Proxy tasks in computer vision

* Contrastive Learning
— Word2vec
— Contrastive Predictive Coding (CPC)
— Instance Discrimination
— Recent State-of-the-art progress

66



Predicting neighbouring context

» Predict any part of the input from any
other part.

» Predict the future from the past.

» Predict the future from the recent past.

» Predict the past from the present.
» Predict the top from the bottom.

» Predict the occluded from the visible

» Pretend there is a part of the input you
don’t know and predict that.

«— Past

Future —

Present

Slide by Yann LeCun 67



Word Embeddings

1 0 0 0
0 1 0 0
waardvark _ 0 Wt = 0 ’ it — 1 ’ wzebra _ 0
0 0 0 1

Slide credit: Stanford 224n g



Word Embeddings

* The vast majority of rule-based or statistical NLP and IR work regarded words
as atomic symbols: hotel, conference, walk

 [n vector space terms, this is a vector with one 1 and a lot of zeroes

“hotel”

1

O 0O00O00O0O0O0OOO0O1TO0O0OO0OO

* \We now call this a one-hot representation.
Slide credit: Stanford 224n g9



Word embeddings

* The size of word vectors are equal to the number of words in the dictionary

— Vector size is proportional to the size of the dictionary
20K (speech) — 50K (Pen Treebank) — 500K (A large dictionary) — 13M (Google 1T)

* One-hot vectors vectors are orthogonal

* There Is no natural notion of similarity in a set of one-hot vectors

T
“‘mote” 0 0 0 0O OOOOO1TO0OOOO

“hote” 0 0 0O OOOOOO0O1TO0OOO =0

Slide credit: Stanford 224n 4,



Word embeddings

* You can get a lot of value by representing a word
by means of its neighbors

* “You shall know a word by the company It keeps”
(J. R. Firth 1957:11)

* One of the most successful ideas of modern NLP

government debt problems turning into banking crises as has happened in

saying that Europe needs unified banking regulation to replace the hodgepodge

\ These words will represent /

“banking”

Slide credit: Stanford 224n
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Distributional hypothesis

* The meaning of a word Is (can be approximated by, derived from) the
set of contexts in which it occurs In texts

He filled the wampimuk, passed it around and we all drunk some

We found a little, hairy wampimuk sleeping behind the tree

Testing the distributional hypothesis: The influence of context on judgements of semantic similarity
[McDonald & Ramscar'01] Slide credit: Marco Baroni 79



Distributional semantics

he curtains open and the moon shining in on the barely
ars and the cold , close moon " . And neither of the w
rough the night with the moon shining so brightly , it
made in the light of the moon . It all boils down , wr
surely under a crescent moon , thrilled by ice-white
sun , the seasons of the moon ? Home , alone , Jay pla
m 1s dazzling snow , the moon has risen full and cold
un and the temple of the moon , driving out of the hug
in the dark and now the moon rises , full and amber a
bird on the shape of the moon over the trees in front
But I could n’t see the moon or the stars , only the
rning , with a sliver of moon hangling among the stars
they love the sun , the moon and the stars . None of
the light of an enormous moon . The plash of flowing w
man ‘s first step on the moon ; various exhibits , aer
the inevitable piece of moon rock . Housing The Airsh
oud obscured part of the moon . The Allied guns behind

A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge [Landauer and Dumais’97]
From frequency to meaning: Vector space models of semantics [Turney ve Pantel'10]

Slide credit: Marco Baroni 73



Word Embeddings

1. I enjoy flying.

2. I like NLP.

3. Ilike deep learning.

The resulting counts matrix will then be:

I
like
enjoy
dee
e F

learning

NLP
flying

O O O O O R, N O ~

like
2

OO =L O = O O

enjoy deep
1 0
0 i
0 0
0 0
0 1
0 0
1 0
0 0

learning NLP  flying

0

=0 O O = O O

0

= O O O O O =

0

=0 O QO O

O = = - OO0 0O o -

Slide credit: Stanford 224n
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Word Embeddings

Applying SVD to X:

|V| o~ — |V| U1 Uy --- |V| 0

Vi

Slide credit: Stanford 224n 45



Word Embeddings

SVD approach suffers from:
» Sparsity

* SVD computation costs

* Infrequent words

* Noise from frequent words

* There are hacks to fix some of these (ex TF-IDF) but still not very
reliable

Slide credit: Stanford 224n 44



n-gram Language Models

Unigram "
P(w17w27° o ,U]n) — Hp(wz)
1=1
Bigram

P(wl,wg,--- ,wn) — HP(wz\wz_l)
1=2

Slide credit: Stanford 224n 45



word2vec

Efficient Estimation of Word Representations in
Vector Space

Tomas Mikolov Kai Chen
Google Inc., Mountain View, CA Google Inc., Mountain View, CA
tmikolov@google.com kaichen@google.com
Greg Corrado Jeffrey Dean
Google Inc., Mountain View, CA Google Inc., Mountain View, CA
gcorrado@google.com jeffl@google.com
Abstract

We propose two novel model architectures for computing continuous vector repre-
sentations of words from very large data sets. The quality of these representations
is measured in a word similarity task, and the results are compared to the previ-
ously best performing techniques based on different types of neural networks. We
observe large improvements in accuracy at much lower computational cost, i.e. it
takes less than a day to learn high quality word vectors from a 1.6 billion words
data set. Furthermore, we show that these vectors provide state-of-the-art perfor-
mance on our test set for measuring syntactic and semantic word similarities.

78



word2vec

P(Wnlwn-2:n+2)

90 e e

Transform

(ele]ele) /

(eJeJole)
(eJeJole)

2

W . W

2 n+1 n+2

CBoW model

n

Distributed representations of words and phrases and their compositionality [Mikolov vd."13]

i=[n-2,n+2] - {n}

(eYeYeo)o)

Transform
+
Softmax

(OOO0)

Wh

Skip-gram model

Image credit: Ed Grefenstette
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word2vec - CBOW

Continuous Bag Of

Words (CBOW)

ID(Wnlwn-z:n+2)
OO0
Transform
Sof:r-nax
)

o O [ [0
O] 1O O] O
Ol 1O O] O
99 Qg
Wh-2 Wh-1 Wit Whe2

minimize | = — log P(w¢|we—m, ..., We—1, Wet1, -+ - » Wetm)
= —log P(u,|9)
exp(u; 9)
rV) exp(uld)
V]

= —uld +log ¥ exp(u];rzﬁ)
=1

= —log

Slide credit: Stanford 224n g



word2vec - Skip Gram

minimize | = —log P(We—m, - - ., We—1, Wet1, - - - Wetm|We)
Skip Gram om
=—log [] P(we_m+ilwe)
j=0,j#m

i=[n-2,n+2] - {n} = —log H P(uc—m+jlvc)

Q000 e

2m  exp(ul . o)
Transform =—log [] — : m+]T
+ j=0,j#m Ly exp(u; vc)

Softmax & u
=— Y uCT_m+ij +2mlog ) exp (1 v;)
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word2vec - Skip Gram

Skip-gram 1 T
model TZ Z log p(wt+;|wt)

t=1 _CSJSCJ#O

) T
exp (’uwo le)

p(wo|wr) =
Zg/zl exXp (U{UT’U'U)I)

Don’'t have to have the denominator over all words in the vocabulary
« (Can use negative sampling

k
e ¥ i
log O'(?J:UO Vuw; ) + ZEwiNPn(w) [log O-(_’U':u,,; Uwf)] P(w;) =1-— F(w;)
i=1 ’
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word2vec

Country and Capital Vectors Projected by PCA

2 T T = T T T T
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1.5 Russia:
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‘Moscow
1 -
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05 |
Poland:
0 Germany-
France “Warsaw
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-05 Italy Paris
» —>Athens
Greece
-1 | Spainr Rome
" 3 Madrid
-1.5 | Portugal tisboh
-2 ] ] ] 1 ] ] ]
-2 -1.5 -1 -0.5 0 0.5 1 1.5
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word2vec

Newspapers
New York New York Times Baltimore Baltimore Sun
San Jose San Jose Mercury News Cincinnati Cincinnati Enquirer
NHL Teams
Boston Boston Bruins Montreal Montreal Canadiens
Phoenix Phoenix Coyotes Nashville Nashville Predators
NBA Teams
Detroit Detroit Pistons Toronto Toronto Raptors
Oakland Golden State Warriors Memphis Memphis Grizzlies
Airlines
Austria Austrian Airlines Spain Spainair
Belgium Brussels Airlines Greece Aegean Airlines
Company executives
Steve Ballmer Microsoft Larry Page Google
Samuel J. Palmisano IBM Werner Vogels Amazon




word2vec

NEG-15 with 10~° subsampling | HS with 10~° subsampling
Vasco de Gama Lingsugur Italian explorer
Lake Baikal Great Rift Valley Aral Sea
Alan Bean Rebbeca Naomi moonwalker
Ionian Sea Ruegen Ionian Islands
chess master chess grandmaster Garry Kasparov

Table 4: Examples of the closest entities to the given short phrases, using two different models.

Czech + currency | Vietnam + capital German + airlines Russian + river French + actress
koruna Hanoi airline Lufthansa Moscow Juliette Binoche
Check crown Ho Chi Minh City carrier Lufthansa Volga River Vanessa Paradis
Polish zolty Viet Nam flag carrier Lufthansa upriver Charlotte Gainsbourg
CTK Vietnamese Lufthansa Russia Cecile De

Table 5: Vector compositionality using element-wise addition. Four closest tokens to the sum of two
vectors are shown, using the best Skip-gram model.



word2vec

Model Redmond Havel ninjutsu graffiti capitulate
(training time)
Collobert (50d) conyers plauen reiki cheesecake abdicate
(2 months) lubbock dzerzhinsky kohona gossip accede
keene osterreich karate dioramas rearm
Turian (200d) McCarthy Jewell - gunfire -
(few weeks) Alston Arzu - emotion -
Cousins Ovitz - impunity -
Mnih (100d) Podhurst Pontiff - anaesthetics | Mavericks
(7 days) Harlang Pinochet - monkeys planning
Agarwal Rodionov - Jews hesitated
Skip-Phrase Redmond Wash. Vaclav Havel ninja spray paint | capitulation
(10004, 1 day) Redmond Washington | president Vaclav Havel martial arts grafitti capitulated
Microsoft Velvet Revolution swordsmanship taggers capitulating

Table 6: Examples of the closest tokens given various well known models and the Skip-gram model
trained on phrases using over 30 billion training words. An empty cell means that the word was not

in the vocabulary.
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Deep InfoMax

LEARNING DEEP REPRESENTATIONS BY MUTUAL IN-
FORMATION ESTIMATION AND MAXIMIZATION

R Devon Hjelm Alex Fedorov Samuel Lavoie-Marchildon
MSR Montreal, MILA, UdeM, IVADO MRN, UNM MILA, UdeM
devon.hjelm@microsoft.com

Karan Grewal Phil Bachman Adam Trischler Yoshua Bengio
U Toronto MSR Montreal MSR Montreal MILA, UdeM, IVADO, CIFAR

ABSTRACT

This work investigates unsupervised learning of representations by maximizing
mutual information between an input and the output of a deep neural network en-
coder. Importantly, we show that structure matters: incorporating knowledge about
locality in the input into the objective can significantly improve a representation’s
suitability for downstream tasks. We further control characteristics of the repre-
sentation by matching to a prior distribution adversarially. Our method, which we
call Deep InfoMax (DIM), outperforms a number of popular unsupervised learning
methods and compares favorably with fully-supervised learning on several clas-
sification tasks in with some standard architectures. DIM opens new avenues for
unsupervised learning of representations and is an important step towards flexible
formulations of representation learning objectives for specific end-goals.



Deep InfoMax

 Network encodes
the Input

e The discriminator
estimates mutual
iInformation
(batch-wise)

e Estimate Is used to
maximize the M|
between encoder
INput and output

Input image

-

M x M feature map (see Figure 1)

-

MxM Feature
feature map vector
.//

1 I ‘{ '2
//

Score

“Realn

) ¢

Discriminator

-0

FeatureV
N

“Fake”

M x M features drawn from another image

» [

Figure 1: The base encoder model in the
context of image data. An image (in this
case) is encoded using a convnet until reach-
ing a feature map of M x M feature vec-
tors corresponding to M x M input patches.
These vectors are summarized into a single
feature vector, Y. Our goal is to train this net-
work such that useful information about the
input is easily extracted from the high-level
features.

Figure 2: Deep InfoMax (DIM) with a
global MI(X;Y) objective. Here, we pass
both the high-level feature vector, Y, and the
lower-level M x M feature map (see Figure|1)
through a discriminator to get the score. Fake
samples are drawn by combining the same
feature vector with a M x M feature map
from another image.
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Deep InfoMax

M x M features

Local feature (+)

Local feature (-)

M x M features drawn from another image

M x M Scores

“Real”
M
M
“Fake”
M
M

Figure 3: Maximizing mutual information

between local features and global features.

First we encode the image to a feature map
that reflects some structural aspect of the data,
e.g. spatial locality, and we further summarize
this feature map into a global feature vector
(see Figure 1). We then concatenate this fea-
ture vector with the lower-level feature map
at every location. A score is produced for
each local-global pair through an additional
function (see the Appendix A.2 for details).
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Deep InfoMax

Table 1: Classification accuracy (top 1) results on CIFAR10 and CIFAR100. DIM(L) (i.e., with the
local-only objective) outperforms all other unsupervised methods presented by a wide margin. In

addition, DIM(L) approaches or even surpasses a fully-supervised classifier with similar architecture.

DIM with the global-only objective is competitive with some models across tasks, but falls short
when compared to generative models and DIM(L) on CIFAR100. Fully-supervised classification
results are provided for comparison.

Model CIFARI10 CIFAR100

conv  fc (1024) Y (64) conv  fc (1024) Y (64)
Fully supervised 75.39 42.277
VAE 60.71 60.54 54.61 37.21 34.05 24.22
AE 62.19 55.78 54.47 31.50 23.89 27.44
B-VAE 62.4 57.89 55.43 32.28 26.89 28.96
AAE 59.44 57.19 52.81 36.22 33.38 23.25
BiGAN 62.57 62.74 52.54 37.99 33.34 21.49
NAT 56.19 51.29 31.16 29.18 24.57 9.72
DIM(G) 52.2 52.84 43.17 27.68 24.35 19.98
DIM(L) (DV) 72.66 70.60 64.71 48.52 44.44 39.27
DIM(L) (JSD) 73.25 73.62 66.96 || 48.13 45.92 39.60
DIM(L) (infoNCE) | 75.21  75.57 69.13 || 49.74 4772  41.61
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Deep InfoMax

Table 2: Classification accuracy (top 1) results on Tiny ImageNet and STL-10. For Tiny ImageNet,
DIM with the local objective outperforms all other models presented by a large margin, and approaches
accuracy of a fully-supervised classifier similar to the Alexnet architecture used here.

Tiny ImageNet STL-10 (random crop pretraining)
conv  fc (4096) Y (64) conv  fc (4096) Y (64) SS
Fully supervised 36.60 68.7
VAE 18.63 16.88 11.93 58.27 56.72 46.47  68.65
AE 19.07 16.39 11.82 58.19 55.57 46.82  70.29
B-VAE 19.29 16.77 12.43 57.15 55.14 46.87  70.53
AAE 18.04 17.27 11.49 59.54 54.47 43.89  64.15
BiGAN 24.38 20.21 13.06 71.53 67.18 58.48  T4.77
NAT 13.70 11.62 1.20 64.32 61.43 48.84  70.75
DIM(G) 11.32 6.34 4.95 42.03 30.82 28.09  51.36
DIM(L) (DV) 30.35 29.51 28.18 69.15 63.81 61.92  71.22
DIM(L) (JSD) 33.54 36.88 31.66 || 72.86 70.85 65.93 76.96
DIM(L) (infoNCE) | 34.21 38.09 33.33 || 72.57 70.00 67.08 76.81
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Contrastive Predictive Coding

Representation Learning with
Contrastive Predictive Coding

Aaron van den Oord Yazhe Li Oriol Vinyals
DeepMind DeepMind DeepMind
avdnoord@google.com yazhe@google.com vinyals@google.com
Abstract

While supervised learning has enabled great progress in many applications, unsu-
pervised learning has not seen such widespread adoption, and remains an important
and challenging endeavor for artificial intelligence. In this work, we propose a
universal unsupervised learning approach to extract useful representations from
high-dimensional data, which we call Contrastive Predictive Coding. The key in-
sight of our model is to learn such representations by predicting the future in latent
space by using powerful autoregressive models. We use a probabilistic contrastive
loss which induces the latent space to capture information that is maximally useful
to predict future samples. It also makes the model tractable by using negative
sampling. While most prior work has focused on evaluating representations for
a particular modality, we demonstrate that our approach is able to learn useful
representations achieving strong performance on four distinct domains: speech,
images, text and reinforcement learning in 3D environments.
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Contrastive Predictive Coding
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Contrastive Predictive Coding

€Xp f(cv Zz) B i
> ;exp f (G, 57) fi@erns ) = exp (2L Weer)
G Classify positiv>e {Z17 22y %35 %45 <5, 26}

example .

?
/ Encoder \ Encoder

MWWMWWWM il ol e
T WW‘”“ ~tim

Figure credit: Alex Graves gg




Contrastive Predictive Coding

Predictions
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Contrastive Predictive Coding
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Contrastive Predictive Coding
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Contrastive Predictive Coding
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CPC - Speech
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Figure 2: t-SNE visualization of audio (speech)
representations for a subset of 10 speakers (out
of 251). Every color represents a different
speaker.

Figure 3: Average accuracy of predicting the
positive sample in the contrastive loss for 1 to 20

latent steps in the future of a speech waveform.

The model predicts up to 200ms in the future as
every step consists of 10ms of audio.
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CPC - Speech

Method ACC

Method ACC
Phone classification .
Random initialization 27.6 gstteps predicted 8 5
MFCC features 39.7 i :
CPC 64.6 4 steps 57.6
Supervised 74.6 ?2Stsetle) > q gig
Speaker classification 16 stegs 63:8
Random initialization 1.87 Negative samples from
MFECC features 17:6 Mixed speaker 64.6
(S:PC ed ggg Same speaker 65.5
Hpsdiae ' Mixed speaker (excl.) 57.3
Table 1: LibriSpeech phone and speaker Same speaker (excl.) 64.6
classification results. For phone classifi- Current sequence only 65.2

cation there are 41 possible classes and S :
for speaker classification 251. All mod- 'I.‘able 2: .lenSpec?ch phone clasaﬁga—
Sl meed e sumie architectnre snd the tion ablation experiments. More details

same audio input sizes. can be found in Section 3.1.
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CPC - ImageNet
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Figure 4: Visualization of Contrastive Predictive Coding for images (2D adaptation of Figure 1).
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CPC - ImageNet

Method Top-1 ACC

Using AlexNet convS

Video [28] 29.8

Relative Position [11] 30.4

BiGan [35] 34.8

Colorization [10] 35.2 Method Top-5 ACC

Jigsaw [29] * 38.1 Motion Segmentation (MS) 48.3

Using ResNet-V2 Exemplar (Ex) 53.1

Motion Segmentation [36] 27.6 Relative Position (RP) 59.2

Exemplar [36] 31.5 Colorization (Col) 62.5

Relative Position [36] 36.2 Combination of

Colorization [36] 39.6 MS + Ex + RP + Col 69.3

CPC 48.7 CPC 73.6
Table 3: ImageNet top-1 unsupervised classifi- Table 4: ImageNet top-5 unsupervised classi-
cation results. *Jigsaw is not directly compa- fication results. Previous results with MS, Ex,
rable to the other AlexNet results because of RP and Col were taken from [36] and are the

architectural differences. best reported results on this task.
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CPC - ImageNet
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Figure 5: Every row shows image patches that activate a certain neuron in the CPC architecture.
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CPC - Natural Language Processing

Method MR | CR | Subj | MPQA | TREC
Paragraph-vector [40] 74.8 | 78.1 | 90.5 74.2 91.8
Skip-thought vector [26] | 75.5 | 79.3 | 92.1 86.9 914
Skip-thought + LN [41] | 79.5 | 82.6 | 93.4 89.0 -
CPC 76.9 | 80.1 | 91.2 87.7 96.8

Table 5: Classification accuracy on five common NLP benchmarks. We follow the same transfer
learning setup from Skip-thought vectors [26] and use the BookCorpus dataset as source. [40] 1s an
unsupervised approach to learning sentence-level representations. [26] is an alternative unsupervised
learning approach. [41] is the same skip-thought model with layer normalization trained for 1M

iterations.

Oord, Li, Vinyals, 2018
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CPC - Reinforcement Learning

Auxiliary loss Is on policy
Predict 30 steps in the future
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Figure credit: Aaron Van den Oord
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CPCv2 - Large Scale CPC on ImageNet

DATA-EFFICIENT IMAGE RECOGNITION
WITH CONTRASTIVE PREDICTIVE CODING

Olivier J. Hénaff, Aravind Srinivas, Jeffrey De Fauw, Ali Razavi,
Carl Doersch, S. M. Ali Eslami, Aaron van den Oord

DeepMind

London, UK

ABSTRACT

Human observers can learn to recognize new categories of images from a hand-
ful of examples, yet doing so with machine perception remains an open challenge.
We hypothesize that data-efficient recognition is enabled by representations which
make the variability in natural signals more predictable. We therefore revisit and
improve Contrastive Predictive Coding, an unsupervised objective for learning
such representations. This new implementation produces features which support
state-of-the-art linear classification accuracy on the ImageNet dataset. When used
as input for non-linear classification with deep neural networks, this representa-
tion allows us to use 2—5x less labels than classifiers trained directly on image
pixels. Finally, this unsupervised representation substantially improves transfer
learning to object detection on PASCAL VOC-2007, surpassing fully supervised
pre-trained ImageNet classifiers.



CPCv2 - Large Scale CPC on

ResNet-161
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CPCv2 - Large Scale CPC on ImageNet
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CPCv2 - Large Scale CPC on ImageNet
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CPCv2 - Large Scale CPC on ImageNet
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CPCv2 - Large Scale CPC on ImageNet

dit: Aaron Van den QOord 118



CPCv2 - Large Scale CPC on ImageNet
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CPCv2 - Large Scale CPC on ImageNet
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CPCv2 - Large Scale CPC on ImageNet
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CPCv2 - Large Scale CPC on ImageNet

INfONCE Loss

NCE: Noise-Contrastive
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CPCv2 - Large Scale CPC on ImageNet

INfONCE Loss

NCE: Noise-Contrastive
Estimation
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CPCv2 - Large Scale CPC on ImageNet

» Train CPC on unlabeled ImageNet
* Train as long as possible (500 epochs) — 1 week

« Augment every patch with a lot of spatial and color augmentation

lextremely crucial]

» Effective number of negatives = number of instances * number of

patches per instance = 16 * 36 = 5/6

124



CPCv2 - Large Scale CPC on ImageNet
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CPCv2 - Linear Classification

METHOD PARAMS (M) Topr-1 ToP-5
Methods using ResNet-50:

INSTANCE DISCR. [1] 24 54.0 -
LOCAL AGGR. [2] 24 58.8 -
MoCo [3] 24 60.6 -
PIRL [4] 24 63.6 -
CPC v2 - RESNET-50 24 63.8 85.3
Methods using different architectures:

MULTI-TASK [5] 28 - 69.3
ROTATION [6] 86 554 -
CPC vl [7] 28 48.7 73.6
BIGBIGAN [8] 86 61.3 81.9
AMDIM [9] 626 68.1 -
CMC [10] 188 68.4 88.2
MoCo [2] 375 68.6 -
CPC v2 - RESNET-161 305 71.5 90.1
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CPCv2 - Data-Efficient Image Recognition
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CPCv1 = CPCv2

Linear classification accuracy

O
\]

0.65 -

0.551

O
o

CPC v1

+MC

>

+BU

>

+LN

>

+RC

>

+HP

>

+LP

MC: model capacity

BU: bottom-up spatial
predictions

LN: layer normalization

RC: random color-
dropping

HP: horizontal spatial
predictions

LP: larger patches.

PA: further patch-
based augmentation.
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CPCv2 - Data-Efficient Supervised Learning

Method Architecture Top-S accuracy

Labeled data 1% 5% 10% 50% 100%
TSupervised baseline ResNet-200 44.1 75.2* 83.9 93.1 95.27%
Methods using label-propagation:

Pseudolabeling [63] ResNet-50 51.6 - 82.4 - -
VAT + Entropy Minimization [63] ResNet-50 47.0 - 83.4 - -
Unsup. Data Augmentation [61] ResNet-50 - - 88.5 - -
Rotation + VAT + Ent. Min. [63] ResNet-50 x4 - - 91.2 - 95.0
Methods using representation learning only:

Instance Discrimination [60] ResNet-50 39.2 - 77.4 - -
Rotation [63] ResNet-152 x2  57.5 - 86.4 - -
ResNet on BigBiGAN (fixed) RevNet-50 x4 352 73.7 78.8 85.5 87.0
ResNet on AMDIM (fixed) Custom-103 67.4 81.8 85.8 91.0 922
ResNet on CPC v2 (fixed) ResNet-161 1171.1 87.5 90.5 95.0 96.2
ResNet on CPC v2 (fine-tuned) ResNet-161 77.9* 88.6 91.2 95.6% 96.5

129



CPCv2 - PASCAL VOC-07 Detection

Method Architecture mAP
Transfer from labeled data:

Supervised baseline ResNet-152 74.7

Transfer from unlabeled data:

Exemplar [17] by [13] ResNet-101 60.9
Motion Segmentation [47] by [13] ResNet-101 61.1

Colorization [64] by [13] ResNet-101 05.5

Relative Position [14] by [13] ResNet-101 66.8

Multi-task [13] ResNet-101 70.5

Instance Discrimination [60] ResNet-50 65.4
Deep Cluster [7] VGG-16 65.9

Deeper Cluster [8] VGG-16 67.8

Local Aggregation [66] ResNet-50 69.1

Momentum Contrast [25] ResNet-50 74.9

Faster-RCNN trained on CPC v2  ResNet-161 76.6
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Momentum

Momentum Contrast for Unsupervised Visual Representation Learning

Kaiming He

Contrast (MoCo)

Haoqgi Fan  Yuxin Wu  Saining Xie Ross Girshick

Abstract

We present Momentum Contrast (MoCo) for unsuper-
vised visual representation learning. From a perspective on
contrastive learning [29] as dictionary look-up, we build
a dynamic dictionary with a queue and a moving-averaged
encoder. This enables building a large and consistent dic-
tionary on-the-fly that facilitates contrastive unsupervised
learning. MoCo provides competitive results under the
common linear protocol on ImageNet classification. More
importantly, the representations learned by MoCo transfer
well to downstream tasks. MoCo can outperform its super-
vised pre-training counterpart in 7 detection/segmentation
tasks on PASCAL VOC, COCO, and other datasets, some-
times surpassing it by large margins. This suggests that
the gap between unsupervised and supervised representa-
tion learning has been largely closed in many vision tasks.
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Momentum Contrast (MoCo)

contrastive loss

similarity
q ko k1 ko ...
queue
encoder momentum
encoder

ke ke ke
query Y Y Y
X Lo~ Lq Lo

Figure 1. Momentum Contrast (MoCo) trains a visual represen-
tation encoder by matching an encoded query g to a dictionary
of encoded keys using a contrastive loss. The dictionary keys
{ko, k1, k2, ...} are defined on-the-fly by a set of data samples.
The dictionary is built as a queue, with the current mini-batch en-
queued and the oldest mini-batch dequeued, decoupling it from
the mini-batch size. The keys are encoded by a slowly progressing
encoder, driven by a momentum update with the query encoder.
This method enables a large and consistent dictionary for learning
visual representations.
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Momentum Contrast (MoCo)
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Momentum Contrast (MoCo)

Algorithm 1 Pseudocode of MoCo in a PyTorch-like style.

f_k.params = f_qg.params iali:
for x in loader: # load a minibatch x with N sample
X_gq = aug(x) # a randomly igmented versi
x_k = aug(x) I ral 1 ymented
q = f_qg.forward(x_q)
k = f_k.forward(x_k) # keys:
k = k.detach() # n jradient

1_pos = bmm(g.view(N,1,C), k.view(N,C,1))
l_ﬁeg»=7hm(é.viewkN;és, queue.view (C,K))

loéits = cé£(tl;p05, 1_neg], dim=1)

labels = zeros(N) # pc tives are the 0-tt
loss = CrossEntropyloss(logits/t, labels)

lossibéckQara(f‘ 7
update (f_g.params)

f_k.bafamé =‘m*f_k.ﬁaraﬁs+(l—ﬁ)*f_q.params
enqueue(quéue: k)”'
dequeue (queue)

bmm: batch matrix multiplication; mm: matrix multiplication; cat: concatenation.
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Momentum Contrast (MoCo)
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Momentum Contrast (MoCo)
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Momentum Contrast (MoCo)

accuracy (%)

70

)]
o

o)
o

40 -

I .CMC-R5OW2X R50w4x AI\ADIM-Iarge
R50w2x CF;Cvz
.~ RX50
p AMDIM- Il
EMC-R50 ° sma
R50 .BigBiGAN-Rv50w4x
| eLocalAgg
BigBiGAN-R50
o Rotation
= ®
®hstDisc
RelativePosition
(]
B .CPCV1
t)eepCIuster
Exemplar
i Jigsaw g
®
.Colorization
® previous
#parameters (M) MoCo
\ \ \ \
200 400 600

139



SimCLR

A Simple Framework for Contrastive Learning of Visual Representations

1

Ting Chen' Simon Kornblith! Mohammad Norouzi' Geoffrey Hinton !

Abstract

This paper presents SMCLR: a simple framework for contrastive learning of visual
representations. We simplify recently proposed contrastive self-supervised learning
algorithms without requiring specialized architectures or a memory bank. In order to
understand what enables the contrastive prediction tasks to learn useful representations,
we systematically study the maor components of our framework. We show that (1)
composition of data augmentations plays a critical role in defining effective predictive
tasks, (2) introducing a learnable nonlinear transformation between the representation and
the contrastive loss substantially improves the quality of the learned representations, and
(3) contrastive learning benefits from larger batch sizes and more training steps compared
to supervised learning. By combining these findings, we are able to considerably
outperform previous methods for self-supervised and semi-supervised learning on
ImageNet. A linear classifier trained on self-supervised representations learned by Sim-
CLR achieves 76.5% top-1 accuracy, which is a 7% relative improvement over previous
state-of- the-art, matching the performance of a supervised ResNet-50. When fine-tuned
on only 1% of the labels, we achieve 85.8% top-5 accuracy, outperforming AlexNet with
100x fewer labels.
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SimCLR

Maximize agreement

(a) Original (b) Crop and resize  (c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter)

h; <— Representation —

A A (f) Rotate {90°, 180°,270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering

Figure 2. A simple framework for contrastive learning of visual
representations. Two separate data augmentation operators are
sampled from the same family of augmentations (¢t ~ 7 and
t' ~ T) and applied to each data example to obtain two correlated
views. A base encoder network f(-) and a projection head g(-)
are trained to maximize agreement using a contrastive loss. After
training is completed, we throw away the projection head g(-) and
use encoder f(-) and representation h for downstream tasks.
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SimCLR

Algorithm 1 SimCLR’s main learning algorithm.

input: batch size N, constant 7, structure of f, g, 7.
for sampled minibatch {x; }5_; do
forallk € {1,..., N} do

draw two augmentation functions t ~ 7, t' ~T

# the first augmentation

ZTop—1 = t(xk)

hok—1 = f(®or_1) # representation

zop—1 = g(hop_1) # projection

# the second augmentation

iﬁgk = t/(il:k)

hor = f(Zar) # representation

zor = g(hag) # projection
end for
foralli € {1,...,2N}andj € {1,...,2N} do

sii =z zi/(llzillllz;) # pairwise similarity
end for

exp(s;,;/T)
Lik2i) exp(si,k/T)

L= 2 SN [0(2k—1,2k) + £(2k, 2k—1)]
update networks f and g to minimize £

end for

return encoder network f(-), and throw away ¢g(-)

define /(i,j) as ¢(i,j)=—log S5om
k=1
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SimCLR
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SimCLR
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MoCov2 vs SImCLR
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MoCov2 vs SImCLR

unsup. pre-train ImageNet VOC detection MLP: with an

case MLP aug+ cos epochs acc. APsg AP AP75 MLP head
supervised 76.5 81.3 535 58.8  aug+: with
MoCo vl 200 60.6 81.5 559 62.6 extrablur

(a) v 200 | 662 | 820 564 626 @ugmentaton

(b) v 200 63.4 82.2 56.8 63.2 cos:cosine

(c) NV 200 | 673 | 825 572 639 Syn9rEe

(d) v v v 200 67.5 82.4 57.0 63.6

(e) v v v 800 71.1 82.5 574 64.0
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MoCov2 vs SImCLR

unsup. pre-train ImageNet

case aug+ cos epochs  batch acc.
MoCo vl [6] 200 256 60.6
SimCLR [2] v v v 200 256 61.9
SimCLR [2] v v v 200 8192 66.6
MoCo v2 v v v 200 256 67.5
results of longer unsupervised training follow:

SimCLR [2] v v v 1000 4096 69.3
MoCo v2 v v v 800 256 71.1
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BYOL

Bootstrap Your Own Latent
A New Approach to Self-Supervised Learning

Jean-Bastien Grill*! Florian Strub*! Florent Altché*! Corentin Tallec*! Pierre H. Richemond*!:2
Elena Buchatskaya'! Carl Doersch! Bernardo Avila Pires'! Zhaohan Daniel Guo'

Mohammad Gheshlaghi Azar' Bilal Piot! Koray Kavukcuoglu! Rémi Munos' Michal Valko!
'DeepMind 2Imperial College

[jbgrill,fstrub,altche,corentint,richemond]@google.com

Abstract

We introduce Bootstrap Your Own Latent (BYOL), a new approach to self-supervised image
representation learning. BYOL relies on two neural networks, referred to as online and target
networks, that interact and learn from each other. From an augmented view of an image, we train
the online network to predict the target network representation of the same image under a different
augmented view. At the same time, we update the target network with a slow-moving average
of the online network. While state-of-the art methods intrinsically rely on negative pairs, BYOL
achieves a new state of the art without them. BYOL reaches 74.3% top-1 classification accuracy on
ImageNet using the standard linear evaluation protocol with a ResNet-50 architecture and 79.6%
with a larger ResNet. We show that BYOL performs on par or better than the current state of the
art on both transfer and semi-supervised benchmarks.
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BYOL
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Figure 2: BYOL’s architecture. BYOL minimizes a similarity loss between gy (z) and sg(z’), where 6 are the trained
weights, £ are an exponential moving average of f and sg means stop-gradient. At the end of training, everything
but fy is discarded and y is used as the image representation.



BYOL
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BYOL
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BYOL

Method Top-1  Top-5
Local Agg. 60.2 -
PIRL [35] 63.6 -
CPC v2 [32] 63.8 895.3
CMC [11] 66.2 87.0
SimCLR [8] 69.3 89.0
MoCo v2 [37] 71.1 -
InfoMin Aug.[12] 73.0 91.1
BYOL (ours) 74.3 91.6

(a) ResNet-50 encoder.

Method Architecture Param. Top-1 Top-5
SimCLR [8] ResNet-50 (2 ) 94M 74.2 92.0
CMC [11] ResNet-50 (2X) 94M 70.6 89.7
BYOL (ours)  ResNet-50 (2X) 94M 77.4 93.6
CPC v2[32] ResNet-161 305M 71.5 90.1
MoCo [9] ResNet-50 (4%) 375M 68.6 -
SimCLR [8] ResNet-50 (4 %) 375M 76.5 93.2
BYOL (ours)  ResNet-50 (4 %) 375M 78.6 94.2
BYOL (ours)  ResNet-200 (2x) 250M 79.6 948

(b) Other ResNet encoder architectures.

Table 1: Top-1 and top-5 accuracies (in %) under linear evaluation on ImageNet.
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BYOL

Method Food101 CIFAR10 CIFAR100 Birdsnap SUN397 Cars Aircraft VOC2007 DTD  Pets Caltech-101  Flowers
Linear evaluation:

BYOL (ours) 75.3 91.3 78.4 57.2 62.2 67.8 60.6 82.5 75.5 90.4 94.2 96.1
SimCLR (repro) 72.8 90.5 74.4 42.4 60.6 49.3 49.8 81.4 75.7 84.6 89.3 92.6
SimCLR [8] 68.4 90.6 71.6 37.4 58.8 50.3 50.3 80.5 74.5 83.6 90.3 91.2
Supervised-IN [8] 72.3 93.6 78.3 53.7 61.9 66.7 61.0 82.8 74.9 91.5 94.5 94.7
Fine-tuned:

BYOL (ours) 88.5 97.8 86.1 76.3 63.7 91.6 88.1 85.4 76.2 91.7 93.8 97.0
SimCLR (repro) 87.5 97.4 85.3 75.0 63.9 91.4 87.6 84.5 75.4 89.4 91.7 96.6
SimCLR [8] 88.2 97.7 85.9 75.9 63.5 91.3 88.1 84.1 73.2 89.2 92.1 97.0
Supervised-IN [8] 88.3 97.5 86.4 75.8 64.3 92.1 86.0 85.0 74.6 92.1 93.3 97.6
Random init [8] 86.9 95.9 80.2 76.1 53.6 91.4 85.9 67.3 64.8 81.5 72.6 92.0

Table 3: Transfer learning results from ImageNet (IN) with the standard ResNet-50 architecture.
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DINO

Emerging Properties in Self-Supervised Vision Transformers

Mathilde Caron’?>  Hugo Touvron'®  Ishan Misra’  Hervé Jegou'
Julien Mairal>  Piotr Bojanowski’  Armand Joulin®

! Facebook Al Research 2 Inria* 3 Sorbonne University

Figure 1: Self-attention from a Vision Transformer with 8 x 8 patches trained with no supervision. We look at the self-attention of
the [CLS] token on the heads of the last layer. This token is not attached to any label nor supervision. These maps show that the model
automatically learns class-specific features leading to unsupervised object segmentations.

Abstract

In this paper, we question if self-supervised learning pro-
vides new properties to Vision Transformer (ViT) [10] that
stand out compared to convolutional networks (convnets).
Beyond the fact that adapting self-supervised methods to this
architecture works particularly well, we make the follow-
ing observations: first, self-supervised ViT features contain
explicit information about the semantic segmentation of an
image, which does not emerge as clearly with supervised
ViTs, nor with convnets. Second, these features are also ex-
cellent k-NN classifiers, reaching 78.3% top-1 on ImageNet
with a small ViT. Our study also underlines the importance
of momentum encoder [0 [, multi-crop training [“], and the
use of small patches with ViTs. We implement our findings
into a simple self-supervised method, called DINO, which
we interpret as a form of self-distillation with no labels.
We show the synergy between DINO and ViTs by achieving
80.1% top-1 on ImageNet in linear evaluation with ViT-Base.
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DINO
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Figure 2: Self-distillation with no labels. We illustrate DINO in
the case of one single pair of views (z1, x2) for simplicity. The
model passes two different random transformations of an input
image to the student and teacher networks. Both networks have
the same architecture but different parameters. The output of the

teacher network is centered with a mean computed over the batch.

Each networks outputs a K dimensional feature that is normalized
with a temperature softmax over the feature dimension. Their
similarity is then measured with a cross-entropy loss. We apply a
stop-gradient (sg) operator on the teacher to propagate gradients
only through the student. The teacher parameters are updated with
an exponential moving average (ema) of the student parameters.
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DINO

Algorithm 1 DINO PyTorch pseudocode w/o multi-crop.

# gs, gt: student and teacher networks

# C: center (K)

# tps, tpt: student and teacher temperatures

# 1, m: network and center momentum rates

gt .params = gs.params

for x in loader: # load a minibatch x with n samples
x1l, x2 = augment (x), augment (x) # random views

sl, s2 = gs(x1l), gs(x2) # student output n-by-K
tl, t2 = gt(x1l), gt(x2) # teacher output n-by-K

loss = H(tl, s2)/2 + H(t2, sl)/2
loss.backward() # back-propagate

# student, teacher and center updates
update (gs) # SGD

gt.params = l*gt.params + (l1-1)*gs.params
C = m*C + (1l-m)*cat([tl, t2]) .mean(dim=0)

def H(t, s):
t = t.detach() # stop gradient
s = softmax(s / tps, dim=1l)
t = softmax((t - C) / tpt, dim=1l) # center + sharpen

return - (t * log(s)) .sum(dim=1) .mean()
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DINO

Table 2: Linear and k-NN classification on ImageNet. We report
top-1 accuracy for linear and k-NN evaluations on the validation
set of ImageNet for different self-supervised methods. We focus
on ResNet-50 and ViT-small architectures, but also report the best
results obtained across architectures. * are run by us. We run the
k-NN evaluation for models with official released weights. The
throughput (im/s) is calculated on a NVIDIA V100 GPU with 128
samples per forward. Parameters (M) are of the feature extractor.

Method Arch. Param. im/s Linear k-NN
Supervised RN50 23 1237 793 793
SCLR [11] RN50 23 1237  69.1  60.7
MoCov2 [13] RNS50 23 1237 71.1 619
InfoMin [54]  RNS50 23 1237 730 653
BarlowT [66] RNSO 23 1237 73.2  66.0
OBoW [21] RNS50 23 1237 73.8 619
BYOL [23] RNS50 23 1237 744 64.8
DCv2 [9] RN50 23 1237 7752 671
SwAV [Y] RN50 23 1237 753 657
DINO RN50 23 1237 | 783 | 615
Supervised VIT-S 21 1007 79.8 79.8
BYOL* [23]  ViT-S 21 1007 714  66.6
MoCov2* [13] ViT-S 21 1007 727 644
SwWAV™* [9] ViT-S 21 1007 735 663

DINO VIT-S 21 1007 77.0 745

Comparison across architectures

SCLR [11] RNS50w4 315 117 768 693
SwAV [9] RN50w2 93 38¢ 773 673
BYOL [23] RNS50w2 93 38 774 -
DINO ViT-B/16 85 312 782 76.1
SwAV [9] RNS50w5 586 76 785  67.1
BYOL [273] RNS50w4 315 117  78.6 -
BYOL [27] RN200w2 250 123 796 739
DINO VIT-S/8 21 180 79.7 783
SCLRv2 [12] RN152w3+SK 794 46 798 73.1
DINO ViT-B/8 85 63 801 774
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DINO

Supervised

Random Supervised DINO

ViT-S/16 22.0 2L3 45.9
VIT-S/8 21.8 23.7 44.7

Figure 4: Segmentations from supervised versus DINO. We vi-
sualize masks obtained by thresholding the self-attention maps to
keep 60% of the mass. On top, we show the resulting masks for
a ViT-S/8 trained with supervision and DINO. We show the best
head for both models. The table at the bottom compares the Jac-
card similarity between the ground truth and these masks on the
validation images of PASCAL VOC12 dataset.
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Barlow Twins

Barlow Twins: Self-Supervised Learning via Redundancy Reduction

Jure Zbontar*! Li Jing"! Ishan Misra! Yann LeCun!? Stéphane Deny '

Self-supervised learning (SSL) is rapidly closing the gap with supervised methods on large computer vision
benchmarks. A successful approach to SSL is to learn embeddings which are invariant to distortions of the input
sample. However, a recurring issue with this approach is the existence of trivial constant solutions. Most current
methods avoid such solutions by careful implementation details. We propose an objective function that naturally
avoids collapse by measuring the cross-correlation matrix between the outputs of two identical networks fed with
distorted versions of a sample, and making it as close to the identity matrix as possible. This causes the embedding
vectors of distorted versions of a sample to be similar, while minimizing the redundancy between the components of
these vectors. The method is called BARLOW TwiINS, owing to neuroscientist H. Barlow’s redundancy-reduction
principle applied to a pair of identical networks. BARLOW TwiINS does not require large batches nor asymmetry
between the network twins such as a predictor network, gradient stopping, or a moving average on the weight updates.
Intriguingly it benefits from very high-dimensional output vectors. BARLOW TWINS outperforms previous methods on
ImageNet for semi-supervised classification in the low-data regime, and is on par with current state of the art for
ImageNet classification with alinear classifier head, and for transfer tasks of classification and object detection.
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Barlow Twins

Representations
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Figure 1. BARLOW TWINS’s objective function measures the cross-
correlation matrix between the embeddings of two identical net-
works fed with distorted versions of a batch of samples, and tries to
make this matrix close to the identity. This causes the embedding
vectors of distorted versions of a sample to be similar, while mini-
mizing the redundancy between the components of these vectors.
BARLOW TWINS is competitive with state-of-the-art methods for
self-supervised learning while being conceptually simpler, natu-
rally avoiding trivial constant (i.e. collapsed) embeddings, and
being robust to the training batch size.
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Barlow Twins

Algorithm 1 PyTorch-style pseudocode for Barlow Twins.

f: encoder network

lambda: weight on the off-diagonal terms
N: batch size

D: dimensionality of the embeddings

mm: matrix-matrix multiplication
off diagonal: off-diagonal elements of a matrix
eye: identity matrix

SIS

for x in loader: # load a batch with N samples
# two randomly augmented versions of x
_a, y_b = augment (x)

# compute embeddings
z a f(y a) # NxD
zb = £f(y b) # NxD

# normalize repr. along the batch dimension
z_a norm = (z_a - z_a.mean(0)) / z_a.std(0) # NxD
z_ b _norm (z_b - zb.mean(0)) / z_b.std(0) # NxD

# cross—-correlation matrix
c = mm(z_a norm.T, z b norm) / N # DxD

# loss

c_diff = (c - eye(D)) .pow(2) # DxD

# multiply off-diagonal elems of c_diff by lambda
off_diagonal(c_diff) .mul_ (lambda)

loss = c_diff.sum()

# optimization step
loss.backward ()
optimizer.step()
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Barlow Twins

Table 1. Top-1 and top-5 accuracies (in %) under linear evalu-
ation on ImageNet. All models use a ResNet-50 encoder. Top-3
best self-supervised methods are underlined.

Method Top-1 Top-5
Supervised 76.5

MoCo 60.6

PIRL 63.6 -
SIMCLR 69.3 89.0
MoCo v2 71.1 90.1
SIMSIAM 71.3 -
SWAV (w/o multi-crop)  71.8 -
BYOL 743  91.6
SWAV 75.3

BARLOW TWINS (ours) 73.2 91.0

Top-1 Accuracy Diff.
|

-3.0 > -8 BT (ours)
e -e- BYOL
" --®+ SimCLR
128 256 512 1024 2048 4096
Batch size

Figure 2. Effect of batch size. To compare the effect of the batch
size across methods, for each method we report the difference
between the top-1 accuracy at a given batch size and the best ob-
tained accuracy among all batch size tested. BYOL: best accuracy
is 72.5% for a batch size of 4096 (data from (Grill et al., 2020)
fig. 3A). SIMCLR: best accuracy is 67.1% for a batch size of
4096 (data from (Chen et al., 2020a) fig. 9, model trained for 300
epochs). BARLOW TWINS: best accuracy is 71.7% for a batch size
of 1024.
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CLIP Contrastive Language-Image Pre-training

Learning Transferable Visual Models From Natural Language Supervision

Alec Radford “! Jong Wook Kim “! Chris Hallacy! Aditya Ramesh! Gabriel Goh! Sandhini Agarwal !
Girish Sastry! Amanda Askell! Pamela Mishkin! Jack Clark' Gretchen Krueger' Ilya Sutskever '

Abstract

State-of-the-art computer vision systems are trained to predict a fixed set of predetermined object
categories. This restricted form of supervision limits their generality and usability since additional labeled
data is needed to specify any other visual concept. Learning directly from raw text about images is a
promising alternative which leverages a much broader source of supervision. We demonstrate that the
simple pre-training task of predicting which caption goes with which image is an efficient and scalable
way to learn SOTA image representations from scratch on a dataset of 400 million (image, text) pairs
collected from the internet. After pre-training, natural language is used to reference learned visual
concepts (or describe new ones) enabling zero-shot transfer of the model to downstream tasks. We study
the performance of this approach by benchmarking on over 30 different existing computer vision datasets,
gpanning tasks such as OCR, action recognition in videos, geo-localization, and many types of fine-
grained object classification. The model transfers non-trivially to most tasks and is often competitive with
a fully supervised baseline without the need for any dataset specific training. For instance, we match the
ac- curacy of the original ResNet-50 on ImageNet zero-shot without needing to use any of the 1.28 million
training examples it was trained on. 163
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(1) Contrastive pre-training (2) Create dataset classifier from label text
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Figure 1. Summary of our approach. While standard image models jointly train an image feature extractor and a linear classifier to predict
some label, CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training
examples. At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions of the
target dataset’s classes.
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# image_encoder -
# text_encoder -
# I[n, h, w, c] -
# T[n, 1] B
# W_i[d_i, d_e] -
# W_t[d_t, d_e] -
# t -
# extract feature
I_f =

T_f =

# ]

I_e

T_e

# scaled pairwise

logits = np.dot(I_

ResNet or Vision Transformer
CBOW or Text Transformer
minibatch of aligned images
minibatch of aligned texts
learned proj of image to embed
learned proj of text to embed
learned temperature parameter

representations of each modality

image_encoder(I) #[n, d_i]
text_encoder(T) #[n, d_t]

oint multimodal embedding [n, d_e]
= 12_normalize(np.dot(I_f, W_i), axis=1)
= 12_normalize(np.dot(T_f, W_t), axis=1)

cosine similarities [n, n]
e, T_e.T) * np.exp(t)

# symmetric loss function

labels
loss_i
loss_t
loss

np.arange(n)

cross_entropy_loss(logits, labels, axis=0)
cross_entropy_loss(logits, labels, axis=1)
(loss_i + loss_t)/2

Figure 3. Numpy-like pseudocode for the core of an implementa-

tion of CLIP.
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Average on 7 natural distribution shift datasets (top-1, %)

Figure 13. Zero-shot CLIP is much more robust to distribution shift than standard ImageNet models. (Left) An ideal robust model
(dashed line) performs equally well on the ImageNet distribution and on other natural image distributions. Zero-shot CLIP models shrink
this “robustness gap” by up to 75%. Linear fits on logit transformed values are shown with bootstrap estimated 95% confidence intervals.
(Right) Visualizing distribution shift for bananas, a class shared across 5 of the 7 natural distribution shift datasets. The performance of
the best zero-shot CLIP model, ViT-L/14@336px, is compared with a model that has the same performance on the ImageNet validation

100 —
== |deal robust model (y = x) ’,’
951 @ Zero-ShotCLIP P
@ Standard ImageNet training ,f’
90 1 @ Exisiting robustness techniques ’,/ 4

20

65 70 75 80 85 90 95 10
Average on class subsampled ImageNet (top-1, %)

set, ResNet-101.

ImageNet Zero-Shot

Datase Examples ResNet101  CLIP A Score
ImageNet & 76.2 76.2 0%
e

ImageNetV2 64.3 70.1 +5.8%

ImageNet-R 37.7 88.9 +51.2%

ObjectNet [ ¥ § N, XY = 326 723 +39.7%
ImageNet ( [ M | f?

. ) TNC : ' 25.2 60.2 +35.0%

Sketch N\ =\ ; @ ‘\é .

27 771 +74.4%

, ImageNet-A [18F

167



CLIP

Linear probe average over all 27 datasets
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Next lecture:
Pretraining Language Models



