
Lecture #12 – Self-Supervised Learning

Aykut Erdem // Koç University // Spring 2022

COMP547
DEEP UNSUPERVISED
LEARNING

photo by unsplash user @mireilleraad

Previously on COMP547
• Autoregressive models

• Flow models

• Latent Variable models

• Implicit models

• Diffusion Models

2image: Oleg Soroko

Synthetic image sampled from BigGAN, Flow++ and
VQ-VAE-2 trained on ImageNet

Lecture overview
• Motivation

• Reconstruct from a corrupted (or partial) version

• Proxy tasks in computer vision

• Contrastive Learning

Disclaimer: Much of the material and slides for this lecture were borrowed from
—Pieter Abbeel, Peter Chen, Jonathan Ho, Aravind Srinivas’ Berkeley CS294-158 class

—Aaron Courville’s Université de Montréal IFT6268 class
3

Lecture overview
• Motivation

• Reconstruct from a corrupted (or partial) version

• Proxy tasks in computer vision

• Contrastive Learning

4

Course so far...
• Density modelling

– Autoregressive, Normalizing Flows, Variational Inference

• Implicit models
– Generative Adversarial Networks

• Applications of generative modelling

5

Today...

• How do learn rich and useful features from raw unlabeled data that
can be useful for several downstream tasks?

• What are the various pretext (proxy) tasks that can be used to learn
representations from unlabeled data?

• How can we improve data-efficiency and performance of
downstream tasks with a good pre-trained network?

6

Learning “really useful” representations
• Longstanding dream of the Deep Learning

community:
– Use unsupervised learning to learn some feature

representation that can be used to support effective
supervised learning (like classification)

7

Extract
Information

Input

More utiliy = better
(Task) Generalization ó Understanding

Tasks

Representation

We don’t need generation/reconstruction

• Generative models (in principle) care about all the pixels
8

Interesting thing

Not interesting thing

Representation Learning for Supervised
Learning
• Using generative models (AEs, VAEs, etc) have largely been

ineffective with two exceptions:
1. Natural Language Modelling (all SOTA models are build on BERT-like

representations)
2. In the very small dataset regime, unsupervised learning can actually help.

• Gradient-based supervised training with the right model (e.g. CNNs
for vision problems) has been very difficult to beat with
unsupervised methods.

9

It’s worth asking ... Why?
A speculative answer:

• Most (essentially all) existing unsupervised methods learn features
that are overwhelmingly low-level (nonsemantic).
– The features describe superficial aspects of the data and preserve few of

the invariances that one would want from a representation learning scheme.

• Modern supervised learning methods (i.e. with NN) learn layers of
representations that learn the relevant axes of variance in the data.
– Eg. Higher level features of a CNN trained to recognize car makes and

models should be relatively invariance to color but very sensitive to subtle
differences in shape.

10

Self-Supervised Learning

11

• A version of unsupervised learning where data provides the
supervision.

• In general, withhold some part of the data and the task a neural
network to predict it from the remaining parts.

• Details decide what proxy loss or pretext task the network tries to
solve, and depending on the quality of the task, good semantic
features can be obtained without actual labels.

Motivation

12

• Supervised learning success story is heavily because of the utility of
pre-trained classifier features for commercially useful downstream
tasks like segmentation, detection, etc.

• Recipe is clear: Collect a large labeled dataset, train a model, deploy.
Good data and sufficient data are what you need.

• Goal of self-supervised learning:
– Learn equally good (if not better) features without supervision
– Be able to deploy similar quality systems without relying on too many labels

for the downstream tasks
– Generalize better potentially because you learn more about the world

13

Y LeCun
How Much Information Does the Machine Need to Predict?

“Pure” Reinforcement Learning (cherry)
The machine predicts a scalar

reward given once in a while.

A few bits for some samples

Supervised Learning (icing)
The machine predicts a category

or a few numbers for each input

Predicting human-supplied data

10 10,000 bits per sample→

Unsupervised/Predictive Learning (cake)
The machine predicts any part of

its input for any observed part.

Predicts future frames in videos

Millions of bits per sample

(Yes, I know, this picture is slightly offensive to RL folks. But I’ll make it up)

• LeCun’s original cake
analogy slide, presented
at his keynote speech in
NIPS 2016.

14

Y. LeCun

How Much Information is the Machine Given during Learning?

“Pure” Reinforcement Learning (cherry)

The machine predicts a scalar reward given once in a
while.

A few bits for some samples

Supervised Learning (icing)

The machine predicts a category or a few numbers
for each input

Predicting human-supplied data

10→10,000 bits per sample

Self-Supervised Learning (cake génoise)

The machine predicts any part of its input for any
observed part.

Predicts future frames in videos

Millions of bits per sample

• Updated version at (ISSCC 2019, where he
replaced “unsupervised learning” with
“self-supervised learning”.

Self-Supervised/Predictive Learning
► Predict any part of the input from any

other part.

► Predict the future from the past.

► Predict the future from the recent past.

► Predict the past from the present.

► Predict the top from the bottom.

► Predict the occluded from the visible

► Pretend there is a part of the input you
don’t know and predict that.

15Slide by Yann LeCun

What/Why Self-Supervision?
Self-supervision: Recover useful/semantic representations by
training models to answer specific questions about the data.

• Good:
– Can procedurally generate potentially infinite amounts of annotation.
– We can borrow tricks from supervised learning without labels.
– Focus on only the information that you need (e.g., not pixels).
– Answering these questions requires more fundamental understanding

of data.

• Not so good: designing good questions also requires some
fundamental understanding of the data (e.g., structure).

16

Lecture overview
• Motivation

• Reconstruct from a corrupted (or partial) version
– Denoising Autoencoder
– In-painting
– Colorization, Split-Brain Autoencoder

• Proxy tasks in computer vision

• Contrastive Learning

17

Denoising Autoencoder

18

The feature we want to
extract from the image

Noisy input Denoised image
Compressed

representation

Encoder Decoder

Denoising Autoencoder

19Vincent et al. 2010

Denoising Autoencoder

20Vincent et al. 2010

Denoising Autoencoder

21Vincent et al. 2010

Emphasizing corrupted dimensions

22Vincent et al. 2010

Stacked Denoising Autoencoder

23Vincent et al. 2010

Denoising Autoencoder

24Vincent et al. 2010

Denoising Autoencoder

25Vincent et al. 2010

Denoising Autoencoder

28Vincent et al. 2010

Predict missing pieces

29Pathak et al. 2016

Context Encoders

30Pathak et al. 2016

Encoder

E
n

co
d

er
 F

ea
tu

re
s

D
ec

o
d

er
 F

ea
tu

re
s

Decoder
Channel-wise

Fully
Connected

L

<latexit sha1_base64="zvOHGED9Rb/HhQfIezQ4uA6/+j8=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxIRZdFNy5cVLAPmA4lk2ba0EwyJBmhDP0MNy4UcevXuPNvzLSz0NYDgcM595JzT5hwpo3rfjultfWNza3ydmVnd2//oHp41NEyVYS2ieRS9UKsKWeCtg0znPYSRXEcctoNJ7e5332iSjMpHs00oUGMR4JFjGBjJb8fYzMmmGf3s0G15tbdOdAq8QpSgwKtQfWrP5QkjakwhGOtfc9NTJBhZRjhdFbpp5ommEzwiPqWChxTHWTzyDN0ZpUhiqSyTxg0V39vZDjWehqHdjKPqJe9XPzP81MTXQcZE0lqqCCLj6KUIyNRfj8aMkWJ4VNLMFHMZkVkjBUmxrZUsSV4yyevks5F3WvULx8ateZNUUcZTuAUzsGDK2jCHbSgDQQkPMMrvDnGeXHenY/FaMkpdo7hD5zPH4OdkWo=</latexit>

()

<latexit sha1_base64="+CSxbNDDQYfp0pgb54lK7Z1kHoo=">AAAB73icbVBNSwMxEJ3Ur1q/qh69BItQL2VXKnosevFYwX5Au5Rsmm1Ds9k1yQpl6Z/w4kERr/4db/4b0+0etPXBwOO9GWbm+bHg2jjONyqsrW9sbhW3Szu7e/sH5cOjto4SRVmLRiJSXZ9oJrhkLcONYN1YMRL6gnX8ye3c7zwxpXkkH8w0Zl5IRpIHnBJjpW4VZzgflCtOzcmAV4mbkwrkaA7KX/1hRJOQSUMF0brnOrHxUqIMp4LNSv1Es5jQCRmxnqWShEx7aXbvDJ9ZZYiDSNmSBmfq74mUhFpPQ992hsSM9bI3F//zeokJrr2UyzgxTNLFoiAR2ER4/jwecsWoEVNLCFXc3orpmChCjY2oZENwl19eJe2LmluvXd7XK42bPI4inMApVMGFK2jAHTShBRQEPMMrvKFH9ILe0ceitYDymWP4A/T5A9bxjeM=</latexit>

()

<latexit sha1_base64="+CSxbNDDQYfp0pgb54lK7Z1kHoo=">AAAB73icbVBNSwMxEJ3Ur1q/qh69BItQL2VXKnosevFYwX5Au5Rsmm1Ds9k1yQpl6Z/w4kERr/4db/4b0+0etPXBwOO9GWbm+bHg2jjONyqsrW9sbhW3Szu7e/sH5cOjto4SRVmLRiJSXZ9oJrhkLcONYN1YMRL6gnX8ye3c7zwxpXkkH8w0Zl5IRpIHnBJjpW4VZzgflCtOzcmAV4mbkwrkaA7KX/1hRJOQSUMF0brnOrHxUqIMp4LNSv1Es5jQCRmxnqWShEx7aXbvDJ9ZZYiDSNmSBmfq74mUhFpPQ992hsSM9bI3F//zeokJrr2UyzgxTNLFoiAR2ER4/jwecsWoEVNLCFXc3orpmChCjY2oZENwl19eJe2LmluvXd7XK42bPI4inMApVMGFK2jAHTShBRQEPMMrvKFH9ILe0ceitYDymWP4A/T5A9bxjeM=</latexit>

,

<latexit sha1_base64="qV4ztchpZO4JJt3AzKkJY/q5rmI=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgQcKuRPQY9OIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c381hMqzWP5YMYJ+hEdSB5yRo2V6he9Ysktu3OQVeJlpAQZar3iV7cfszRCaZigWnc8NzH+hCrDmcBpoZtqTCgb0QF2LJU0Qu1P5odOyZlV+iSMlS1pyFz9PTGhkdbjKLCdETVDvezNxP+8TmrCG3/CZZIalGyxKEwFMTGZfU36XCEzYmwJZYrbWwkbUkWZsdkUbAje8surpHlZ9irlq3qlVL3N4sjDCZzCOXhwDVW4hxo0gAHCM7zCm/PovDjvzseiNedkM8fwB87nD3WhjLg=</latexit>

Context Encoders

31Pathak et al. 2016

(a) Center Region (b) Random Blocks (c) Random Shapes

Context Encoders

32Pathak et al. 2016

Lrec(x) =kM̂ � (x� F ((1� M̂)� x))k22

<latexit sha1_base64="b8XnLK5OFRwqCX9lp1jpU9GTSPU=">AAACOHicbVDPSxtBGJ2Ntmr6K9qjl8HQsnsw7IpFL4K0IB4sVTAmkNkus5OJGZzdWWa+lYR1/6xe/DN6K148KKXX/gWdTfbQmj744PHe9zHzXpxJYcD3fziNpeVnz1dW15ovXr56/aa1vnFhVK4Z7zIlle7H1HApUt4FAZL3M81pEkvei68+VX7vmmsjVHoO04yHCb1MxUgwClaKWl9IQmHMqCxOyqjQmGNWuhPv4D25IWMKxecSEzVU4E62j1w32K5Fb67iieeRm6jYKb/awYQ0o1bb7/gz4EUS1KSNapxGre9kqFie8BSYpMYMAj+DsKAaBJO8bJLc8IyyK3rJB5amNOEmLGbBS/zOKkM8UtpOCnim/n1R0MSYaRLbzSqmeepV4v+8QQ6j/bAQaZYDT9n8oVEuMShctYiHQnMGcmoJZVrYv2I2ppoysF1XJQRPIy+Si51OsNv5cLbbPvxY17GKNtEWclGA9tAhOkanqIsY+obu0AN6dG6de+en82u+2nDqm7foHzi//wBOIarX</latexit>

Ladv = max
D

Ex2X [log(D(x))

+ log(1�D(F ((1� M̂)� x)))]

<latexit sha1_base64="m8N1HE7KejAiY7mtmsHN7HVD1EE=">AAACXHicbVFdaxQxFM2MVbdbq6tCX3y5uLTMUrrMSEVfhGJX8UGhQrdd2AxDJpPdDc0kQ5Ipu4T5k771xb+i2Q+kH14IOTnnXJJ7kleCGxvHN0H4aOvxk6et7fbOs93nLzovX10YVWvKhlQJpUc5MUxwyYaWW8FGlWakzAW7zK9Ol/rlNdOGK3luFxVLSzKVfMIpsZ7KOgaXxM4oEe57kzkCBVw3nzw3h8wNGjiAlZ7n7ouX54C5hH8do6YZY6GmEA2iea+HcfvgcH1OjgbR18hveEas+9H0AKtCWfCuXgpZpxv341XBQ5BsQBdt6izr/MKFonXJpKWCGDNO4sqmjmjLqWBNG9eGVYRekSkbeyhJyUzqVuE0sO+ZAiZK+yUtrNjbHY6UxizK3DuXg5n72pL8nzau7eRj6risasskXV80qQVYBcukoeCaUSsWHhCquX8r0BnRhFr/H20fQnJ/5Ifg4l0/Oe6//3ncPfm8iaOF3qC3KEIJ+oBO0Dd0hoaIohv0J2gF28HvcCvcCXfX1jDY9LxGdyrc+wtWNbFJ</latexit>

L = �recLrec + �advLadv

<latexit sha1_base64="hOYZstUs96r9EI1k6dn7Tlxixk8=">AAACPnicbVC7SgNBFJ2NrxhfUUubwSAIQtiViDZC0MbCIoJ5QHYJd2cnyZDZBzOzgbDky2z8BjtLGwtFbC2dTVaJiQcGDuecy9x73IgzqUzz2cgtLa+sruXXCxubW9s7xd29hgxjQWidhDwULRck5SygdcUUp61IUPBdTpvu4Dr1m0MqJAuDezWKqONDL2BdRkBpqVOs2z6oPgGe3I4vsc31pAedRGCKyRjPmD/ayW8GsIeHc5mpVugUS2bZnAAvEisjJZSh1ik+2V5IYp8GinCQsm2ZkXISEIoRTscFO5Y0AjKAHm1rGoBPpZNMzh/jI614uBsK/QKFJ+rsRAK+lCPf1cl0VznvpeJ/XjtW3QsnYUEUKxqQ6UfdmGMV4rRL7DFBieIjTYAIpnfFpA8CiNKNpyVY8ycvksZp2aqUz+4qpepVVkceHaBDdIwsdI6q6AbVUB0R9IBe0Bt6Nx6NV+PD+JxGc0Y2s4/+wPj6BhI6rwU=</latexit>

Context Encoders

33Pathak et al. 2016

Context Encoders

34Pathak et al. 2016

Input Image L2 Loss Joint LossAdversarial Loss

Context Encoders

35Pathak et al. 2016

Predicting one view from another

36Slide credit: Richard Zhang

Denoising Autoencoder

Predicting one view from another

37Slide credit: Richard Zhang

Cross-Channel Autoencoder

Predicting one view from another

38Slide credit: Richard Zhang

Predicting one view from another

39Slide credit: Richard Zhang

Predicting one view from another

40

Ground Truth L2 regression Pixelwise
classification

Slide credit: Richard Zhang

Predicting one view from another

41Slide credit: Richard Zhang

L(bZ,Z) = � 1

HW

X

h,w

X

q

Zh,w,q log
⇣
bZh,w,q

⌘

<latexit sha1_base64="Ms/PeBqtWcMwXcVY4CiQ0d7ZuAw=">AAACf3icbVFNb9NAEF27QEsokNIjl1UjRCtCZKNW0EOlCC49cCgSaSriKFpvxvaqu7a7OyaKVv4b/DBu/BcOrJOgfiQj7ertmzea2TdxKYXBIPjj+VuPHj/Z3nnaerb7/MXL9t6rS1NUmsOAF7LQVzEzIEUOAxQo4arUwFQsYRhff2nyw5+gjSjy7zgvYaxYmotEcIaOmrR/RYphppX9Wh9GMzGFjKFdcHFif9R1l94+js7eR4lm3Ia1PafDmkamUhObdensP76p7+iXqS5tSFmk7oIEN3a5VUZapBkeTdqdoBcsgq6DcAU6ZBUXk/bvaFrwSkGOXDJjRmFQ4tgyjYJLqFtRZaBk/JqlMHIwZwrM2C78q+kbx0xpUmh3cqQL9m6FZcqYuYqdspnZPMw15KbcqMLk09iKvKwQcr5slFSSYkGbZdCp0MBRzh1gXAs3K+UZcxajW1nLmRA+/PI6uPzQC497J9+OO/3PKzt2yGtyQA5JSD6SPjknF2RAOPnrHXjvvK7v+W/9nh8spb63qtkn98I//Qc4M8LN</latexit>

Predicting one view from another

42Slide credit: Richard Zhang

Split-Brain Autoencoder

Predicting one view from another

43Slide credit: Richard Zhang

Predicting one view from another

44Slide credit: Richard Zhang

Lecture overview
• Motivation

• Reconstruct from a corrupted (or partial) version

• Proxy tasks in computer vision
– Relative patch prediction
– Jigsaw puzzles
– Rotation

• Contrastive Learning

45

Relative Position of Image Patches

46

Task: Predict the relative position of the second patch with respect to
the first

Slide credit: Andrew Zisserman

Relative Position of Image Patches

47

Doersch,
Gupta, Efros

Slide credit: Andrew Zisserman

Relative Position of Image Patches

48

Relative Position of Image Patches

49

Include a
gap

Jitter the patch
locations

Solving Jigsaw Puzzles

50
Noroozi and Favaro, 2016

Solving Jigsaw Puzzles

51
Noroozi and Favaro, 2016

Rotation

52

Rotation

53
Gidaris, Singh, and Komodakis. Unsupervised representation learning by predicting image rotations. ICLR 2018

Rotation

54

Rotation

55

Rotation

56

Rotation

57

Temporal coherence of color

58Slide credit: Andrew Zisserman

Task: given a color video …
Colorize all frames of a gray scale version using a reference frame

reference frame gray-scale video

Temporal coherence of color

59Slide credit: Andrew Zisserman

Temporal coherence of color

60Slide credit: Andrew Zisserman

Tracking emerges from colorization

61

Tracking emerges from colorization

62

Aij =
exp(fT

i fj)P
k exp(f

T
k fj)

<latexit sha1_base64="JSttpl4HOVGdAObGLS9B4Mge19k=">AAACInicbVDLSsNAFJ34rPUVdelmsAh1UxKpqAuh6sZlhb6giWEynbTTTB7MTMQS+i1u/BU3LhR1JfgxTtsUtPXAhcM593LvPW7MqJCG8aUtLC4tr6zm1vLrG5tb2/rObkNECcekjiMW8ZaLBGE0JHVJJSOtmBMUuIw0Xf965DfvCRc0CmtyEBM7QN2QehQjqSRHP790UtofwgtoeRzh1CIPMSx6Dr2rQc/pHw1TSySB48Op4U8NRy8YJWMMOE/MjBRAhqqjf1idCCcBCSVmSIi2acTSThGXFDMyzFuJIDHCPuqStqIhCoiw0/GLQ3iolA70Iq4qlHCs/p5IUSDEIHBVZ4BkT8x6I/E/r51I78xOaRgnkoR4sshLGJQRHOUFO5QTLNlAEYQ5VbdC3EMqKqlSzasQzNmX50njuGSWSye35ULlKosjB/bBASgCE5yCCrgBVVAHGDyCZ/AK3rQn7UV71z4nrQtaNrMH/kD7/gFSCKLs</latexit>

ĉj =
X

i

Aijci

<latexit sha1_base64="9d9NgBwa5OM3jruHzitbDnvYIZ8=">AAACBnicbVDLSsNAFJ3UV62vqEsRBovgqiRS0Y1QdeOygn1AE8JkOm2nnZmEmYlQQlZu/BU3LhRx6ze482+ctllo64ELh3Pu5d57wphRpR3n2yosLa+srhXXSxubW9s79u5eU0WJxKSBIxbJdogUYVSQhqaakXYsCeIhI61wdDPxWw9EKhqJez2Oic9RX9AexUgbKbAPvQHSKc6CIbyEnkp4QOFVkNJhBnFAA7vsVJwp4CJxc1IGOeqB/eV1I5xwIjRmSKmO68TaT5HUFDOSlbxEkRjhEeqTjqECcaL8dPpGBo+N0oW9SJoSGk7V3xMp4kqNeWg6OdIDNe9NxP+8TqJ7F35KRZxoIvBsUS9hUEdwkgnsUkmwZmNDEJbU3ArxAEmEtUmuZEJw519eJM3TilutnN1Vy7XrPI4iOABH4AS44BzUwC2ogwbA4BE8g1fwZj1ZL9a79TFrLVj5zD74A+vzB0abmF4=</latexit>

min
f

L

cj ,
X

i

Aijci

!

<latexit sha1_base64="K6Y8XxZ1cGlN+kMb/mQscMeea1o=">AAACIXicbVBNSwMxFMz6WevXqkcvwSJUkLIrih6rXjx4qGBV6JYlm2bb2CS7JG+Fsuxf8eJf8eJBkd7EP2Nae9DqQGCYeY+XmSgV3IDnfTgzs3PzC4ulpfLyyurauruxeWOSTFPWpIlI9F1EDBNcsSZwEOwu1YzISLDbqH8+8m8fmDY8UdcwSFlbkq7iMacErBS6J4HkCocxDiSBHiUivywCwWKo5rQI7/dxYDIZcnwa5vy+wDTkgebdHuyFbsWreWPgv8SfkAqaoBG6w6CT0EwyBVQQY1q+l0I7Jxo4FawoB5lhKaF90mUtSxWRzLTzccIC71qlg+NE26cAj9WfGzmRxgxkZCdHOcy0NxL/81oZxCftnKs0A6bo96E4ExgSPKoLd7hmFMTAEkI1t3/FtEc0oWBLLdsS/OnIf8nNQc0/rB1dHVbqZ5M6Smgb7aAq8tExqqML1EBNRNEjekav6M15cl6cd2f4PTrjTHa20C84n18/SKOT</latexit>

Tracking emerges from colorization

63Slide credit: Andrew Zisserman

Tracking emerges from colorization

64

Tracking emerges from colorization

65Image credit: Google AI Blog post

Lecture overview
• Motivation

• Reconstruct from a corrupted (or partial) version

• Proxy tasks in computer vision

• Contrastive Learning
– Word2vec
– Contrastive Predictive Coding (CPC)
– Instance Discrimination
– Recent State-of-the-art progress

66

Predicting neighbouring context
► Predict any part of the input from any

other part.

► Predict the future from the past.

► Predict the future from the recent past.

► Predict the past from the present.

► Predict the top from the bottom.

► Predict the occluded from the visible

► Pretend there is a part of the input you
don’t know and predict that.

67Slide by Yann LeCun

Word Embeddings

68Slide credit: Stanford 224n

• The vast majority of rule-based or statistical NLP and IR work regarded words
as atomic symbols: hotel, conference, walk

• In vector space terms, this is a vector with one 1 and a lot of zeroes

• We now call this a one-hot representation.
69

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

“hotel”

Slide credit: Stanford 224n

Word Embeddings

• The size of word vectors are equal to the number of words in the dictionary

– Vector size is proportional to the size of the dictionary
20K (speech) – 50K (Pen Treebank) – 500K (A large dictionary) – 13M (Google 1T)

• One-hot vectors vectors are orthogonal

• There is no natural notion of similarity in a set of one-hot vectors

70

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0“hotel”

“motel”
T

= 0

Slide credit: Stanford 224n

Word embeddings

• You can get a lot of value by representing a word
by means of its neighbors

• “You shall know a word by the company it keeps”
(J. R. Firth 1957:11)

• One of the most successful ideas of modern NLP

71

government debt problems turning into bankin crises as has happened in

saying that Europe needs unified bankin regulation to replace the hodgepodge

banking

banking

These words will represent
“banking”

Slide credit: Stanford 224n

Word embeddings

Distributional hypothesis
• The meaning of a word is (can be approximated by, derived from) the

set of contexts in which it occurs in texts

He filled the wampimuk, passed it around and we all drunk some

We found a little, hairy wampimuk sleeping behind the tree

72Slide credit: Marco Baroni
Testing the distributional hypothesis: The influence of context on judgements of semantic similarity
[McDonald & Ramscar’01]

Distributional semantics

73

Distributional semantics
Landauer and Dumais PsychRev 1997, Turney and Pantel JAIR 2010, . . .

he curtains open and the moon shining in on the barely

ars and the cold , close moon " . And neither of the w

rough the night with the moon shining so brightly , it

made in the light of the moon . It all boils down , wr

surely under a crescent moon , thrilled by ice-white

sun , the seasons of the moon ? Home , alone , Jay pla

m is dazzling snow , the moon has risen full and cold

un and the temple of the moon , driving out of the hug

in the dark and now the moon rises , full and amber a

bird on the shape of the moon over the trees in front

But I could n’t see the moon or the stars , only the

rning , with a sliver of moon hanging among the stars

they love the sun , the moon and the stars . None of

the light of an enormous moon . The plash of flowing w

man ’s first step on the moon ; various exhibits , aer

the inevitable piece of moon rock . Housing The Airsh

oud obscured part of the moon . The Allied guns behind

5
Slide credit: Marco Baroni

A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge [Landauer and Dumais’97]
From frequency to meaning: Vector space models of semantics [Turney ve Pantel'10]
…

Word Embeddings

74Slide credit: Stanford 224n

Word Embeddings

75Slide credit: Stanford 224n

Word Embeddings
SVD approach suffers from:

• Sparsity

• SVD computation costs

• Infrequent words

• Noise from frequent words

• There are hacks to fix some of these (ex TF-IDF) but still not very
reliable

76Slide credit: Stanford 224n

n-gram Language Models

77

Unigram

Bigram

Slide credit: Stanford 224n

P (w1, w2, · · · , wn) =
nY

i=1

P (wi)

<latexit sha1_base64="WcCcbpLbByAaOcPzW09xHAPPAsM=">AAACNnicbVDLSgMxFM34tr6qLt0Ei6AgZUYU3RSKbtwIFawKnTpkMpk2NJMMyR2lDPNVbvwOd25cKOLWTzCtFZ8Xwj059xySe8JUcAOu++CMjU9MTk3PzJbm5hcWl8rLK+dGZZqyJlVC6cuQGCa4ZE3gINhlqhlJQsEuwt7RYH5xzbThSp5BP2XthHQkjzklYKmgfNLwBYth8ybIvWIb27Zjm08jBWZ4lYWveacLWzU/1SoKcl7ziitL4y8n/9QE5YpbdYeF/wJvBCpoVI2gfO9HimYJk0AFMabluSm0c6KBU8GKkp8ZlhLaIx3WslCShJl2Ply7wBuWiXCstD0S8JD97shJYkw/Ca0yIdA1v2cD8r9ZK4P4oJ1zmWbAJP14KM4EBoUHGeKIa0ZB9C0gVHP7V0y7RBMKNumSDcH7vfJfcL5T9Xare6e7lfrhKI4ZtIbW0Sby0D6qo2PUQE1E0S16QE/o2blzHp0X5/VDOuaMPKvoRzlv7wB4rCg=</latexit>

P (w1, w2, · · · , wn) =
nY

i=2

P (wi|wi�1)

<latexit sha1_base64="AsvvnVKQ2pyaFBsAh/7ua7CBO9w=">AAACPnicbVBNSwMxEM36bf2qevQSLIKClt2i6EUQvXisYFXo1iWbzbbBbLIks0pZ95d58Td48+jFgyJePZrWip8Dyby8N8NkXpgKbsB1752h4ZHRsfGJydLU9MzsXHl+4cSoTFPWoEoofRYSwwSXrAEcBDtLNSNJKNhpeHHQ008vmTZcyWPopqyVkLbkMacELBWUG3VfsBhWr4LcK9axTTWbfBopMP2nLHzN2x1Y2/VTraIg57u14tzS+KuTF9e9e8P7rA3KFbfq9gP/Bd4AVNAg6kH5zo8UzRImgQpiTNNzU2jlRAOnghUlPzMsJfSCtFnTQkkSZlp5f/0Cr1gmwrHS9kjAffZ7R04SY7pJaCsTAh3zW+uR/2nNDOKdVs5lmgGT9GNQnAkMCve8xBHXjILoWkCo5vavmHaIJhSs4yVrgvd75b/gpFb1NqtbR5uVvf2BHRNoCS2jVeShbbSHDlEdNRBFN+gBPaFn59Z5dF6c14/SIWfQs4h+hPP2DsT9r4o=</latexit>

word2vec

78

word2vec

79

2IYVEP�)QFIHHMRK�1SHIPW��'&S;��1MOSPSZ�IX�EP������

%PP�PMRIEV��WS�ZIV]�JEWX��&EWMGEPP]�E�GLIET�[E]�
SJ�ETTP]MRK�SRI�QEXVM\�XS�EPP�MRTYXW�

,MWXSVMGEPP]��RIKEXMZI�WEQTPMRK�YWIH�MRWXIEH�
SJ�I\TIRWMZI�WSJXQE\�

200�QMRMQMWEXMSR�MW�QSVI�WXEFPI�ERH�MW�JEWX�
IRSYKL�XSHE]�

:EVMERXW��TSWMXMSR�WTIGMJMG�QEXVM\�TIV�MRTYX�
�0MRK�IX�EP������
�

2IYVEP�)QFIHHMRK�1SHIPW��7OMT�KVEQ��1MOSPSZ�IX�EP������

8EVKIX�[SVH�TVIHMGXW�GSRXI\X�[SVHW�

)QFIH�XEVKIX�[SVH�

4VSNIGX�MRXS�ZSGEFYPEV]��7SJXQE\�

0IEVR�XS�IWXMQEXI�PMOIPMLSSH�SJ�GSRXI\X�[SVHW�

Distributed representations of words and phrases and their compositionality [Mikolov vd.'13]

CBoW model Skip-gram model

Image credit: Ed Grefenstette

word2vec - CBOW

80Slide credit: Stanford 224n

Continuous Bag Of
Words (CBOW)2IYVEP�)QFIHHMRK�1SHIPW��'&S;��1MOSPSZ�IX�EP������

%PP�PMRIEV��WS�ZIV]�JEWX��&EWMGEPP]�E�GLIET�[E]�
SJ�ETTP]MRK�SRI�QEXVM\�XS�EPP�MRTYXW�

,MWXSVMGEPP]��RIKEXMZI�WEQTPMRK�YWIH�MRWXIEH�
SJ�I\TIRWMZI�WSJXQE\�

200�QMRMQMWEXMSR�MW�QSVI�WXEFPI�ERH�MW�JEWX�
IRSYKL�XSHE]�

:EVMERXW��TSWMXMSR�WTIGMJMG�QEXVM\�TIV�MRTYX�
�0MRK�IX�EP������
�

word2vec - Skip Gram

81

Skip Gram

Slide credit: Stanford 224n

2IYVEP�)QFIHHMRK�1SHIPW��7OMT�KVEQ��1MOSPSZ�IX�EP������

8EVKIX�[SVH�TVIHMGXW�GSRXI\X�[SVHW�

)QFIH�XEVKIX�[SVH�

4VSNIGX�MRXS�ZSGEFYPEV]��7SJXQE\�

0IEVR�XS�IWXMQEXI�PMOIPMLSSH�SJ�GSRXI\X�[SVHW�

word2vec - Skip Gram

82

Skip-gram
model

Don’t have to have the denominator over all words in the vocabulary
• Can use negative sampling

word2vec

83

word2vec

84

word2vec

85

word2vec

86

Deep InfoMax

87

Deep InfoMax
• Network encodes

the input

• The discriminator
estimates mutual
information
(batch-wise)

• Estimate is used to
maximize the MI
between encoder
input and output

88

Deep InfoMax

89

Published as a conference paper at ICLR 2019

Figure 3: Maximizing mutual information
between local features and global features.
First we encode the image to a feature map
that reflects some structural aspect of the data,
e.g. spatial locality, and we further summarize
this feature map into a global feature vector
(see Figure 1). We then concatenate this fea-
ture vector with the lower-level feature map
at every location. A score is produced for
each local-global pair through an additional
function (see the Appendix A.2 for details).

product of marginals, M, of random variables X and Y . MINE uses a lower-bound to the MI based
on the Donsker-Varadhan representation (DV, Donsker & Varadhan, 1983) of the KL-divergence,

I(X;Y) := DKL(J||M) � bI(DV)
! (X;Y) := EJ[T!(x, y)]� logEM[e

T!(x,y)], (2)

where T! : X ⇥ Y ! R is a discriminator function modeled by a neural network with parameters !.

At a high level, we optimize E by simultaneously estimating and maximizing I(X,E (X)),

(!̂, ̂)G = argmax
!,

bI!(X;E (X)), (3)

where the subscript G denotes “global” for reasons that will be clear later. However, there are some
important differences that distinguish our approach from MINE. First, because the encoder and
mutual information estimator are optimizing the same objective and require similar computations, we
share layers between these functions, so that E = f �C and T ,! = D! � g � (C , E),1 where
g is a function that combines the encoder output with the lower layer.

Second, as we are primarily interested in maximizing MI, and not concerned with its precise value,
we can rely on non-KL divergences which may offer favourable trade-offs. For example, one could
define a Jensen-Shannon MI estimator (following the formulation of Nowozin et al., 2016),

bI (JSD)
!, (X;E (X)) := EP[�sp(�T ,!(x,E (x)))]� EP⇥P̃[sp(T ,!(x0

, E (x)))], (4)

where x is an input sample, x0 is an input sampled from P̃ = P, and sp(z) = log(1+e
z) is the softplus

function. A similar estimator appeared in Brakel & Bengio (2017) in the context of minimizing the
total correlation, and it amounts to the familiar binary cross-entropy. This is well-understood in terms
of neural network optimization and we find works better in practice (e.g., is more stable) than the
DV-based objective (e.g., see App. A.3). Intuitively, the Jensen-Shannon-based estimator should
behave similarly to the DV-based estimator in Eq. 2, since both act like classifiers whose objectives
maximize the expected log-ratio of the joint over the product of marginals. We show in App. A.1 the
relationship between the JSD estimator and the formal definition of mutual information.

Noise-Contrastive Estimation (NCE, Gutmann & Hyvärinen, 2010; 2012) was first used as a bound
on MI in Oord et al. (and called “infoNCE”, 2018), and this loss can also be used with DIM by
maximizing:

bI (infoNCE)
!, (X;E (X)) := EP

"
T ,!(x,E (x))� EP̃

"
log

X

x0

e
T ,!(x

0,E (x))

##
. (5)

For DIM, a key difference between the DV, JSD, and infoNCE formulations is whether an expectation
over P/P̃ appears inside or outside of a log. In fact, the JSD-based objective mirrors the original
NCE formulation in Gutmann & Hyvärinen (2010), which phrased unnormalized density estimation
as binary classification between the data distribution and a noise distribution. DIM sets the noise
distribution to the product of marginals over X/Y , and the data distribution to the true joint. The
infoNCE formulation in Eq. 5 follows a softmax-based version of NCE (Jozefowicz et al., 2016),
similar to ones used in the language modeling community (Mnih & Kavukcuoglu, 2013; Mikolov et al.,

1Here we slightly abuse the notation and use for both parts of E .

4

Deep InfoMax

90

Published as a conference paper at ICLR 2019

Table 1: Classification accuracy (top 1) results on CIFAR10 and CIFAR100. DIM(L) (i.e., with the
local-only objective) outperforms all other unsupervised methods presented by a wide margin. In
addition, DIM(L) approaches or even surpasses a fully-supervised classifier with similar architecture.
DIM with the global-only objective is competitive with some models across tasks, but falls short
when compared to generative models and DIM(L) on CIFAR100. Fully-supervised classification
results are provided for comparison.

Model CIFAR10 CIFAR100
conv fc (1024) Y (64) conv fc (1024) Y (64)

Fully supervised 75.39 42.27
VAE 60.71 60.54 54.61 37.21 34.05 24.22
AE 62.19 55.78 54.47 31.50 23.89 27.44
�-VAE 62.4 57.89 55.43 32.28 26.89 28.96
AAE 59.44 57.19 52.81 36.22 33.38 23.25
BiGAN 62.57 62.74 52.54 37.59 33.34 21.49
NAT 56.19 51.29 31.16 29.18 24.57 9.72
DIM(G) 52.2 52.84 43.17 27.68 24.35 19.98
DIM(L) (DV) 72.66 70.60 64.71 48.52 44.44 39.27
DIM(L) (JSD) 73.25 73.62 66.96 48.13 45.92 39.60
DIM(L) (infoNCE) 75.21 75.57 69.13 49.74 47.72 41.61

Table 2: Classification accuracy (top 1) results on Tiny ImageNet and STL-10. For Tiny ImageNet,
DIM with the local objective outperforms all other models presented by a large margin, and approaches
accuracy of a fully-supervised classifier similar to the Alexnet architecture used here.

Tiny ImageNet STL-10 (random crop pretraining)
conv fc (4096) Y (64) conv fc (4096) Y (64) SS

Fully supervised 36.60 68.7
VAE 18.63 16.88 11.93 58.27 56.72 46.47 68.65
AE 19.07 16.39 11.82 58.19 55.57 46.82 70.29
�-VAE 19.29 16.77 12.43 57.15 55.14 46.87 70.53
AAE 18.04 17.27 11.49 59.54 54.47 43.89 64.15
BiGAN 24.38 20.21 13.06 71.53 67.18 58.48 74.77
NAT 13.70 11.62 1.20 64.32 61.43 48.84 70.75
DIM(G) 11.32 6.34 4.95 42.03 30.82 28.09 51.36
DIM(L) (DV) 30.35 29.51 28.18 69.15 63.81 61.92 71.22
DIM(L) (JSD) 33.54 36.88 31.66 72.86 70.85 65.93 76.96
DIM(L) (infoNCE) 34.21 38.09 33.33 72.57 70.00 67.08 76.81

CPC and DIM performance improved considerably. We chose a crop size of 25% of the image size
in width and depth with a stride of 12.5% the image size (e.g., 8 ⇥ 8 crops with 4 ⇥ 4 strides for
CIFAR10, 16 ⇥ 16 crops with 8 ⇥ 8 strides for STL-10), so that there were a total of 7 ⇥ 7 local
features. For both DIM(L) and CPC, we used infoNCE as well as the same “encode-and-dot-product”
architecture (tantamount to a deep bilinear model), rather than the shallow bilinear model used in
Oord et al. (2018). For CPC, we used a total of 3 such networks, where each network for CPC is
used for a separate prediction task of local feature maps in the next 3 rows of a summary predictor
feature within each column.2 For simplicity, we omitted the prior term, �, from DIM. Without data
augmentation on CIFAR10, CPC performs worse than DIM(L) with a ResNet-50 (He et al., 2016)
type architecture. For experiments we ran on STL-10 with data augmentation (using the same encoder
architecture as Table 2), CPC and DIM were competitive, with CPC performing slightly better.

CPC makes predictions based on multiple summary features, each of which contains different amounts
of information about the full input. We can add similar behavior to DIM by computing less global

features which condition on 3 ⇥ 3 blocks of local features sampled at random from the full 7 ⇥ 7
sets of local features. We then maximize mutual information between these less global features and
the full sets of local features. We share a single MI estimator across all possible 3 ⇥ 3 blocks of
local features when using this version of DIM. This represents a particular instance of the occlusion
technique described in Section 4.3. The resulting model gave a significant performance boost to

2Note that this is slightly different from the setup used in Oord et al. (2018), which used a total of 5 such
predictors, though we found other configurations performed similarly.

8

Deep InfoMax

91

Published as a conference paper at ICLR 2019

Table 1: Classification accuracy (top 1) results on CIFAR10 and CIFAR100. DIM(L) (i.e., with the
local-only objective) outperforms all other unsupervised methods presented by a wide margin. In
addition, DIM(L) approaches or even surpasses a fully-supervised classifier with similar architecture.
DIM with the global-only objective is competitive with some models across tasks, but falls short
when compared to generative models and DIM(L) on CIFAR100. Fully-supervised classification
results are provided for comparison.

Model CIFAR10 CIFAR100
conv fc (1024) Y (64) conv fc (1024) Y (64)

Fully supervised 75.39 42.27
VAE 60.71 60.54 54.61 37.21 34.05 24.22
AE 62.19 55.78 54.47 31.50 23.89 27.44
�-VAE 62.4 57.89 55.43 32.28 26.89 28.96
AAE 59.44 57.19 52.81 36.22 33.38 23.25
BiGAN 62.57 62.74 52.54 37.59 33.34 21.49
NAT 56.19 51.29 31.16 29.18 24.57 9.72
DIM(G) 52.2 52.84 43.17 27.68 24.35 19.98
DIM(L) (DV) 72.66 70.60 64.71 48.52 44.44 39.27
DIM(L) (JSD) 73.25 73.62 66.96 48.13 45.92 39.60
DIM(L) (infoNCE) 75.21 75.57 69.13 49.74 47.72 41.61

Table 2: Classification accuracy (top 1) results on Tiny ImageNet and STL-10. For Tiny ImageNet,
DIM with the local objective outperforms all other models presented by a large margin, and approaches
accuracy of a fully-supervised classifier similar to the Alexnet architecture used here.

Tiny ImageNet STL-10 (random crop pretraining)
conv fc (4096) Y (64) conv fc (4096) Y (64) SS

Fully supervised 36.60 68.7
VAE 18.63 16.88 11.93 58.27 56.72 46.47 68.65
AE 19.07 16.39 11.82 58.19 55.57 46.82 70.29
�-VAE 19.29 16.77 12.43 57.15 55.14 46.87 70.53
AAE 18.04 17.27 11.49 59.54 54.47 43.89 64.15
BiGAN 24.38 20.21 13.06 71.53 67.18 58.48 74.77
NAT 13.70 11.62 1.20 64.32 61.43 48.84 70.75
DIM(G) 11.32 6.34 4.95 42.03 30.82 28.09 51.36
DIM(L) (DV) 30.35 29.51 28.18 69.15 63.81 61.92 71.22
DIM(L) (JSD) 33.54 36.88 31.66 72.86 70.85 65.93 76.96
DIM(L) (infoNCE) 34.21 38.09 33.33 72.57 70.00 67.08 76.81

CPC and DIM performance improved considerably. We chose a crop size of 25% of the image size
in width and depth with a stride of 12.5% the image size (e.g., 8 ⇥ 8 crops with 4 ⇥ 4 strides for
CIFAR10, 16 ⇥ 16 crops with 8 ⇥ 8 strides for STL-10), so that there were a total of 7 ⇥ 7 local
features. For both DIM(L) and CPC, we used infoNCE as well as the same “encode-and-dot-product”
architecture (tantamount to a deep bilinear model), rather than the shallow bilinear model used in
Oord et al. (2018). For CPC, we used a total of 3 such networks, where each network for CPC is
used for a separate prediction task of local feature maps in the next 3 rows of a summary predictor
feature within each column.2 For simplicity, we omitted the prior term, �, from DIM. Without data
augmentation on CIFAR10, CPC performs worse than DIM(L) with a ResNet-50 (He et al., 2016)
type architecture. For experiments we ran on STL-10 with data augmentation (using the same encoder
architecture as Table 2), CPC and DIM were competitive, with CPC performing slightly better.

CPC makes predictions based on multiple summary features, each of which contains different amounts
of information about the full input. We can add similar behavior to DIM by computing less global

features which condition on 3 ⇥ 3 blocks of local features sampled at random from the full 7 ⇥ 7
sets of local features. We then maximize mutual information between these less global features and
the full sets of local features. We share a single MI estimator across all possible 3 ⇥ 3 blocks of
local features when using this version of DIM. This represents a particular instance of the occlusion
technique described in Section 4.3. The resulting model gave a significant performance boost to

2Note that this is slightly different from the setup used in Oord et al. (2018), which used a total of 5 such
predictors, though we found other configurations performed similarly.

8

Contrastive Predictive Coding

92

Contrastive Predictive Coding

93Figure credit: Alex Graves

Contrastive Predictive Coding

94Figure credit: Alex Graves

Contrastive Predictive Coding

95Figure credit: Alex Graves

Contrastive Predictive Coding

96Figure credit: Alex Graves

Contrastive Predictive Coding

97Figure credit: Alex Graves

Contrastive Predictive Coding

98Figure credit: Alex Graves

Contrastive Predictive Coding

99Figure credit: Alex Graves

Contrastive Predictive Coding

100Figure credit: Alex Graves

Contrastive Predictive Coding

101Figure credit: Alex Graves

Contrastive Predictive Coding

102Figure credit: Alex Graves

Contrastive Predictive Coding

103Figure credit: Alex Graves

Contrastive Predictive Coding

104Figure credit: Alex Graves

CPC - Speech

105

CPC - Speech

106

CPC - ImageNet

107

CPC - ImageNet

108

CPC - ImageNet

109

CPC - ImageNet

110

CPC - Natural Language Processing

111Oord, Li, Vinyals, 2018

CPC - Reinforcement Learning

112Figure credit: Aaron Van den Oord

Auxiliary Losses

Auxiliary loss is on policy
Predict 30 steps in the future

CPCv2 - Large Scale CPC on ImageNet

113

CPCv2 - Large Scale CPC on ImageNet

114Figure credit: Aaron Van den Oord

ResNet-161

Input Image

Image
patches

CPCv2 - Large Scale CPC on ImageNet

115

ResNet-161

Figure credit: Aaron Van den Oord

CPCv2 - Large Scale CPC on ImageNet

116Figure credit: Aaron Van den Oord

CPCv2 - Large Scale CPC on ImageNet

117Figure credit: Aaron Van den Oord

CPCv2 - Large Scale CPC on ImageNet

118Figure credit: Aaron Van den Oord

CPCv2 - Large Scale CPC on ImageNet

119Figure credit: Aaron Van den Oord

CPCv2 - Large Scale CPC on ImageNet

120Figure credit: Aaron Van den Oord

CPCv2 - Large Scale CPC on ImageNet

121

1. Other patches within image
2. Patches from other images

Negatives

Figure credit: Aaron Van den Oord

CPCv2 - Large Scale CPC on ImageNet

122

InfoNCE Loss

Figure credit: Aaron Van den Oord

1. Other patches within image
2. Patches from other images

Negatives

NCE: Noise-Contrastive
Estimation

CPCv2 - Large Scale CPC on ImageNet

123

InfoNCE Loss

Parallel Implementation
with PixelCNN (masked conv) and
1x1 conv Figure credit: Aaron Van den Oord

1. Other patches within image
2. Patches from other images

Negatives

NCE: Noise-Contrastive
Estimation

CPCv2 - Large Scale CPC on ImageNet

• Train CPC on unlabeled ImageNet

• Train as long as possible (500 epochs) – 1 week

• Augment every patch with a lot of spatial and color augmentation

[extremely crucial]

• Effective number of negatives = number of instances * number of

patches per instance = 16 * 36 = 576

124

CPCv2 - Large Scale CPC on ImageNet

125

CPCv2 - Linear Classification

126

CPCv2 - Data-Efficient Image Recognition

127

CPCv1 → CPCv2

128

MC: model capacity

BU: bottom-up spatial
predictions

LN: layer normalization

RC: random color-
dropping

HP: horizontal spatial
predictions

LP: larger patches.

PA: further patch-
based augmentation.

CPCv2 - Data-Efficient Supervised Learning

129

CPCv2 - PASCAL VOC-07 Detection

130

Instance Discrimination

attract

repel

131

Instance Discrimination

attract

repel
1. MoCo
2. SimCLR

132

Momentum Contrast (MoCo)

133

Momentum Contrast (MoCo)

134

Momentum Contrast for Unsupervised Visual Representation Learning

Kaiming He Haoqi Fan Yuxin Wu Saining Xie Ross Girshick

Facebook AI Research (FAIR)

Abstract

We present Momentum Contrast (MoCo) for unsuper-

vised visual representation learning. From a perspective on

contrastive learning [29] as dictionary look-up, we build

a dynamic dictionary with a queue and a moving-averaged

encoder. This enables building a large and consistent dic-

tionary on-the-fly that facilitates contrastive unsupervised

learning. MoCo provides competitive results under the

common linear protocol on ImageNet classification. More

importantly, the representations learned by MoCo transfer

well to downstream tasks. MoCo can outperform its super-

vised pre-training counterpart in 7 detection/segmentation

tasks on PASCAL VOC, COCO, and other datasets, some-

times surpassing it by large margins. This suggests that

the gap between unsupervised and supervised representa-

tion learning has been largely closed in many vision tasks.

Code: https://github.com/facebookresearch/moco

1. Introduction

Unsupervised representation learning is highly success-
ful in natural language processing, e.g., as shown by GPT
[50, 51] and BERT [12]. But supervised pre-training is still
dominant in computer vision, where unsupervised meth-
ods generally lag behind. The reason may stem from dif-
ferences in their respective signal spaces. Language tasks
have discrete signal spaces (words, sub-word units, etc.)
for building tokenized dictionaries, on which unsupervised
learning can be based. Computer vision, in contrast, further
concerns dictionary building [54, 9, 5], as the raw signal is
in a continuous, high-dimensional space and is not struc-
tured for human communication (e.g., unlike words).

Several recent studies [61, 46, 36, 66, 35, 56, 2] present
promising results on unsupervised visual representation
learning using approaches related to the contrastive loss

[29]. Though driven by various motivations, these methods
can be thought of as building dynamic dictionaries. The
“keys” (tokens) in the dictionary are sampled from data
(e.g., images or patches) and are represented by an encoder
network. Unsupervised learning trains encoders to perform
dictionary look-up: an encoded “query” should be similar
to its matching key and dissimilar to others. Learning is
formulated as minimizing a contrastive loss [29].

encoder momentum
encoder

q

contrastive loss

similarity

queue

k0 k1 k2 ...

xquery xkey
0 xkey

1 xkey
2 ...

Figure 1. Momentum Contrast (MoCo) trains a visual represen-

tation encoder by matching an encoded query q to a dictionary

of encoded keys using a contrastive loss. The dictionary keys

{k0, k1, k2, ...} are defined on-the-fly by a set of data samples.

The dictionary is built as a queue, with the current mini-batch en-

queued and the oldest mini-batch dequeued, decoupling it from

the mini-batch size. The keys are encoded by a slowly progressing

encoder, driven by a momentum update with the query encoder.

This method enables a large and consistent dictionary for learning

visual representations.

From this perspective, we hypothesize that it is desirable
to build dictionaries that are: (i) large and (ii) consistent
as they evolve during training. Intuitively, a larger dictio-
nary may better sample the underlying continuous, high-
dimensional visual space, while the keys in the dictionary
should be represented by the same or similar encoder so that
their comparisons to the query are consistent. However, ex-
isting methods that use contrastive losses can be limited in
one of these two aspects (discussed later in context).

We present Momentum Contrast (MoCo) as a way of
building large and consistent dictionaries for unsupervised
learning with a contrastive loss (Figure 1). We maintain the
dictionary as a queue of data samples: the encoded repre-
sentations of the current mini-batch are enqueued, and the
oldest are dequeued. The queue decouples the dictionary
size from the mini-batch size, allowing it to be large. More-
over, as the dictionary keys come from the preceding sev-
eral mini-batches, a slowly progressing key encoder, imple-
mented as a momentum-based moving average of the query
encoder, is proposed to maintain consistency.

19729

Momentum Contrast for Unsupervised Visual Representation Learning

Kaiming He Haoqi Fan Yuxin Wu Saining Xie Ross Girshick

Facebook AI Research (FAIR)

Abstract

We present Momentum Contrast (MoCo) for unsuper-

vised visual representation learning. From a perspective on

contrastive learning [29] as dictionary look-up, we build

a dynamic dictionary with a queue and a moving-averaged

encoder. This enables building a large and consistent dic-

tionary on-the-fly that facilitates contrastive unsupervised

learning. MoCo provides competitive results under the

common linear protocol on ImageNet classification. More

importantly, the representations learned by MoCo transfer

well to downstream tasks. MoCo can outperform its super-

vised pre-training counterpart in 7 detection/segmentation

tasks on PASCAL VOC, COCO, and other datasets, some-

times surpassing it by large margins. This suggests that

the gap between unsupervised and supervised representa-

tion learning has been largely closed in many vision tasks.

Code: https://github.com/facebookresearch/moco

1. Introduction

Unsupervised representation learning is highly success-
ful in natural language processing, e.g., as shown by GPT
[50, 51] and BERT [12]. But supervised pre-training is still
dominant in computer vision, where unsupervised meth-
ods generally lag behind. The reason may stem from dif-
ferences in their respective signal spaces. Language tasks
have discrete signal spaces (words, sub-word units, etc.)
for building tokenized dictionaries, on which unsupervised
learning can be based. Computer vision, in contrast, further
concerns dictionary building [54, 9, 5], as the raw signal is
in a continuous, high-dimensional space and is not struc-
tured for human communication (e.g., unlike words).

Several recent studies [61, 46, 36, 66, 35, 56, 2] present
promising results on unsupervised visual representation
learning using approaches related to the contrastive loss

[29]. Though driven by various motivations, these methods
can be thought of as building dynamic dictionaries. The
“keys” (tokens) in the dictionary are sampled from data
(e.g., images or patches) and are represented by an encoder
network. Unsupervised learning trains encoders to perform
dictionary look-up: an encoded “query” should be similar
to its matching key and dissimilar to others. Learning is
formulated as minimizing a contrastive loss [29].

encoder momentum
encoder

q

contrastive loss

similarity

queue

k0 k1 k2 ...

xquery xkey
0 xkey

1 xkey
2 ...

Figure 1. Momentum Contrast (MoCo) trains a visual represen-

tation encoder by matching an encoded query q to a dictionary

of encoded keys using a contrastive loss. The dictionary keys

{k0, k1, k2, ...} are defined on-the-fly by a set of data samples.

The dictionary is built as a queue, with the current mini-batch en-

queued and the oldest mini-batch dequeued, decoupling it from

the mini-batch size. The keys are encoded by a slowly progressing

encoder, driven by a momentum update with the query encoder.

This method enables a large and consistent dictionary for learning

visual representations.

From this perspective, we hypothesize that it is desirable
to build dictionaries that are: (i) large and (ii) consistent
as they evolve during training. Intuitively, a larger dictio-
nary may better sample the underlying continuous, high-
dimensional visual space, while the keys in the dictionary
should be represented by the same or similar encoder so that
their comparisons to the query are consistent. However, ex-
isting methods that use contrastive losses can be limited in
one of these two aspects (discussed later in context).

We present Momentum Contrast (MoCo) as a way of
building large and consistent dictionaries for unsupervised
learning with a contrastive loss (Figure 1). We maintain the
dictionary as a queue of data samples: the encoded repre-
sentations of the current mini-batch are enqueued, and the
oldest are dequeued. The queue decouples the dictionary
size from the mini-batch size, allowing it to be large. More-
over, as the dictionary keys come from the preceding sev-
eral mini-batches, a slowly progressing key encoder, imple-
mented as a momentum-based moving average of the query
encoder, is proposed to maintain consistency.

19729

Momentum Contrast (MoCo)

135

Momentum Contrast (MoCo)

136

Momentum Contrast (MoCo)

137

q k

contrastive loss

gradient gradient

(a) end-to-end
xq xk

q k

contrastive loss

gradient

(c) MoCo
xq xk

encoder momentum
encoder

q k

contrastive loss

sampling

memory
bank

gradient

(b) memory bank
xq

encoderencoder q encoder k

q·k q·k q·k

Figure 2. Conceptual comparison of three contrastive loss mechanisms (empirical comparisons are in Figure 3 and Table 3). Here we

illustrate one pair of query and key. The three mechanisms differ in how the keys are maintained and how the key encoder is updated.

(a): The encoders for computing the query and key representations are updated end-to-end by back-propagation (the two encoders can

be different). (b): The key representations are sampled from a memory bank [61]. (c): MoCo encodes the new keys on-the-fly by a

momentum-updated encoder, and maintains a queue (not illustrated in this figure) of keys.

3.2. Momentum Contrast

From the above perspective, contrastive learning is a way
of building a discrete dictionary on high-dimensional con-
tinuous inputs such as images. The dictionary is dynamic in
the sense that the keys are randomly sampled, and that the
key encoder evolves during training. Our hypothesis is that
good features can be learned by a large dictionary that cov-
ers a rich set of negative samples, while the encoder for the
dictionary keys is kept as consistent as possible despite its
evolution. Based on this motivation, we present Momentum
Contrast as described next.

Dictionary as a queue. At the core of our approach is
maintaining the dictionary as a queue of data samples. This
allows us to reuse the encoded keys from the immediate pre-
ceding mini-batches. The introduction of a queue decouples
the dictionary size from the mini-batch size. Our dictionary
size can be much larger than a typical mini-batch size, and
can be flexibly and independently set as a hyper-parameter.

The samples in the dictionary are progressively replaced.
The current mini-batch is enqueued to the dictionary, and
the oldest mini-batch in the queue is removed. The dictio-
nary always represents a sampled subset of all data, while
the extra computation of maintaining this dictionary is man-
ageable. Moreover, removing the oldest mini-batch can be
beneficial, because its encoded keys are the most outdated
and thus the least consistent with the newest ones.

Momentum update. Using a queue can make the dictio-
nary large, but it also makes it intractable to update the key
encoder by back-propagation (the gradient should propa-
gate to all samples in the queue). A naı̈ve solution is to
copy the key encoder fk from the query encoder fq, ignor-
ing this gradient. But this solution yields poor results in
experiments (Sec. 4.1). We hypothesize that such failure
is caused by the rapidly changing encoder that reduces the
key representations’ consistency. We propose a momentum
update to address this issue.

Formally, denoting the parameters of fk as θk and those
of fq as θq, we update θk by:

θk ← mθk + (1−m)θq. (2)

Here m ∈ [0, 1) is a momentum coefficient. Only the pa-
rameters θq are updated by back-propagation. The momen-
tum update in Eqn.(2) makes θk evolve more smoothly than
θq. As a result, though the keys in the queue are encoded
by different encoders (in different mini-batches), the dif-
ference among these encoders can be made small. In ex-
periments, a relatively large momentum (e.g., m = 0.999,
our default) works much better than a smaller value (e.g.,
m = 0.9), suggesting that a slowly evolving key encoder is
a core to making use of a queue.

Relations to previous mechanisms. MoCo is a general
mechanism for using contrastive losses. We compare it with
two existing general mechanisms in Figure 2. They exhibit
different properties on the dictionary size and consistency.

The end-to-end update by back-propagation is a natural
mechanism (e.g., [29, 46, 36, 63, 2, 35], Figure 2a). It uses
samples in the current mini-batch as the dictionary, so the
keys are consistently encoded (by the same set of encoder
parameters). But the dictionary size is coupled with the
mini-batch size, limited by the GPU memory size. It is also
challenged by large mini-batch optimization [25]. Some re-
cent methods [46, 36, 2] are based on pretext tasks driven by
local positions, where the dictionary size can be made larger
by multiple positions. But these pretext tasks may require
special network designs such as patchifying the input [46]
or customizing the receptive field size [2], which may com-
plicate the transfer of these networks to downstream tasks.

Another mechanism is the memory bank approach pro-
posed by [61] (Figure 2b). A memory bank consists of the
representations of all samples in the dataset. The dictionary
for each mini-batch is randomly sampled from the memory
bank with no back-propagation, so it can support a large
dictionary size. However, the representation of a sample in

9731

Momentum Contrast (MoCo)

138

Training. We use SGD as our optimizer. The SGD weight
decay is 0.0001 and the SGD momentum is 0.9. For IN-1M,
we use a mini-batch size of 256 (N in Algorithm 1) in 8
GPUs, and an initial learning rate of 0.03. We train for 200
epochs with the learning rate multiplied by 0.1 at 120 and
160 epochs [61], taking ∼53 hours training ResNet-50. For
IG-1B, we use a mini-batch size of 1024 in 64 GPUs, and
a learning rate of 0.12 which is exponentially decayed by
0.9× after every 62.5k iterations (64M images). We train
for 1.25M iterations (∼1.4 epochs of IG-1B), taking ∼6 days
for ResNet-50.

4.1. Linear Classification Protocol

We first verify our method by linear classification on
frozen features, following a common protocol. In this sub-
section we perform unsupervised pre-training on IN-1M.
Then we freeze the features and train a supervised linear
classifier (a fully-connected layer followed by softmax). We
train this classifier on the global average pooling features of
a ResNet, for 100 epochs. We report 1-crop, top-1 classifi-
cation accuracy on the ImageNet validation set.

For this classifier, we perform a grid search and find the
optimal initial learning rate is 30 and weight decay is 0
(similarly reported in [56]). These hyper-parameters per-
form consistently well for all ablation entries presented in
this subsection. These hyper-parameter values imply that
the feature distributions (e.g., magnitudes) can be substan-
tially different from those of ImageNet supervised training,
an issue we will revisit in Sec. 4.2.

Ablation: contrastive loss mechanisms. We compare the
three mechanisms that are illustrated in Figure 2. To focus
on the effect of contrastive loss mechanisms, we implement
all of them in the same pretext task as described in Sec. 3.3.
We also use the same form of InfoNCE as the contrastive
loss function, Eqn.(1). As such, the comparison is solely on
the three mechanisms.

The results are in Figure 3. Overall, all three mecha-
nisms benefit from a larger K. A similar trend has been
observed in [61, 56] under the memory bank mechanism,
while here we show that this trend is more general and can
be seen in all mechanisms. These results support our moti-
vation of building a large dictionary.

The end-to-end mechanism performs similarly to MoCo
when K is small. However, the dictionary size is limited
by the mini-batch size due to the end-to-end requirement.
Here the largest mini-batch a high-end machine (8 Volta
32GB GPUs) can afford is 1024. More essentially, large
mini-batch training is an open problem [25]: we found it
necessary to use the linear learning rate scaling rule [25]
here, without which the accuracy drops (by ∼2% with a
1024 mini-batch). But optimizing with a larger mini-batch
is harder [25], and it is questionable whether the trend can
be extrapolated into a larger K even if memory is sufficient.

256 512 1024 4096 16384 65536
K (log-scale)

50

52

54

56

58

60

ac
cu

ra
cy

 (%
)

50.0

52.0

54.1

56.5

57.8 58.0

54.7

56.4

57.5

59.0

60.4 60.6

54.9

56.3
57.3

end-to-end
memory bank
MoCo

Figure 3. Comparison of three contrastive loss mechanisms un-

der the ImageNet linear classification protocol. We adopt the same

pretext task (Sec. 3.3) and only vary the contrastive loss mecha-

nism (Figure 2). The number of negatives is K in memory bank

and MoCo, and is K−1 in end-to-end (offset by one because the

positive key is in the same mini-batch). The network is ResNet-50.

The memory bank [61] mechanism can support a larger
dictionary size. But it is 2.6% worse than MoCo. This is
inline with our hypothesis: the keys in the memory bank
are from very different encoders all over the past epoch and
they are not consistent. Note the memory bank result of
58.0% reflects our improved implementation of [61].2

Ablation: momentum. The table below shows ResNet-50
accuracy with different MoCo momentum values (m in
Eqn.(2)) used in pre-training (K = 4096 here) :

momentum m 0 0.9 0.99 0.999 0.9999

accuracy (%) fail 55.2 57.8 59.0 58.9

It performs reasonably well when m is in 0.99 ∼ 0.9999,
showing that a slowly progressing (i.e., relatively large mo-
mentum) key encoder is beneficial. When m is too small
(e.g., 0.9), the accuracy drops considerably; at the extreme
of no momentum (m is 0), the training loss oscillates and
fails to converge. These results support our motivation of
building a consistent dictionary.

Comparison with previous results. Previous unsuper-
vised learning methods can differ substantially in model
sizes. For a fair and comprehensive comparison, we report
accuracy vs. #parameters3 trade-offs. Besides ResNet-50
(R50) [33], we also report its variants that are 2× and 4×
wider (more channels), following [38].4 We set K = 65536
and m = 0.999. Table 1 is the comparison.

MoCo with R50 performs competitively and achieves
60.6% accuracy, better than all competitors of similar
model sizes (∼24M). MoCo benefits from larger models and
achieves 68.6% accuracy with R50w4×.

Notably, we achieve competitive results using a standard

ResNet-50 and require no specific architecture designs, e.g.,

2Here 58.0% is with InfoNCE and K=65536. We reproduce 54.3%
when using NCE and K=4096 (the same as [61]), close to 54.0% in [61].

3Parameters are of the feature extractor: e.g., we do not count the pa-
rameters of convx if convx is not included in linear classification.

4Our w2× and w4× models correspond to the “×8” and “×16” cases
in [38], because the standard-sized ResNet is referred to as “×4” in [38].

9733

Momentum Contrast (MoCo)

139

0 200 400 600

#parameters (M)
40

50

60

70

ac
cu

ra
cy

 (%
)

Exemplar

RelativePosition

Jigsaw

Rotation

Colorization

DeepCluster

InstDisc

CPCv1

CPCv2

BigBiGAN-R50

BigBiGAN-Rv50w4x
AMDIM-small

AMDIM-large

CMC-R50

CMC-R50w2x

LocalAgg

R50

RX50
R50w2x

R50w4x

previous
MoCo

method architecture #params (M) accuracy (%)

Exemplar [17] R50w3× 211 46.0 [38]
RelativePosition [13] R50w2× 94 51.4 [38]
Jigsaw [45] R50w2× 94 44.6 [38]
Rotation [19] Rv50w4× 86 55.4 [38]
Colorization [64] R101∗ 28 39.6 [14]
DeepCluster [3] VGG [53] 15 48.4 [4]
BigBiGAN [16] R50 24 56.6

Rv50w4× 86 61.3

methods based on contrastive learning follow:

InstDisc [61] R50 24 54.0
LocalAgg [66] R50 24 58.8
CPC v1 [46] R101∗ 28 48.7
CPC v2 [35] R170∗wider 303 65.9

CMC [56] R50L+ab 47 64.1†

R50w2×L+ab 188 68.4†

AMDIM [2] AMDIMsmall 194 63.5†

AMDIMlarge 626 68.1†

MoCo R50 24 60.6
RX50 46 63.9
R50w2× 94 65.4
R50w4× 375 68.6

Table 1. Comparison under the linear classification protocol

on ImageNet. The figure visualizes the table. All are reported as

unsupervised pre-training on the ImageNet-1M training set, fol-

lowed by supervised linear classification trained on frozen fea-

tures, evaluated on the validation set. The parameter counts are

those of the feature extractors. We compare with improved re-

implementations if available (referenced after the numbers).

Notations: R101∗/R170∗ is ResNet-101/170 with the last residual stage

removed [14, 46, 35], and R170 is made wider [35]; Rv50 is a reversible

net [23], RX50 is ResNeXt-50-32×8d [62].
†: Pre-training uses FastAutoAugment [40] that is supervised by ImageNet labels.

patchified inputs [46, 35], carefully tailored receptive fields
[2], or combining two networks [56]. By using an architec-
ture that is not customized for the pretext task, it is easier to
transfer features to a variety of visual tasks and make com-
parisons, studied in the next subsection.

This paper’s focus is on a mechanism for general con-
trastive learning; we do not explore orthogonal factors (such
as specific pretext tasks) that may further improve accuracy.
As an example, “MoCo v2” [8], an extension of a prelim-
inary version of this manuscript, achieves 71.1% accuracy
with R50 (up from 60.6%), given small changes on the data
augmentation and output projection head [7]. We believe
that this additional result shows the generality and robust-
ness of the MoCo framework.

pre-train AP50 AP AP75

random init. 64.4 37.9 38.6
super. IN-1M 81.4 54.0 59.1

MoCo IN-1M 81.1 (−0.3) 54.6 (+0.6) 59.9 (+0.8)

MoCo IG-1B 81.6 (+0.2) 55.5 (+1.5) 61.2 (+2.1)

(a) Faster R-CNN, R50-dilated-C5

pre-train AP50 AP AP75

random init. 60.2 33.8 33.1
super. IN-1M 81.3 53.5 58.8

MoCo IN-1M 81.5 (+0.2) 55.9 (+2.4) 62.6 (+3.8)

MoCo IG-1B 82.2 (+0.9) 57.2 (+3.7) 63.7 (+4.9)

(b) Faster R-CNN, R50-C4

Table 2. Object detection fine-tuned on PASCAL VOC

trainval07+12. Evaluation is on test2007: AP50 (default

VOC metric), AP (COCO-style), and AP75, averaged over 5 trials.

All are fine-tuned for 24k iterations (∼23 epochs). In the brackets

are the gaps to the ImageNet supervised pre-training counterpart.

In green are the gaps of at least +0.5 point.

R50-dilated-C5 R50-C4

pre-train AP50 AP AP75 AP50 AP AP75

end-to-end 79.2 52.0 56.6 80.4 54.6 60.3

memory bank 79.8 52.9 57.9 80.6 54.9 60.6

MoCo 81.1 54.6 59.9 81.5 55.9 62.6

Table 3. Comparison of three contrastive loss mechanisms on

PASCAL VOC object detection, fine-tuned on trainval07+12

and evaluated on test2007 (averages over 5 trials). All models

are implemented by us (Figure 3), pre-trained on IN-1M, and fine-

tuned using the same settings as in Table 2.

4.2. Transferring Features

A main goal of unsupervised learning is to learn features

that are transferrable. ImageNet supervised pre-training is
most influential when serving as the initialization for fine-
tuning in downstream tasks (e.g., [21, 20, 43, 52]). Next
we compare MoCo with ImageNet supervised pre-training,
transferred to various tasks including PASCAL VOC [18],
COCO [42], etc. As prerequisites, we discuss two important
issues involved [31]: normalization and schedules.

Normalization. As noted in Sec. 4.1, features produced by
unsupervised pre-training can have different distributions
compared with ImageNet supervised pre-training. But a
system for a downstream task often has hyper-parameters
(e.g., learning rates) selected for supervised pre-training. To
relieve this problem, we adopt feature normalization during
fine-tuning: we fine-tune with BN that is trained (and syn-
chronized across GPUs [49]), instead of freezing it by an
affine layer [33]. We also use BN in the newly initialized
layers (e.g., FPN [41]), which helps calibrate magnitudes.

We perform normalization when fine-tuning supervised
and unsupervised pre-training models. MoCo uses the same

hyper-parameters as the ImageNet supervised counterpart.

Schedules. If the fine-tuning schedule is long enough,
training detectors from random initialization can be strong
baselines, and can match the ImageNet supervised counter-
part on COCO [31]. Our goal is to investigate transferabil-

9734

SimCLR

140

Abstract
This paper presents SimCLR: a simple framework for contrastive learning of visual
representations. We simplify recently proposed contrastive self-supervised learning
algorithms without requiring specialized architectures or a memory bank. In order to
understand what enables the contrastive prediction tasks to learn useful representations,
we systematically study the major components of our framework. We show that (1)
composition of data augmentations plays a critical role in defining effective predictive
tasks, (2) introducing a learnable nonlinear transformation between the representation and
the contrastive loss substantially improves the quality of the learned representations, and
(3) contrastive learning benefits from larger batch sizes and more training steps compared
to supervised learning. By combining these findings, we are able to considerably
outperform previous methods for self-supervised and semi-supervised learning on
ImageNet. A linear classifier trained on self-supervised representations learned by Sim-
CLR achieves 76.5% top-1 accuracy, which is a 7% relative improvement over previous
state-of- the-art, matching the performance of a supervised ResNet-50. When fine-tuned
on only 1% of the labels, we achieve 85.8% top-5 accuracy, outperforming AlexNet with
100× fewer labels.

A Simple Framework for Contrastive Learning of Visual Representations

Ting Chen 1 Simon Kornblith 1 Mohammad Norouzi 1 Geoffrey Hinton 1

Abstract

This paper presents SimCLR: a simple framework
for contrastive learning of visual representations.
We simplify recently proposed contrastive self-
supervised learning algorithms without requiring
specialized architectures or a memory bank. In
order to understand what enables the contrastive
prediction tasks to learn useful representations,
we systematically study the major components of
our framework. We show that (1) composition of
data augmentations plays a critical role in defining
effective predictive tasks, (2) introducing a learn-
able nonlinear transformation between the repre-
sentation and the contrastive loss substantially im-
proves the quality of the learned representations,
and (3) contrastive learning benefits from larger
batch sizes and more training steps compared to
supervised learning. By combining these findings,
we are able to considerably outperform previous
methods for self-supervised and semi-supervised
learning on ImageNet. A linear classifier trained
on self-supervised representations learned by Sim-
CLR achieves 76.5% top-1 accuracy, which is a
7% relative improvement over previous state-of-
the-art, matching the performance of a supervised
ResNet-50. When fine-tuned on only 1% of the
labels, we achieve 85.8% top-5 accuracy, outper-
forming AlexNet with 100⇥ fewer labels. 1

1. Introduction
Learning effective visual representations without human
supervision is a long-standing problem. Most mainstream
approaches fall into one of two classes: generative or dis-
criminative. Generative approaches learn to generate or
otherwise model pixels in the input space (Hinton et al.,
2006; Kingma & Welling, 2013; Goodfellow et al., 2014).

1Google Research, Brain Team. Correspondence to: Ting Chen
<iamtingchen@google.com>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

1Code available at https://github.com/google-research/simclr.

Figure 1. ImageNet Top-1 accuracy of linear classifiers trained
on representations learned with different self-supervised meth-
ods (pretrained on ImageNet). Gray cross indicates supervised
ResNet-50. Our method, SimCLR, is shown in bold.

However, pixel-level generation is computationally expen-
sive and may not be necessary for representation learning.
Discriminative approaches learn representations using objec-
tive functions similar to those used for supervised learning,
but train networks to perform pretext tasks where both the in-
puts and labels are derived from an unlabeled dataset. Many
such approaches have relied on heuristics to design pretext
tasks (Doersch et al., 2015; Zhang et al., 2016; Noroozi &
Favaro, 2016; Gidaris et al., 2018), which could limit the
generality of the learned representations. Discriminative
approaches based on contrastive learning in the latent space
have recently shown great promise, achieving state-of-the-
art results (Hadsell et al., 2006; Dosovitskiy et al., 2014;
Oord et al., 2018; Bachman et al., 2019).

In this work, we introduce a simple framework for con-
trastive learning of visual representations, which we call
SimCLR. Not only does SimCLR outperform previous work
(Figure 1), but it is also simpler, requiring neither special-
ized architectures (Bachman et al., 2019; Hénaff et al., 2019)
nor a memory bank (Wu et al., 2018; Tian et al., 2019; He
et al., 2019; Misra & van der Maaten, 2019).

In order to understand what enables good contrastive repre-
sentation learning, we systematically study the major com-
ponents of our framework and show that:

ar
X

iv
:2

00
2.

05
70

9v
3

 [
cs

.L
G

]
 1

 J
ul

 2
02

0

SimCLR

141

A Simple Framework for Contrastive Learning of Visual Representations

• Composition of multiple data augmentation operations
is crucial in defining the contrastive prediction tasks that
yield effective representations. In addition, unsupervised
contrastive learning benefits from stronger data augmen-
tation than supervised learning.

• Introducing a learnable nonlinear transformation be-
tween the representation and the contrastive loss substan-
tially improves the quality of the learned representations.

• Representation learning with contrastive cross entropy
loss benefits from normalized embeddings and an appro-
priately adjusted temperature parameter.

• Contrastive learning benefits from larger batch sizes and
longer training compared to its supervised counterpart.
Like supervised learning, contrastive learning benefits
from deeper and wider networks.

We combine these findings to achieve a new state-of-the-art
in self-supervised and semi-supervised learning on Ima-
geNet ILSVRC-2012 (Russakovsky et al., 2015). Under the
linear evaluation protocol, SimCLR achieves 76.5% top-1
accuracy, which is a 7% relative improvement over previous
state-of-the-art (Hénaff et al., 2019). When fine-tuned with
only 1% of the ImageNet labels, SimCLR achieves 85.8%
top-5 accuracy, a relative improvement of 10% (Hénaff et al.,
2019). When fine-tuned on other natural image classifica-
tion datasets, SimCLR performs on par with or better than
a strong supervised baseline (Kornblith et al., 2019) on 10
out of 12 datasets.

2. Method
2.1. The Contrastive Learning Framework

Inspired by recent contrastive learning algorithms (see Sec-
tion 7 for an overview), SimCLR learns representations
by maximizing agreement between differently augmented
views of the same data example via a contrastive loss in
the latent space. As illustrated in Figure 2, this framework
comprises the following four major components.

• A stochastic data augmentation module that transforms
any given data example randomly resulting in two cor-
related views of the same example, denoted x̃i and x̃j ,
which we consider as a positive pair. In this work, we
sequentially apply three simple augmentations: random
cropping followed by resize back to the original size, ran-
dom color distortions, and random Gaussian blur. As
shown in Section 3, the combination of random crop and
color distortion is crucial to achieve a good performance.

• A neural network base encoder f(·) that extracts repre-
sentation vectors from augmented data examples. Our
framework allows various choices of the network archi-
tecture without any constraints. We opt for simplicity
and adopt the commonly used ResNet (He et al., 2016)

 �Representation�!

x

x̃i x̃j

hi hj

zi zj

t ⇠ T t
0 ⇠ T

f(·) f(·)

g(·) g(·)

Maximize agreement

Figure 2. A simple framework for contrastive learning of visual
representations. Two separate data augmentation operators are
sampled from the same family of augmentations (t ⇠ T and
t0 ⇠ T) and applied to each data example to obtain two correlated
views. A base encoder network f(·) and a projection head g(·)
are trained to maximize agreement using a contrastive loss. After
training is completed, we throw away the projection head g(·) and
use encoder f(·) and representation h for downstream tasks.

to obtain hi = f(x̃i) = ResNet(x̃i) where hi 2 Rd is
the output after the average pooling layer.

• A small neural network projection head g(·) that maps
representations to the space where contrastive loss is
applied. We use a MLP with one hidden layer to obtain
zi = g(hi) = W (2)�(W (1)hi) where � is a ReLU non-
linearity. As shown in section 4, we find it beneficial to
define the contrastive loss on zi’s rather than hi’s.

• A contrastive loss function defined for a contrastive pre-
diction task. Given a set {x̃k} including a positive pair
of examples x̃i and x̃j , the contrastive prediction task
aims to identify x̃j in {x̃k}k 6=i for a given x̃i.

We randomly sample a minibatch of N examples and define
the contrastive prediction task on pairs of augmented exam-
ples derived from the minibatch, resulting in 2N data points.
We do not sample negative examples explicitly. Instead,
given a positive pair, similar to (Chen et al., 2017), we treat
the other 2(N � 1) augmented examples within a minibatch
as negative examples. Let sim(u,v) = u>v/kukkvk de-
note the dot product between `2 normalized u and v (i.e.
cosine similarity). Then the loss function for a positive pair
of examples (i, j) is defined as

`i,j = � log
exp(sim(zi, zj)/⌧)P2N

k=1 [k 6=i] exp(sim(zi, zk)/⌧)
, (1)

where [k 6=i] 2 {0, 1} is an indicator function evaluating to
1 iff k 6= i and ⌧ denotes a temperature parameter. The fi-
nal loss is computed across all positive pairs, both (i, j)
and (j, i), in a mini-batch. This loss has been used in
previous work (Sohn, 2016; Wu et al., 2018; Oord et al.,
2018); for convenience, we term it NT-Xent (the normalized
temperature-scaled cross entropy loss).

A Simple Framework for Contrastive Learning of Visual Representations

• Composition of multiple data augmentation operations
is crucial in defining the contrastive prediction tasks that
yield effective representations. In addition, unsupervised
contrastive learning benefits from stronger data augmen-
tation than supervised learning.

• Introducing a learnable nonlinear transformation be-
tween the representation and the contrastive loss substan-
tially improves the quality of the learned representations.

• Representation learning with contrastive cross entropy
loss benefits from normalized embeddings and an appro-
priately adjusted temperature parameter.

• Contrastive learning benefits from larger batch sizes and
longer training compared to its supervised counterpart.
Like supervised learning, contrastive learning benefits
from deeper and wider networks.

We combine these findings to achieve a new state-of-the-art
in self-supervised and semi-supervised learning on Ima-
geNet ILSVRC-2012 (Russakovsky et al., 2015). Under the
linear evaluation protocol, SimCLR achieves 76.5% top-1
accuracy, which is a 7% relative improvement over previous
state-of-the-art (Hénaff et al., 2019). When fine-tuned with
only 1% of the ImageNet labels, SimCLR achieves 85.8%
top-5 accuracy, a relative improvement of 10% (Hénaff et al.,
2019). When fine-tuned on other natural image classifica-
tion datasets, SimCLR performs on par with or better than
a strong supervised baseline (Kornblith et al., 2019) on 10
out of 12 datasets.

2. Method
2.1. The Contrastive Learning Framework

Inspired by recent contrastive learning algorithms (see Sec-
tion 7 for an overview), SimCLR learns representations
by maximizing agreement between differently augmented
views of the same data example via a contrastive loss in
the latent space. As illustrated in Figure 2, this framework
comprises the following four major components.

• A stochastic data augmentation module that transforms
any given data example randomly resulting in two cor-
related views of the same example, denoted x̃i and x̃j ,
which we consider as a positive pair. In this work, we
sequentially apply three simple augmentations: random
cropping followed by resize back to the original size, ran-
dom color distortions, and random Gaussian blur. As
shown in Section 3, the combination of random crop and
color distortion is crucial to achieve a good performance.

• A neural network base encoder f(·) that extracts repre-
sentation vectors from augmented data examples. Our
framework allows various choices of the network archi-
tecture without any constraints. We opt for simplicity
and adopt the commonly used ResNet (He et al., 2016)

 �Representation�!

x

x̃i x̃j

hi hj

zi zj

t ⇠ T t
0 ⇠ T

f(·) f(·)

g(·) g(·)

Maximize agreement

Figure 2. A simple framework for contrastive learning of visual
representations. Two separate data augmentation operators are
sampled from the same family of augmentations (t ⇠ T and
t0 ⇠ T) and applied to each data example to obtain two correlated
views. A base encoder network f(·) and a projection head g(·)
are trained to maximize agreement using a contrastive loss. After
training is completed, we throw away the projection head g(·) and
use encoder f(·) and representation h for downstream tasks.

to obtain hi = f(x̃i) = ResNet(x̃i) where hi 2 Rd is
the output after the average pooling layer.

• A small neural network projection head g(·) that maps
representations to the space where contrastive loss is
applied. We use a MLP with one hidden layer to obtain
zi = g(hi) = W (2)�(W (1)hi) where � is a ReLU non-
linearity. As shown in section 4, we find it beneficial to
define the contrastive loss on zi’s rather than hi’s.

• A contrastive loss function defined for a contrastive pre-
diction task. Given a set {x̃k} including a positive pair
of examples x̃i and x̃j , the contrastive prediction task
aims to identify x̃j in {x̃k}k 6=i for a given x̃i.

We randomly sample a minibatch of N examples and define
the contrastive prediction task on pairs of augmented exam-
ples derived from the minibatch, resulting in 2N data points.
We do not sample negative examples explicitly. Instead,
given a positive pair, similar to (Chen et al., 2017), we treat
the other 2(N � 1) augmented examples within a minibatch
as negative examples. Let sim(u,v) = u>v/kukkvk de-
note the dot product between `2 normalized u and v (i.e.
cosine similarity). Then the loss function for a positive pair
of examples (i, j) is defined as

`i,j = � log
exp(sim(zi, zj)/⌧)P2N

k=1 [k 6=i] exp(sim(zi, zk)/⌧)
, (1)

where [k 6=i] 2 {0, 1} is an indicator function evaluating to
1 iff k 6= i and ⌧ denotes a temperature parameter. The fi-
nal loss is computed across all positive pairs, both (i, j)
and (j, i), in a mini-batch. This loss has been used in
previous work (Sohn, 2016; Wu et al., 2018; Oord et al.,
2018); for convenience, we term it NT-Xent (the normalized
temperature-scaled cross entropy loss).

A Simple Framework for Contrastive Learning of Visual Representations

(a) Original (b) Crop and resize (c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter)

(f) Rotate {90�, 180�, 270�} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering

Figure 4. Illustrations of the studied data augmentation operators. Each augmentation can transform data stochastically with some internal
parameters (e.g. rotation degree, noise level). Note that we only test these operators in ablation, the augmentation policy used to train our
models only includes random crop (with flip and resize), color distortion, and Gaussian blur. (Original image cc-by: Von.grzanka)

2012; Hénaff et al., 2019; Bachman et al., 2019), it has
not been considered as a systematic way to define the con-
trastive prediction task. Many existing approaches define
contrastive prediction tasks by changing the architecture.
For example, Hjelm et al. (2018); Bachman et al. (2019)
achieve global-to-local view prediction via constraining the
receptive field in the network architecture, whereas Oord
et al. (2018); Hénaff et al. (2019) achieve neighboring view
prediction via a fixed image splitting procedure and a con-
text aggregation network. We show that this complexity can
be avoided by performing simple random cropping (with
resizing) of target images, which creates a family of predic-
tive tasks subsuming the above mentioned two, as shown in
Figure 3. This simple design choice conveniently decouples
the predictive task from other components such as the neural
network architecture. Broader contrastive prediction tasks
can be defined by extending the family of augmentations
and composing them stochastically.

3.1. Composition of data augmentation operations is
crucial for learning good representations

To systematically study the impact of data augmentation,
we consider several common augmentations here. One type
of augmentation involves spatial/geometric transformation
of data, such as cropping and resizing (with horizontal
flipping), rotation (Gidaris et al., 2018) and cutout (De-
Vries & Taylor, 2017). The other type of augmentation
involves appearance transformation, such as color distortion
(including color dropping, brightness, contrast, saturation,
hue) (Howard, 2013; Szegedy et al., 2015), Gaussian blur,
and Sobel filtering. Figure 4 visualizes the augmentations
that we study in this work.

Figure 5. Linear evaluation (ImageNet top-1 accuracy) under in-
dividual or composition of data augmentations, applied only to
one branch. For all columns but the last, diagonal entries corre-
spond to single transformation, and off-diagonals correspond to
composition of two transformations (applied sequentially). The
last column reflects the average over the row.

To understand the effects of individual data augmentations
and the importance of augmentation composition, we in-
vestigate the performance of our framework when applying
augmentations individually or in pairs. Since ImageNet
images are of different sizes, we always apply crop and re-
size images (Krizhevsky et al., 2012; Szegedy et al., 2015),
which makes it difficult to study other augmentations in
the absence of cropping. To eliminate this confound, we
consider an asymmetric data transformation setting for this
ablation. Specifically, we always first randomly crop im-
ages and resize them to the same resolution, and we then
apply the targeted transformation(s) only to one branch of
the framework in Figure 2, while leaving the other branch
as the identity (i.e. t(xi) = xi). Note that this asymmet-

SimCLR

142

A Simple Framework for Contrastive Learning of Visual Representations

Algorithm 1 SimCLR’s main learning algorithm.
input: batch size N , constant ⌧ , structure of f , g, T .
for sampled minibatch {xk}Nk=1 do

for all k 2 {1, . . . , N} do
draw two augmentation functions t⇠T , t0⇠T
the first augmentation
x̃2k�1 = t(xk)
h2k�1 = f(x̃2k�1) # representation
z2k�1 = g(h2k�1) # projection
the second augmentation
x̃2k = t0(xk)
h2k = f(x̃2k) # representation
z2k = g(h2k) # projection

end for
for all i 2 {1, . . . , 2N} and j 2 {1, . . . , 2N} do

si,j = z>
i zj/(kzikkzjk) # pairwise similarity

end for
define `(i, j) as `(i, j)=� log exp(si,j/⌧)P2N

k=1 [k 6=i] exp(si,k/⌧)

L = 1
2N

PN
k=1 [`(2k�1, 2k) + `(2k, 2k�1)]

update networks f and g to minimize L
end for
return encoder network f(·), and throw away g(·)

Algorithm 1 summarizes the proposed method.

2.2. Training with Large Batch Size

To keep it simple, we do not train the model with a memory
bank (Wu et al., 2018; He et al., 2019). Instead, we vary
the training batch size N from 256 to 8192. A batch size
of 8192 gives us 16382 negative examples per positive pair
from both augmentation views. Training with large batch
size may be unstable when using standard SGD/Momentum
with linear learning rate scaling (Goyal et al., 2017). To
stabilize the training, we use the LARS optimizer (You et al.,
2017) for all batch sizes. We train our model with Cloud
TPUs, using 32 to 128 cores depending on the batch size.2

Global BN. Standard ResNets use batch normaliza-
tion (Ioffe & Szegedy, 2015). In distributed training with
data parallelism, the BN mean and variance are typically
aggregated locally per device. In our contrastive learning,
as positive pairs are computed in the same device, the model
can exploit the local information leakage to improve pre-
diction accuracy without improving representations. We ad-
dress this issue by aggregating BN mean and variance over
all devices during the training. Other approaches include
shuffling data examples across devices (He et al., 2019), or
replacing BN with layer norm (Hénaff et al., 2019).

2With 128 TPU v3 cores, it takes ⇠1.5 hours to train our
ResNet-50 with a batch size of 4096 for 100 epochs.

A B

(a) Global and local views.

C

D

(b) Adjacent views.

Figure 3. Solid rectangles are images, dashed rectangles are ran-
dom crops. By randomly cropping images, we sample contrastive
prediction tasks that include global to local view (B ! A) or
adjacent view (D ! C) prediction.

2.3. Evaluation Protocol

Here we lay out the protocol for our empirical studies, which
aim to understand different design choices in our framework.

Dataset and Metrics. Most of our study for unsupervised
pretraining (learning encoder network f without labels)
is done using the ImageNet ILSVRC-2012 dataset (Rus-
sakovsky et al., 2015). Some additional pretraining experi-
ments on CIFAR-10 (Krizhevsky & Hinton, 2009) can be
found in Appendix B.9. We also test the pretrained results
on a wide range of datasets for transfer learning. To evalu-
ate the learned representations, we follow the widely used
linear evaluation protocol (Zhang et al., 2016; Oord et al.,
2018; Bachman et al., 2019; Kolesnikov et al., 2019), where
a linear classifier is trained on top of the frozen base net-
work, and test accuracy is used as a proxy for representation
quality. Beyond linear evaluation, we also compare against
state-of-the-art on semi-supervised and transfer learning.

Default setting. Unless otherwise specified, for data aug-
mentation we use random crop and resize (with random
flip), color distortions, and Gaussian blur (for details, see
Appendix A). We use ResNet-50 as the base encoder net-
work, and a 2-layer MLP projection head to project the
representation to a 128-dimensional latent space. As the
loss, we use NT-Xent, optimized using LARS with learning
rate of 4.8 (= 0.3⇥ BatchSize/256) and weight decay of
10�6. We train at batch size 4096 for 100 epochs.3 Fur-
thermore, we use linear warmup for the first 10 epochs,
and decay the learning rate with the cosine decay schedule
without restarts (Loshchilov & Hutter, 2016).

3. Data Augmentation for Contrastive
Representation Learning

Data augmentation defines predictive tasks. While data
augmentation has been widely used in both supervised and
unsupervised representation learning (Krizhevsky et al.,

3Although max performance is not reached in 100 epochs, rea-
sonable results are achieved, allowing fair and efficient ablations.

SimCLR

143

A Simple Framework for Contrastive Learning of Visual Representations

Ting Chen 1 Simon Kornblith 1 Mohammad Norouzi 1 Geoffrey Hinton 1

Abstract

This paper presents SimCLR: a simple framework
for contrastive learning of visual representations.
We simplify recently proposed contrastive self-
supervised learning algorithms without requiring
specialized architectures or a memory bank. In
order to understand what enables the contrastive
prediction tasks to learn useful representations,
we systematically study the major components of
our framework. We show that (1) composition of
data augmentations plays a critical role in defining
effective predictive tasks, (2) introducing a learn-
able nonlinear transformation between the repre-
sentation and the contrastive loss substantially im-
proves the quality of the learned representations,
and (3) contrastive learning benefits from larger
batch sizes and more training steps compared to
supervised learning. By combining these findings,
we are able to considerably outperform previous
methods for self-supervised and semi-supervised
learning on ImageNet. A linear classifier trained
on self-supervised representations learned by Sim-
CLR achieves 76.5% top-1 accuracy, which is a
7% relative improvement over previous state-of-
the-art, matching the performance of a supervised
ResNet-50. When fine-tuned on only 1% of the
labels, we achieve 85.8% top-5 accuracy, outper-
forming AlexNet with 100⇥ fewer labels. 1

1. Introduction
Learning effective visual representations without human
supervision is a long-standing problem. Most mainstream
approaches fall into one of two classes: generative or dis-
criminative. Generative approaches learn to generate or
otherwise model pixels in the input space (Hinton et al.,
2006; Kingma & Welling, 2013; Goodfellow et al., 2014).

1Google Research, Brain Team. Correspondence to: Ting Chen
<iamtingchen@google.com>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

1Code available at https://github.com/google-research/simclr.

Figure 1. ImageNet Top-1 accuracy of linear classifiers trained
on representations learned with different self-supervised meth-
ods (pretrained on ImageNet). Gray cross indicates supervised
ResNet-50. Our method, SimCLR, is shown in bold.

However, pixel-level generation is computationally expen-
sive and may not be necessary for representation learning.
Discriminative approaches learn representations using objec-
tive functions similar to those used for supervised learning,
but train networks to perform pretext tasks where both the in-
puts and labels are derived from an unlabeled dataset. Many
such approaches have relied on heuristics to design pretext
tasks (Doersch et al., 2015; Zhang et al., 2016; Noroozi &
Favaro, 2016; Gidaris et al., 2018), which could limit the
generality of the learned representations. Discriminative
approaches based on contrastive learning in the latent space
have recently shown great promise, achieving state-of-the-
art results (Hadsell et al., 2006; Dosovitskiy et al., 2014;
Oord et al., 2018; Bachman et al., 2019).

In this work, we introduce a simple framework for con-
trastive learning of visual representations, which we call
SimCLR. Not only does SimCLR outperform previous work
(Figure 1), but it is also simpler, requiring neither special-
ized architectures (Bachman et al., 2019; Hénaff et al., 2019)
nor a memory bank (Wu et al., 2018; Tian et al., 2019; He
et al., 2019; Misra & van der Maaten, 2019).

In order to understand what enables good contrastive repre-
sentation learning, we systematically study the major com-
ponents of our framework and show that:

ar
X

iv
:2

00
2.

05
70

9v
3

 [
cs

.L
G

]
 1

 J
ul

 2
02

0

SimCLR

144

MoCov2 vs SimCLR

145

Improved Baselines with Momentum Contrastive Learning

Xinlei Chen Haoqi Fan Ross Girshick Kaiming He
Facebook AI Research (FAIR)

Abstract
Contrastive unsupervised learning has recently shown

encouraging progress, e.g., in Momentum Contrast (MoCo)

and SimCLR. In this note, we verify the effectiveness of two

of SimCLR’s design improvements by implementing them in

the MoCo framework. With simple modifications to MoCo—

namely, using an MLP projection head and more data

augmentation—we establish stronger baselines that outper-

form SimCLR and do not require large training batches. We

hope this will make state-of-the-art unsupervised learning

research more accessible. Code will be made public.

1. Introduction
Recent studies on unsupervised representation learning

from images [16, 13, 8, 17, 1, 9, 15, 6, 12, 2] are converging
on a central concept known as contrastive learning [5]. The
results are promising: e.g., Momentum Contrast (MoCo)
[6] shows that unsupervised pre-training can surpass its
ImageNet-supervised counterpart in multiple detection and
segmentation tasks, and SimCLR [2] further reduces the gap
in linear classifier performance between unsupervised and
supervised pre-training representations.

This note establishes stronger and more feasible base-
lines built in the MoCo framework. We report that two de-
sign improvements used in SimCLR, namely, an MLP pro-
jection head and stronger data augmentation, are orthogo-
nal to the frameworks of MoCo and SimCLR, and when
used with MoCo they lead to better image classification
and object detection transfer learning results. Moreover, the
MoCo framework can process a large set of negative sam-
ples without requiring large training batches (Fig. 1). In
contrast to SimCLR’s large 4k⇠8k batches, which require
TPU support, our “MoCo v2” baselines can run on a typical
8-GPU machine and achieve better results than SimCLR.
We hope these improved baselines will provide a reference
for future research in unsupervised learning.

2. Background
Contrastive learning. Contrastive learning [5] is a frame-
work that learns similar/dissimilar representations from
data that are organized into similar/dissimilar pairs. This
can be formulated as a dictionary look-up problem. An ef-

encoder

loss

affinity

encoder encoder

loss

affinity

momentum
encoder

...

...

queue

(a) end-to-end (b) Momentum Contrast

co
nc
at
.

Figure 1. A batching perspective of two optimization mechanisms
for contrastive learning. Images are encoded into a representation
space, in which pairwise affinities are computed.

fective contrastive loss function, called InfoNCE [13], is:

Lq,k+,{k�} = � log
exp(q·k+/⌧)

exp(q·k+/⌧) +
X

k�

exp(q·k�/⌧)
. (1)

Here q is a query representation, k+ is a representation of
the positive (similar) key sample, and {k�} are representa-
tions of the negative (dissimilar) key samples. ⌧ is a temper-
ature hyper-parameter. In the instance discrimination pre-
text task [16] (used by MoCo and SimCLR), a query and a
key form a positive pair if they are data-augmented versions
of the same image, and otherwise form a negative pair.

The contrastive loss (1) can be minimized by various
mechanisms that differ in how the keys are maintained [6].
In an end-to-end mechanism (Fig. 1a) [13, 8, 17, 1, 9, 2],
the negative keys are from the same batch and updated end-
to-end by back-propagation. SimCLR [2] is based on this
mechanism and requires a large batch to provide a large set
of negatives. In the MoCo mechanism (Fig. 1b) [6], the neg-
ative keys are maintained in a queue, and only the queries
and positive keys are encoded in each training batch. A mo-
mentum encoder is adopted to improve the representation
consistency between the current and earlier keys. MoCo
decouples the batch size from the number of negatives.

1

ar
X

iv
:2

00
3.

04
29

7v
1

 [
cs

.C
V

]
 9

 M
ar

 2
02

0

MoCov2 vs SimCLR

146

MLP: with an
MLP head

aug+: with
extra blur
augmentation

cos: cosine
learning rate
schedule.

unsup. pre-train ImageNet VOC detection
case MLP aug+ cos epochs acc. AP50 AP AP75

supervised 76.5 81.3 53.5 58.8
MoCo v1 200 60.6 81.5 55.9 62.6

(a) X 200 66.2 82.0 56.4 62.6
(b) X 200 63.4 82.2 56.8 63.2
(c) X X 200 67.3 82.5 57.2 63.9
(d) X X X 200 67.5 82.4 57.0 63.6
(e) X X X 800 71.1 82.5 57.4 64.0

Table 1. Ablation of MoCo baselines, evaluated by ResNet-50 for
(i) ImageNet linear classification, and (ii) fine-tuning VOC object
detection (mean of 5 trials). “MLP”: with an MLP head; “aug+”:
with extra blur augmentation; “cos”: cosine learning rate schedule.

Improved designs. SimCLR [2] improves the end-to-end
variant of instance discrimination in three aspects: (i) a sub-
stantially larger batch (4k or 8k) that can provide more neg-
ative samples; (ii) replacing the output fc projection head
[16] with an MLP head; (iii) stronger data augmentation.

In the MoCo framework, a large number of negative
samples are readily available; the MLP head and data aug-
mentation are orthogonal to how contrastive learning is in-
stantiated. Next we study these improvements in MoCo.

3. Experiments
Settings. Unsupervised learning is conducted on the 1.28M
ImageNet [3] training set. We follow two common proto-
cols for evaluation. (i) ImageNet linear classification: fea-
tures are frozen and a supervised linear classifier is trained;
we report 1-crop (224⇥224), top-1 validation accuracy. (ii)
Transferring to VOC object detection [4]: a Faster R-CNN
detector [14] (C4-backbone) is fine-tuned end-to-end on the
VOC 07+12 trainval set1 and evaluated on the VOC 07
test set using the COCO suite of metrics [10]. We use the
same hyper-parameters (except when noted) and codebase
as MoCo [6]. All results use a standard-size ResNet-50 [7].

MLP head. Following [2], we replace the fc head in MoCo
with a 2-layer MLP head (hidden layer 2048-d, with ReLU).
Note this only influences the unsupervised training stage;
the linear classification or transferring stage does not use
this MLP head. Also, following [2], we search for an opti-
mal ⌧ w.r.t. ImageNet linear classification accuracy:

⌧ 0.07 0.1 0.2 0.3 0.4 0.5
w/o MLP 60.6 60.7 59.0 58.2 57.2 56.4
w/ MLP 62.9 64.9 66.2 65.7 65.0 64.3

Using the default ⌧ = 0.07 [16, 6], pre-training with the
MLP head improves from 60.6% to 62.9%; switching to
the optimal value for MLP (0.2), the accuracy increases to
66.2%. Table 1(a) shows its detection results: in contrast to
the big leap on ImageNet, the detection gains are smaller.

Augmentation. We extend the original augmentation in
[6] by including the blur augmentation in [2] (we find the

1For all entries (including the supervised and MoCo v1 baselines), we
fine-tune for 24k iterations on VOC, up from 18k in [6].

unsup. pre-train ImageNet
case MLP aug+ cos epochs batch acc.
MoCo v1 [6] 200 256 60.6
SimCLR [2] X X X 200 256 61.9
SimCLR [2] X X X 200 8192 66.6
MoCo v2 X X X 200 256 67.5
results of longer unsupervised training follow:

SimCLR [2] X X X 1000 4096 69.3
MoCo v2 X X X 800 256 71.1

Table 2. MoCo vs. SimCLR: ImageNet linear classifier accuracy
(ResNet-50, 1-crop 224⇥224), trained on features from unsuper-
vised pre-training. “aug+” in SimCLR includes blur and stronger
color distortion. SimCLR ablations are from Fig. 9 in [2] (we
thank the authors for providing the numerical results).

mechanism batch memory / GPU time / 200-ep.
MoCo 256 5.0G 53 hrs

end-to-end 256 7.4G 65 hrs
end-to-end 4096 93.0G† n/a

Table 3. Memory and time cost in 8 V100 16G GPUs, imple-
mented in PyTorch. †: based on our estimation.

stronger color distortion in [2] has diminishing gains in our
higher baselines). The extra augmentation alone (i.e., no
MLP) improves the MoCo baseline on ImageNet by 2.8%
to 63.4%, Table 1(b). Interestingly, its detection accuracy is
higher than that of using the MLP alone, Table 1(b) vs. (a),
despite much lower linear classification accuracy (63.4%
vs. 66.2%). This indicates that linear classification accu-

racy is not monotonically related to transfer performance

in detection. With the MLP, the extra augmentation boosts
ImageNet accuracy to 67.3%, Table 1(c).

Comparison with SimCLR. Table 2 compares SimCLR
[2] with our results, referred to as MoCo v2. For fair com-
parisons, we also study a cosine (half-period) learning rate
schedule [11] which SimCLR adopts. See Table 1(d, e). Us-
ing pre-training with 200 epochs and a batch size of 256,
MoCo v2 achieves 67.5% accuracy on ImageNet: this is
5.6% higher than SimCLR under the same epochs and batch

size, and better than SimCLR’s large-batch result 66.6%.
With 800-epoch pre-training, MoCo v2 achieves 71.1%,
outperforming SimCLR’s 69.3% with 1000 epochs.

Computational cost. In Table 3 we report the memory and
time cost of our implementation. The end-to-end case re-
flects the SimCLR cost in GPUs (instead of TPUs in [2]).
The 4k batch size is intractable even in a high-end 8-GPU
machine. Also, under the same batch size of 256, the end-
to-end variant is still more costly in memory and time, be-
cause it back-propagates to both q and k encoders, while
MoCo back-propagates to the q encoder only.

Table 2 and 3 suggest that large batches are not necessary
for good accuracy, and state-of-the-art results can be made
more accessible. The improvements we investigate require
only a few lines of code changes to MoCo v1, and we will
make the code public to facilitate future research.

2

MoCov2 vs SimCLR

147

unsup. pre-train ImageNet VOC detection
case MLP aug+ cos epochs acc. AP50 AP AP75

supervised 76.5 81.3 53.5 58.8
MoCo v1 200 60.6 81.5 55.9 62.6

(a) X 200 66.2 82.0 56.4 62.6
(b) X 200 63.4 82.2 56.8 63.2
(c) X X 200 67.3 82.5 57.2 63.9
(d) X X X 200 67.5 82.4 57.0 63.6
(e) X X X 800 71.1 82.5 57.4 64.0

Table 1. Ablation of MoCo baselines, evaluated by ResNet-50 for
(i) ImageNet linear classification, and (ii) fine-tuning VOC object
detection (mean of 5 trials). “MLP”: with an MLP head; “aug+”:
with extra blur augmentation; “cos”: cosine learning rate schedule.

Improved designs. SimCLR [2] improves the end-to-end
variant of instance discrimination in three aspects: (i) a sub-
stantially larger batch (4k or 8k) that can provide more neg-
ative samples; (ii) replacing the output fc projection head
[16] with an MLP head; (iii) stronger data augmentation.

In the MoCo framework, a large number of negative
samples are readily available; the MLP head and data aug-
mentation are orthogonal to how contrastive learning is in-
stantiated. Next we study these improvements in MoCo.

3. Experiments
Settings. Unsupervised learning is conducted on the 1.28M
ImageNet [3] training set. We follow two common proto-
cols for evaluation. (i) ImageNet linear classification: fea-
tures are frozen and a supervised linear classifier is trained;
we report 1-crop (224⇥224), top-1 validation accuracy. (ii)
Transferring to VOC object detection [4]: a Faster R-CNN
detector [14] (C4-backbone) is fine-tuned end-to-end on the
VOC 07+12 trainval set1 and evaluated on the VOC 07
test set using the COCO suite of metrics [10]. We use the
same hyper-parameters (except when noted) and codebase
as MoCo [6]. All results use a standard-size ResNet-50 [7].

MLP head. Following [2], we replace the fc head in MoCo
with a 2-layer MLP head (hidden layer 2048-d, with ReLU).
Note this only influences the unsupervised training stage;
the linear classification or transferring stage does not use
this MLP head. Also, following [2], we search for an opti-
mal ⌧ w.r.t. ImageNet linear classification accuracy:

⌧ 0.07 0.1 0.2 0.3 0.4 0.5
w/o MLP 60.6 60.7 59.0 58.2 57.2 56.4
w/ MLP 62.9 64.9 66.2 65.7 65.0 64.3

Using the default ⌧ = 0.07 [16, 6], pre-training with the
MLP head improves from 60.6% to 62.9%; switching to
the optimal value for MLP (0.2), the accuracy increases to
66.2%. Table 1(a) shows its detection results: in contrast to
the big leap on ImageNet, the detection gains are smaller.

Augmentation. We extend the original augmentation in
[6] by including the blur augmentation in [2] (we find the

1For all entries (including the supervised and MoCo v1 baselines), we
fine-tune for 24k iterations on VOC, up from 18k in [6].

unsup. pre-train ImageNet
case MLP aug+ cos epochs batch acc.
MoCo v1 [6] 200 256 60.6
SimCLR [2] X X X 200 256 61.9
SimCLR [2] X X X 200 8192 66.6
MoCo v2 X X X 200 256 67.5
results of longer unsupervised training follow:

SimCLR [2] X X X 1000 4096 69.3
MoCo v2 X X X 800 256 71.1

Table 2. MoCo vs. SimCLR: ImageNet linear classifier accuracy
(ResNet-50, 1-crop 224⇥224), trained on features from unsuper-
vised pre-training. “aug+” in SimCLR includes blur and stronger
color distortion. SimCLR ablations are from Fig. 9 in [2] (we
thank the authors for providing the numerical results).

mechanism batch memory / GPU time / 200-ep.
MoCo 256 5.0G 53 hrs

end-to-end 256 7.4G 65 hrs
end-to-end 4096 93.0G† n/a

Table 3. Memory and time cost in 8 V100 16G GPUs, imple-
mented in PyTorch. †: based on our estimation.

stronger color distortion in [2] has diminishing gains in our
higher baselines). The extra augmentation alone (i.e., no
MLP) improves the MoCo baseline on ImageNet by 2.8%
to 63.4%, Table 1(b). Interestingly, its detection accuracy is
higher than that of using the MLP alone, Table 1(b) vs. (a),
despite much lower linear classification accuracy (63.4%
vs. 66.2%). This indicates that linear classification accu-

racy is not monotonically related to transfer performance

in detection. With the MLP, the extra augmentation boosts
ImageNet accuracy to 67.3%, Table 1(c).

Comparison with SimCLR. Table 2 compares SimCLR
[2] with our results, referred to as MoCo v2. For fair com-
parisons, we also study a cosine (half-period) learning rate
schedule [11] which SimCLR adopts. See Table 1(d, e). Us-
ing pre-training with 200 epochs and a batch size of 256,
MoCo v2 achieves 67.5% accuracy on ImageNet: this is
5.6% higher than SimCLR under the same epochs and batch

size, and better than SimCLR’s large-batch result 66.6%.
With 800-epoch pre-training, MoCo v2 achieves 71.1%,
outperforming SimCLR’s 69.3% with 1000 epochs.

Computational cost. In Table 3 we report the memory and
time cost of our implementation. The end-to-end case re-
flects the SimCLR cost in GPUs (instead of TPUs in [2]).
The 4k batch size is intractable even in a high-end 8-GPU
machine. Also, under the same batch size of 256, the end-
to-end variant is still more costly in memory and time, be-
cause it back-propagates to both q and k encoders, while
MoCo back-propagates to the q encoder only.

Table 2 and 3 suggest that large batches are not necessary
for good accuracy, and state-of-the-art results can be made
more accessible. The improvements we investigate require
only a few lines of code changes to MoCo v1, and we will
make the code public to facilitate future research.

2

BYOL

148

BYOL

149

BYOL

• Does not use negative examples!
150

(´
�į�´

�
��

�
¡µ�

O�Ì<
�Ò

(´
�į�´

�
��

�
¡µ�

O�Ì<
�Ò

LÈº«��Ò¡ºµ

;
5L

LÈº«��Ò¡ºµ

;
5L

LÈ��
¡�Ò¡ºµ

;
5L

�çÅºµ�µÒ¡y®į;ºá¡µ�įįį
�á�Èy��

Aµ®¡µ�įµ�ÒâºÈ¬

YyÈ��Òįµ�ÒâºÈ¬

Figure 8: BYOL sketch summarizing the method by emphasizing the neural architecture.

32

BYOL

151

BYOL

152

generality of BYOL by pretraining a representation on the Places365-Standard dataset [73] before reproducing this
evaluation protocol.

Linear evaluation on ImageNet We first evaluate BYOL’s representation by training a linear classifier on top of
the frozen representation, following the procedure described in [48, 74, 41, 10, 8], and appendix C.1; we report top-1
and top-5 accuracies in % on the test set in Table 1. With a standard ResNet-50 (⇥1) BYOL obtains 74.3% top-1
accuracy (91.6% top-5 accuracy), which is a 1.3% (resp. 0.5%) improvement over the previous self-supervised state
of the art [12]. This tightens the gap with respect to the supervised baseline of [8], 76.5%, but is still significantly
below the stronger supervised baseline of [75], 78.9%. With deeper and wider architectures, BYOL consistently
outperforms the previous state of the art (Appendix C.2), and obtains a best performance of 79.6% top-1 accuracy,
ranking higher than previous self-supervised approaches. On a ResNet-50 (4⇥) BYOL achieves 78.6%, similar to
the 78.9% of the best supervised baseline in [8] for the same architecture.

Method Top-1 Top-5

Local Agg. 60.2 -
PIRL [35] 63.6 -
CPC v2 [32] 63.8 85.3
CMC [11] 66.2 87.0
SimCLR [8] 69.3 89.0
MoCo v2 [37] 71.1 -
InfoMin Aug. [12] 73.0 91.1
BYOL (ours) 74.3 91.6

(a) ResNet-50 encoder.

Method Architecture Param. Top-1 Top-5

SimCLR [8] ResNet-50 (2⇥) 94M 74.2 92.0
CMC [11] ResNet-50 (2⇥) 94M 70.6 89.7
BYOL (ours) ResNet-50 (2⇥) 94M 77.4 93.6
CPC v2 [32] ResNet-161 305M 71.5 90.1
MoCo [9] ResNet-50 (4⇥) 375M 68.6 -
SimCLR [8] ResNet-50 (4⇥) 375M 76.5 93.2
BYOL (ours) ResNet-50 (4⇥) 375M 78.6 94.2
BYOL (ours) ResNet-200 (2⇥) 250M 79.6 94.8

(b) Other ResNet encoder architectures.

Table 1: Top-1 and top-5 accuracies (in %) under linear evaluation on ImageNet.

Semi-supervised training on ImageNet Next, we evaluate the performance obtained when fine-tuning BYOL’s
representation on a classification task with a small subset of ImageNet’s train set, this time using label information.
We follow the semi-supervised protocol of [74, 76, 8, 32] detailed in Appendix C.1, and use the same fixed splits of
respectively 1% and 10% of ImageNet labeled training data as in [8]. We report both top-1 and top-5 accuracies on
the test set in Table 2. BYOL consistently outperforms previous approaches across a wide range of architectures.
Additionally, as detailed in Appendix C.1, BYOL reaches 77.7% top-1 accuracy with ResNet-50 when fine-tuning
over 100% of ImageNet labels.

Method Top-1 Top-5
1% 10% 1% 10%

Supervised [77] 25.4 56.4 48.4 80.4

InstDisc - - 39.2 77.4
PIRL [35] - - 57.2 83.8
SimCLR [8] 48.3 65.6 75.5 87.8
BYOL (ours) 53.2 68.8 78.4 89.0

(a) ResNet-50 encoder.

Method Architecture Param. Top-1 Top-5
1% 10% 1% 10%

CPC v2 [32] ResNet-161 305M - - 77.9 91.2
SimCLR [8] ResNet-50 (2⇥) 94M 58.5 71.7 83.0 91.2
BYOL (ours) ResNet-50 (2⇥) 94M 62.2 73.5 84.1 91.7
SimCLR [8] ResNet-50 (4⇥) 375M 63.0 74.4 85.8 92.6
BYOL (ours) ResNet-50 (4⇥) 375M 69.1 75.7 87.9 92.5
BYOL (ours) ResNet-200 (2⇥) 250M 71.2 77.7 89.5 93.7

(b) Other ResNet encoder architectures.

Table 2: Semi-supervised training with a fraction of ImageNet labels.

Transfer to other classification tasks We evaluate our representation on other classification datasets to assess
whether the features learned on ImageNet (IN) are generic and thus useful across image domains, or if they are
ImageNet-specific. We perform linear evaluation and fine-tuning on the same set of classification tasks used
in [8, 74], and carefully follow their evaluation protocol, as detailed in Appendix D. Performance is reported using
standard metrics for each benchmark, and results are provided on a held-out test set after hyperparameter selection
on a validation set. We report results in Table 3, both for linear evaluation and fine-tuning. BYOL outperforms
SimCLR on all benchmarks and the Supervised-IN baseline on 7 of the 12 benchmarks, providing only slightly
worse performance on the 5 remaining benchmarks. BYOL’s representation can be transferred over to small images,
e.g., CIFAR [78], landscapes, e.g., SUN397 [79] or VOC2007 [80], and textures, e.g., DTD [81].

6

BYOL

153

Method Food101 CIFAR10 CIFAR100 Birdsnap SUN397 Cars Aircraft VOC2007 DTD Pets Caltech-101 Flowers

Linear evaluation:

BYOL (ours) 75.3 91.3 78.4 57.2 62.2 67.8 60.6 82.5 75.5 90.4 94.2 96.1
SimCLR (repro) 72.8 90.5 74.4 42.4 60.6 49.3 49.8 81.4 75.7 84.6 89.3 92.6
SimCLR [8] 68.4 90.6 71.6 37.4 58.8 50.3 50.3 80.5 74.5 83.6 90.3 91.2
Supervised-IN [8] 72.3 93.6 78.3 53.7 61.9 66.7 61.0 82.8 74.9 91.5 94.5 94.7

Fine-tuned:

BYOL (ours) 88.5 97.8 86.1 76.3 63.7 91.6 88.1 85.4 76.2 91.7 93.8 97.0
SimCLR (repro) 87.5 97.4 85.3 75.0 63.9 91.4 87.6 84.5 75.4 89.4 91.7 96.6
SimCLR [8] 88.2 97.7 85.9 75.9 63.5 91.3 88.1 84.1 73.2 89.2 92.1 97.0
Supervised-IN [8] 88.3 97.5 86.4 75.8 64.3 92.1 86.0 85.0 74.6 92.1 93.3 97.6
Random init [8] 86.9 95.9 80.2 76.1 53.6 91.4 85.9 67.3 64.8 81.5 72.6 92.0

Table 3: Transfer learning results from ImageNet (IN) with the standard ResNet-50 architecture.

Transfer to other vision tasks We evaluate our representation on different tasks relevant to computer vision
practitioners, namely semantic segmentation, object detection and depth estimation. With this evaluation, we assess
whether BYOL’s representation generalizes beyond classification tasks.

We first evaluate BYOL on the VOC2012 semantic segmentation task as detailed in Appendix D.4, where the
goal is to classify each pixel in the image [7]. We report the results in Table 4a. BYOL outperforms both the
Supervised-IN baseline (+1.9 mIoU) and SimCLR (+1.1 mIoU).

Similarly, we evaluate on object detection by reproducing the setup in [9] using a Faster R-CNN architecture [82],
as detailed in Appendix D.5. We fine-tune on trainval2007 and report results on test2007 using the standard
AP50 metric; BYOL is significantly better than the Supervised-IN baseline (+3.1 AP50) and SimCLR (+2.3 AP50).

Finally, we evaluate on depth estimation on the NYU v2 dataset, where the depth map of a scene is estimated
given a single RGB image. Depth prediction measures how well a network represents geometry, and how well
that information can be localized to pixel accuracy [40]. The setup is based on [83] and detailed in Appendix D.6.
We evaluate on the commonly used test subset of 654 images and report results using several common metrics
in Table 4b: relative (rel) error, root mean squared (rms) error, and the percent of pixels (pct) where the error,
max(dgt/dp, dp/dgt), is below 1.25n thresholds where dp is the predicted depth and dgt is the ground truth
depth [40]. BYOL is better or on par with other methods for each metric. For instance, the challenging pct.<1.25
measure is respectively improved by +3.5 points and +1.3 points compared to supervised and SimCLR baselines.

Method AP50 mIoU

Supervised-IN [9] 74.4 74.4

MoCo [9] 74.9 72.5
SimCLR (repro) 75.2 75.2
BYOL (ours) 77.5 76.3

(a) Transfer results in semantic
segmentation and object detection.

Higher better Lower better
Method pct.<1.25 pct.<1.252 pct.<1.253 rms rel

Supervised-IN [83] 81.1 95.3 98.8 0.573 0.127

SimCLR (repro) 83.3 96.5 99.1 0.557 0.134
BYOL (ours) 84.6 96.7 99.1 0.541 0.129

(b) Transfer results on NYU v2 depth estimation.

Table 4: Results on transferring BYOL’s representation to other vision tasks.

5 Building intuitions with ablations

We present ablations on BYOL to give an intuition of its behavior and performance. For reproducibility, we run each
configuration of parameters over three seeds, and report the average performance. We also report the half difference
between the best and worst runs when it is larger than 0.25. Although previous works perform ablations at 100
epochs [8, 12], we notice that relative improvements at 100 epochs do not always hold over longer training. For
this reason, we run ablations over 300 epochs on 64 TPU v3 cores, which yields consistent results compared to
our baseline training of 1000 epochs. For all the experiments in this section, we set the initial learning rate to 0.3
with batch size 4096, the weight decay to 10�6 as in SimCLR [8] and the base target decay rate ⌧base to 0.99. In this
section we report results in top-1 accuracy on ImageNet under the linear evaluation protocol as in Appendix C.1.

Batch size Among contrastive methods, the ones that draw negative examples from the minibatch suffer perfor-
mance drops when their batch size is reduced. BYOL does not use negative examples and we expect it to be more

7

DINO

154

DINO

155

DINO

156

DINO

157

DINO

158

Barlow Twins

159

Self-supervised learning (SSL) is rapidly closing the gap with supervised methods on large computer vision
benchmarks. A successful approach to SSL is to learn embeddings which are invariant to distortions of the input
sample. However, a recurring issue with this approach is the existence of trivial constant solutions. Most current
methods avoid such solutions by careful implementation details. We propose an objective function that naturally
avoids collapse by measuring the cross-correlation matrix between the outputs of two identical networks fed with
distorted versions of a sample, and making it as close to the identity matrix as possible. This causes the embedding
vectors of distorted versions of a sample to be similar, while minimizing the redundancy between the components of
these vectors. The method is called BARLOW TWINS, owing to neuroscientist H. Barlow’s redundancy-reduction
principle applied to a pair of identical networks. BARLOW TWINS does not require large batches nor asymmetry
between the network twins such as a predictor network, gradient stopping, or a moving average on the weight updates.
Intriguingly it benefits from very high-dimensional output vectors. BARLOW TWINS outperforms previous methods on
ImageNet for semi-supervised classification in the low-data regime, and is on par with current state of the art for
ImageNet classification with a linear classifier head, and for transfer tasks of classification and object detection.

Barlow Twins

160

Barlow Twins

161

Barlow Twins

162

CLIP Contrastive Language-Image Pre-training

163

Abstract
State-of-the-art computer vision systems are trained to predict a fixed set of predetermined object
categories. This restricted form of supervision limits their generality and usability since additional labeled
data is needed to specify any other visual concept. Learning directly from raw text about images is a
promising alternative which leverages a much broader source of supervision. We demonstrate that the
simple pre-training task of predicting which caption goes with which image is an efficient and scalable
way to learn SOTA image representations from scratch on a dataset of 400 million (image, text) pairs
collected from the internet. After pre-training, natural language is used to reference learned visual
concepts (or describe new ones) enabling zero-shot transfer of the model to downstream tasks. We study
the performance of this approach by benchmarking on over 30 different existing computer vision datasets,
spanning tasks such as OCR, action recognition in videos, geo-localization, and many types of fine-
grained object classification. The model transfers non-trivially to most tasks and is often competitive with
a fully supervised baseline without the need for any dataset specific training. For instance, we match the
ac- curacy of the original ResNet-50 on ImageNet zero-shot without needing to use any of the 1.28 million
training examples it was trained on.

CLIP

164

CLIP

165

CLIP

166

CLIP

167

CLIP

168

Next lecture:
Pretraining Language Models

169

