photo by unsplash user @mireilleraad

COMP547 DEEP UNSUPERVISED LEARNING

Lecture #12 – Self-Supervised Learning

Aykut Erdem // Koç University // Spring 2022

Previously on COMP547

- Autoregressive models
- Flow models
- Latent Variable models
- Implicit models
- Diffusion Models

Lecture overview

- Motivation
- Reconstruct from a corrupted (or partial) version
- Proxy tasks in computer vision
- Contrastive Learning

Disclaimer: Much of the material and slides for this lecture were borrowed from

- —Pieter Abbeel, Peter Chen, Jonathan Ho, Aravind Srinivas' Berkeley CS294-158 class
- —Aaron Courville's Université de Montréal IFT6268 class

Lecture overview

- Motivation
- Reconstruct from a corrupted (or partial) version
- Proxy tasks in computer vision
- Contrastive Learning

Course so far...

- Density modelling
 - Autoregressive, Normalizing Flows, Variational Inference
- Implicit models
 - Generative Adversarial Networks
- Applications of generative modelling

Today...

- How do learn rich and useful features from raw unlabeled data that can be useful for several downstream tasks?
- What are the various pretext (proxy) tasks that can be used to learn representations from unlabeled data?
- How can we improve data-efficiency and performance of downstream tasks with a good pre-trained network?

Learning "really useful" representations

Representation

- Longstanding dream of the Deep Learning community:
 - Use unsupervised learning to learn some feature representation that can be used to support effective supervised learning (like classification)

Extract

Information

More utiliy = better (Task) Generalization ⇔ Understanding

Input

Tasks

We don't need generation/reconstruction

Interesting thing

Not interesting thing

• Generative models (in principle) care about all the pixels

Representation Learning for Supervised Learning

- Using generative models (AEs, VAEs, etc) have largely been ineffective with two exceptions:
 - 1. Natural Language Modelling (all SOTA models are build on BERT-like representations)
 - 2. In the very small dataset regime, unsupervised learning can actually help.
- Gradient-based supervised training with the right model (e.g. CNNs for vision problems) has been very difficult to beat with unsupervised methods.

It's worth asking ... Why?

A speculative answer:

- Most (essentially all) existing unsupervised methods learn features that are overwhelmingly low-level (nonsemantic).
 - The features describe superficial aspects of the data and preserve few of the invariances that one would want from a representation learning scheme.
- Modern supervised learning methods (i.e. with NN) learn layers of representations that learn the relevant axes of variance in the data.
 - Eg. Higher level features of a CNN trained to recognize car makes and models should be relatively invariance to color but very sensitive to subtle differences in shape.

Self-Supervised Learning

- A version of unsupervised learning where data provides the supervision.
- In general, withhold some part of the data and the task a neural network to predict it from the remaining parts.
- Details decide what proxy loss or pretext task the network tries to solve, and depending on the quality of the task, good semantic features can be obtained without actual labels.

Motivation

- Supervised learning success story is heavily because of the utility of pre-trained classifier features for commercially useful downstream tasks like segmentation, detection, etc.
- Recipe is clear: Collect a large labeled dataset, train a model, deploy. Good data and sufficient data are what you need.
- Goal of self-supervised learning:
 - Learn equally good (if not better) features without supervision
 - Be able to deploy similar quality systems without relying on too many labels for the downstream tasks
 - Generalize better potentially because you learn more about the world

How Much Information Does the Machine Need to Predict?

"Pure" Reinforcement Learning (cherry)

- The machine predicts a scalar reward given once in a while.
- A few bits for some samples

Supervised Learning (icing)

- The machine predicts a category or a few numbers for each input
- Predicting human-supplied data
- ▶ 10→10,000 bits per sample

Unsupervised/Predictive Learning (cake)

- The machine predicts any part of its input for any observed part.
- Predicts future frames in videos
- Millions of bits per sample

Y LeCun

- LeCun's original cake analogy slide, presented at his keynote speech in NIPS 2016.
- (Yes, I know, this picture is slightly offensive to RL folks. But I'll make it up)

How Much Information is the Machine Given during Learning?

- "Pure" Reinforcement Learning (cherry)
 - The machine predicts a scalar reward given once in a while.
 - ► A few bits for some samples
- Supervised Learning (icing)
 - The machine predicts a category or a few numbers for each input
 - Predicting human-supplied data
 - ► 10→10,000 bits per sample
- Self-Supervised Learning (cake génoise)
- The machine predicts any part of its input for any observed part.
- Predicts future frames in videos
- Millions of bits per sample

Y. LeCun

 Updated version at (ISSCC 2019, where he replaced "unsupervised learning" with "self-supervised learning".

Self-Supervised/Predictive Learning

- Predict any part of the input from any other part.
- Predict the future from the past.
- Predict the future from the recent past.
- Predict the past from the present.
- Predict the top from the bottom.
- Predict the occluded from the visible
- Pretend there is a part of the input you don't know and predict that.

Slide by Yann LeCun 15

What/Why Self-Supervision?

Self-supervision: Recover useful/semantic representations by training models to answer specific questions about the data.

- Good:
 - Can procedurally generate potentially infinite amounts of annotation.
 - We can borrow tricks from supervised learning without labels.
 - Focus on only the information that you need (e.g., not pixels).
 - Answering these questions requires more fundamental understanding of data.
- Not so good: designing good questions also requires some fundamental understanding of the data (e.g., structure).

Lecture overview

- Motivation
- Reconstruct from a corrupted (or partial) version
 - Denoising Autoencoder
 - In-painting
 - Colorization, Split-Brain Autoencoder
- Proxy tasks in computer vision
- Contrastive Learning

- Additive isotropic *Gaussian noise* (GS): $\tilde{\mathbf{x}} | \mathbf{x} \sim \mathcal{N}(\mathbf{x}, \sigma^2 I)$;
- *Masking noise* (MN): a fraction v of the elements of x (chosen at random for each example) is forced to 0;
- Salt-and-pepper noise (SP): a fraction v of the elements of x (chosen at random for each example) is set to their minimum or maximum possible value (typically 0 or 1) according to a fair coin flip.

Emphasizing corrupted dimensions

$$L_{2,\alpha}(\mathbf{x},\mathbf{z}) = \alpha \left(\sum_{j \in \mathcal{J}(\tilde{\mathbf{x}})} (\mathbf{x}_j - \mathbf{z}_j)^2 \right) + \beta \left(\sum_{j \notin \mathcal{J}(\tilde{\mathbf{x}})} (\mathbf{x}_j - \mathbf{z}_j)^2 \right)$$

$$\begin{split} L_{\mathsf{IH},\alpha}(\mathbf{x},\mathbf{z}) &= \alpha \left(-\sum_{j \in \mathcal{I}(\tilde{\mathbf{x}})} [\mathbf{x}_j \log \mathbf{z}_j + (1-\mathbf{x}_j) \log(1-\mathbf{z}_j)] \right) \\ &+ \beta \left(-\sum_{j \notin \mathcal{I}(\tilde{\mathbf{x}})} [\mathbf{x}_j \log \mathbf{z}_j + (1-\mathbf{x}_j) \log(1-\mathbf{z}_j)] \right) \end{split}$$

Stacked Denoising Autoencoder

(a) No destroyed inputs

(b) 25% destruction

(c) 50% destruction

Dataset	\mathbf{SVM}_{rbf}	\mathbf{SVM}_{poly}	DBN-1	SAA-3	DBN-3	$\mathbf{SdA-3}(\nu)$
basic	$3.03{\pm}0.15$	$3.69{\pm}0.17$	$3.94{\pm}0.17$	$3.46{\pm}0.16$	$3.11 {\pm} 0.15$	2.80±0.14 (10%)
rot	11.11 ± 0.28	$15.42 {\pm} 0.32$	$14.69 {\pm} 0.31$	$10.30{\pm}0.27$	$10.30{\pm}0.27$	10.29±0.27 (10%)
bg- $rand$	$14.58 {\pm} 0.31$	$16.62 {\pm} 0.33$	$9.80{\pm}0.26$	$11.28 {\pm} 0.28$	$6.73{\pm}0.22$	$10.38 {\pm} 0.27 (40\%)$
bg- img	$22.61{\pm}0.37$	$24.01 {\pm} 0.37$	$16.15{\pm}0.32$	$23.00 {\pm} 0.37$	$16.31{\pm}0.32$	16.68±0.33 (25%)
rot- bg - img	55.18 ± 0.44	$56.41 {\pm} 0.43$	52.21 ± 0.44	$51.93 {\pm} 0.44$	$47.39 {\pm} 0.44$	44.49 ± 0.44 (25%)
rect	$\textbf{2.15}{\pm}\textbf{0.13}$	$\textbf{2.15}{\pm}\textbf{0.13}$	$4.71{\pm}0.19$	$2.41{\pm}0.13$	$2.60{\pm}0.14$	$1.99 \pm 0.12 (10\%)$
rect- img	$24.04{\pm}0.37$	$24.05 {\pm} 0.37$	$23.69 {\pm} 0.37$	$24.05 {\pm} 0.37$	$22.50{\pm}0.37$	21.59±0.36 (25%)
convex	$19.13 {\pm} 0.34$	$19.82{\pm}0.35$	$19.92{\pm}0.35$	$18.41{\pm}0.34$	$18.63{\pm}0.34$	19.06±0.34 (10%)

Predict missing pieces

(a) Center Region (b) Random Blocks (c) Random Shapes

Pathak et al. 2016 ₃₁

$$\mathcal{L}_{rec}(x) = \|\hat{M} \odot (x - F((1 - \hat{M}) \odot x))\|_2^2$$

$$\mathcal{L}_{adv} = \max_{D} \mathbb{E}_{x \in \mathcal{X}} [\log(D(x)) + \log(1 - D(F((1 - \hat{M}) \odot x)))]$$

$$\mathcal{L} = \lambda_{rec} \mathcal{L}_{rec} + \lambda_{adv} \mathcal{L}_{adv}$$

Pathak et al. 2016 ₃₂

Pathak et al. 2016

33

Input Image

L2 Loss

Adversarial Loss

Joint Loss

Pathak et al. 2016 ₃₄

Pretraining Method	Supervision	Pretraining time	Classification	Detection	Segmentation
ImageNet [26]	1000 class labels	3 days	78.2%	56.8%	48.0%
Random Gaussian	initialization	< 1 minute	53.3%	43.4%	19.8%
Autoencoder	-	14 hours	53.8%	41.9%	25.2%
Agrawal et al. [1]	egomotion	10 hours	52.9%	41.8%	-
Doersch et al. [7]	context	4 weeks	55.3%	46.6%	-
Wang <i>et al</i> . [39]	motion	1 week	58.4%	44.0%	-
Ours	context	14 hours	56.5%	44.5%	29.7%

Table 2: Quantitative comparison for classification, detection and semantic segmentation. Classification and Fast-RCNN Detection results are on the PASCAL VOC 2007 test set. Semantic segmentation results are on the PASCAL VOC 2012 validation set from the FCN evaluation described in Section 5.2.3, using the additional training data from [18], and removing overlapping images from the validation set [28].

35

Predicting one view from another

Predicting one view from another

Cross-Channel Autoencoder

Predicting one view from another

Grayscale image: L channel $\mathbf{X} \in \mathbb{R}^{H imes W imes 1}$

Color information: ab channels $\widehat{\mathbf{Y}} \in \mathbb{R}^{H imes W imes 2}$

Grayscale image: L channel $\mathbf{X} \in \mathbb{R}^{H imes W imes 1}$

Ground Truth

L2 regression

Pixelwise classification

Split-Brain Autoencoder

Lecture overview

- Motivation
- Reconstruct from a corrupted (or partial) version
- Proxy tasks in computer vision
 - Relative patch prediction
 - Jigsaw puzzles
 - Rotation
- Contrastive Learning

Unsupervised Visual Representation Learning by Context Prediction

Carl Doersch^{1,2} ¹ School of Computer Science Carnegie Mellon University Abhinav Gupta¹ Alexei A. Efros² ² Dept. of Electrical Engineering and Computer Science

University of California, Berkeley

Task: Predict the relative position of the second patch with respect to the first

Doersch, Gupta, Efros

Solving Jigsaw Puzzles

Solving Jigsaw Puzzles

51

Gidaris, Singh, and Komodakis. Unsupervised representation learning by predicting image rotations. ICLR 2018

# Rotations	Rotations	CIFAR-10 Classification Accuracy
4 8 2	0°, 90°, 180°, 270° 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315° 0°, 180°	89.06 88.51 87.46
2	$90^{\circ}, 270^{\circ}$	85.52

Method	Conv4	Conv5
ImageNet labels from (Bojanowski & Joulin, 2017)	59.7	59.7
Random from (Noroozi & Favaro, 2016)	27.1	12.0
Tracking Wang & Gupta (2015) Context (Doersch et al., 2015) Colorization (Zhang et al., 2016a) Jigsaw Puzzles (Noroozi & Favaro, 2016) BIGAN (Donahue et al., 2016) NAT (Bojanowski & Joulin, 2017)	38.8 45.6 40.7 45.3 41.9 -	29.8 30.4 35.2 34.6 32.2 36.0
(Ours) RotNet	50.0	43.8

Method	Conv1	Conv2	Conv3	Conv4	Conv5
ImageNet labels	19.3	36.3	44.2	48.3	50.5
Random	11.6	17.1	16.9	16.3	14.1
Random rescaled Krähenbühl et al. (2015)	17.5	23.0	24.5	23.2	20.6
Context (Doersch et al., 2015)	16.2	23.3	30.2	31.7	29.6
Context Encoders (Pathak et al., 2016b)	14.1	20.7	21.0	19.8	15.5
Colorization (Zhang et al., 2016a)	12.5	24.5	30.4	31.5	30.3
Jigsaw Puzzles (Noroozi & Favaro, 2016)	18.2	28.8	34.0	33.9	27.1
BIGAN (Donahue et al., 2016)	17.7	24.5	31.0	29.9	28.0
Split-Brain (Zhang et al., 2016b)	17.7	29.3	35.4	35.2	32.8
Counting (Noroozi et al., 2017)	18.0	30.6	34.3	32.5	25.7
(Ours) RotNet	18.8	31.7	38.7	38.2	36.5

	Classification (%mAP)		Detection (%mAP)	Segmentation (%mIoU)
Trained layers	fc6-8	all	all	all
ImageNet labels	78.9	79.9	56.8	48.0
Random		53.3	43.4	19.8
Random rescaled Krähenbühl et al. (2015)	39.2	56.6	45.6	32.6
Egomotion (Agrawal et al., 2015)	31.0	54.2	43.9	
Context Encoders (Pathak et al., 2016b)	34.6	56.5	44.5	29.7
Tracking (Wang & Gupta, 2015)	55.6	63.1	47.4	
Context (Doersch et al., 2015)	55.1	65.3	51.1	
Colorization (Zhang et al., 2016a)	61.5	65.6	46.9	35.6
BIGAN (Donahue et al., 2016)	52.3	60.1	46.9	34.9
Jigsaw Puzzles (Noroozi & Favaro, 2016)	-	67.6	53.2	37.6
NAT (Bojanowski & Joulin, 2017)	56.7	65.3	49.4	
Split-Brain (Zhang et al., 2016b)	63.0	67.1	46.7	36.0
ColorProxy (Larsson et al., 2017)		65.9		38.4
Counting (Noroozi et al., 2017)	-	67.7	51.4	36.6
(Ours) RotNet	70.87	72.97	54.4	39.1

Temporal coherence of color

Task: given a color video ...

Colorize all frames of a gray scale version using a reference frame

reference frame

gray-scale video

Temporal coherence of color

Temporal coherence of color

Reference Colors

Target Colors

Input Frame

Lecture overview

- Motivation
- Reconstruct from a corrupted (or partial) version
- Proxy tasks in computer vision
- Contrastive Learning
 - Word2vec
 - Contrastive Predictive Coding (CPC)
 - Instance Discrimination
 - Recent State-of-the-art progress

Predicting neighbouring context

- Predict any part of the input from any other part.
- Predict the future from the past.
- Predict the future from the recent past.
- Predict the past from the present.
- Predict the top from the bottom.
- Predict the occluded from the visible
- Pretend there is a part of the input you don't know and predict that.

Slide by Yann LeCun 67

Word Embeddings

$$w^{aardvark} = \begin{bmatrix} 1\\0\\0\\\vdots\\0 \end{bmatrix}, w^{a} = \begin{bmatrix} 0\\1\\0\\\vdots\\0 \end{bmatrix}, w^{at} = \begin{bmatrix} 0\\0\\1\\\vdots\\0 \end{bmatrix}, \cdots w^{zebra} = \begin{bmatrix} 0\\0\\0\\\vdots\\1 \end{bmatrix}$$

Word Embeddings

- The vast majority of rule-based or statistical NLP and IR work regarded words as atomic symbols: **hotel**, **conference**, **walk**
- In vector space terms, this is a vector with one 1 and a lot of zeroes

• We now call this a **one-hot** representation.

Word embeddings

- The size of word vectors are equal to the number of words in the dictionary
 - Vector size is proportional to the size of the dictionary
 20K (speech) 50K (Pen Treebank) 500K (A large dictionary) 13M (Google 1T)
- One-hot vectors vectors are orthogonal
- There is no natural notion of similarity in a set of one-hot vectors

Word embeddings

- You can get a lot of value by representing a word by means of its neighbors
- "You shall know a word by the company it keeps" (J. R. Firth 1957:11)

• One of the most successful ideas of modern NLP

government debt problems turning intobankingcrises as has happened insaying that Europe needs unifiedbankingregulation to replace the hodgepodge

These words will represent

"banking"

Distributional hypothesis

• The meaning of a word is (can be approximated by, derived from) the set of contexts in which it occurs in texts

He filled the **wampimuk**, passed it around and we all drunk some

We found a little, hairy **wampimuk** sleeping behind the tree

Distributional semantics

he curtains open and the moon shining in on the barely ars and the cold , close moon " . And neither of the w rough the night with the moon shining so brightly, it made in the light of the moon . It all boils down , wr surely under a crescent moon , thrilled by ice-white sun, the seasons of the moon ? Home, alone, Jay pla m is dazzling snow , the moon has risen full and cold un and the temple of the moon , driving out of the hug in the dark and now the moon rises , full and amber a bird on the shape of the moon over the trees in front But I could n't see the moon or the stars , only the rning, with a sliver of moon hanging among the stars they love the sun , the moon and the stars . None of the light of an enormous moon . The plash of flowing w man 's first step on the moon ; various exhibits , aer the inevitable piece of moon rock . Housing The Airsh oud obscured part of the moon . The Allied guns behind

A solution to Plato's problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge [Landauer and Dumais'97] From frequency to meaning: Vector space models of semantics [Turney ve Pantel'10]

Word Embeddings

- 1. I enjoy flying.
- 2. I like NLP.
- 3. I like deep learning.

The resulting counts matrix will then be:

		I	like	enjoy	deep	learning	NLP	flying	•
X =	Ι	0]	2	1	0	0	0	0	0
	like	2	0	0	1	0	1	0	0
	enjoy	1	0	0	0	0	0	1	0
	deep	0	1	0	0	1	0	0	0
	learning	0	0	0	1	0	0	0	1
	NLP	0	1	0	0	0	0	0	1
	flying	0	0	1	0	0	0	0	1
		0	0	0	0	1	1	1	0
Word Embeddings

Applying SVD to *X*:

$$|V| \begin{bmatrix} |V| & |V| & |V| & |V| \\ |X| \end{bmatrix} = |V| \begin{bmatrix} || & | & | \\ u_1 & u_2 & \cdots \\ || & | & | \end{bmatrix} |V| \begin{bmatrix} \sigma_1 & 0 & \cdots \\ 0 & \sigma_2 & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} |V| \begin{bmatrix} - & v_1 & - \\ - & v_2 & - \\ \vdots & \vdots & - \end{bmatrix}$$

Word Embeddings

SVD approach suffers from:

- Sparsity
- SVD computation costs
- Infrequent words
- Noise from frequent words
- There are hacks to fix some of these (ex TF-IDF) but still not very reliable

n-gram Language Models

Unigram

$$P(w_1, w_2, \cdots, w_n) = \prod_{i=1}^n P(w_i)$$

Bigram

$$P(w_1, w_2, \cdots, w_n) = \prod_{i=2}^n P(w_i | w_{i-1})$$

Efficient Estimation of Word Representations in Vector Space

Tomas Mikolov Google Inc., Mountain View, CA tmikolov@google.com Kai Chen Google Inc., Mountain View, CA kaichen@google.com

Greg Corrado Google Inc., Mountain View, CA gcorrado@google.com Jeffrey Dean Google Inc., Mountain View, CA jeff@google.com

Abstract

We propose two novel model architectures for computing continuous vector representations of words from very large data sets. The quality of these representations is measured in a word similarity task, and the results are compared to the previously best performing techniques based on different types of neural networks. We observe large improvements in accuracy at much lower computational cost, i.e. it takes less than a day to learn high quality word vectors from a 1.6 billion words data set. Furthermore, we show that these vectors provide state-of-the-art performance on our test set for measuring syntactic and semantic word similarities.

word2vec - CBOW

Continuous Bag Of Words (CBOW)

 $\begin{aligned} \text{minimize } J &= -\log P(w_c | w_{c-m}, \dots, w_{c-1}, w_{c+1}, \dots, w_{c+m}) \\ &= -\log P(u_c | \hat{v}) \\ &= -\log \frac{\exp(u_c^T \hat{v})}{\sum_{j=1}^{|V|} \exp(u_j^T \hat{v})} \\ &= -u_c^T \hat{v} + \log \sum_{j=1}^{|V|} \exp(u_j^T \hat{v}) \end{aligned}$

word2vec - Skip Gram

Skip Gram $\prod_{i=[n-2,n+2] - \{n\}} P(w_i | w_n)$ Transform + Softmax w_n

$$\begin{aligned} \text{minimize } J &= -\log P(w_{c-m}, \dots, w_{c-1}, w_{c+1}, \dots, w_{c+m} | w_c) \\ &= -\log \prod_{j=0, j \neq m}^{2m} P(w_{c-m+j} | w_c) \\ &= -\log \prod_{j=0, j \neq m}^{2m} P(u_{c-m+j} | v_c) \\ &= -\log \prod_{j=0, j \neq m}^{2m} \frac{\exp(u_{c-m+j}^T v_c)}{\sum_{k=1}^{|V|} \exp(u_k^T v_c)} \\ &= -\sum_{j=0, j \neq m}^{2m} u_{c-m+j}^T v_c + 2m \log \sum_{k=1}^{|V|} \exp(u_k^T v_c) \end{aligned}$$

$$J = -\sum_{\substack{j=0, j \neq m}}^{2m} \log P(u_{c-m+j} | v_c)$$
$$= \sum_{\substack{j=0, j \neq m}}^{2m} H(\hat{y}, y_{c-m+j})$$

Slide credit: Stanford 224n 81

word2vec - Skip Gram

Skip-gram model

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \leq j \leq c, j \neq 0}^{T} \log p(w_{t+j}|w_t)$$
$$p(w_O|w_I) = \frac{\exp\left(v_{w_O}^{\prime} {}^{\top} v_{w_I}\right)}{\sum_{w=1}^{W} \exp\left(v_{w}^{\prime} {}^{\top} v_{w_I}\right)}$$

Don't have to have the denominator over all words in the vocabulary

• Can use negative sampling

$$\log \sigma(v_{w_O}^{\prime} {}^{\top} v_{w_I}) + \sum_{i=1}^k \mathbb{E}_{w_i \sim P_n(w)} \left[\log \sigma(-v_{w_i}^{\prime} {}^{\top} v_{w_I}) \right] \qquad P(w_i) = 1 - \sqrt{\frac{t}{f(w_i)}}$$

Newspapers					
New York	New York Times	Baltimore	Baltimore Sun		
San Jose	San Jose Mercury News	Cincinnati	Cincinnati Enquirer		
	NHL Team	15			
Boston	Boston Bruins	Montreal	Montreal Canadiens		
Phoenix	Phoenix Coyotes	Nashville	Nashville Predators		
NBA Teams					
Detroit	Detroit Pistons	Toronto	Toronto Raptors		
Oakland	Golden State Warriors	Memphis	Memphis Grizzlies		
Airlines					
Austria	Austrian Airlines	Spain	Spainair		
Belgium	Brussels Airlines	Greece	Aegean Airlines		
Company executives					
Steve Ballmer	Microsoft	Larry Page	Google		
Samuel J. Palmisano	IBM	Werner Vogels	Amazon		

	NEG-15 with 10^{-5} subsampling	HS with 10^{-5} subsampling
Vasco de Gama	Lingsugur	Italian explorer
Lake Baikal	Great Rift Valley	Aral Sea
Alan Bean	Rebbeca Naomi	moonwalker
Ionian Sea	Ruegen	Ionian Islands
chess master	chess grandmaster	Garry Kasparov

Table 4: Examples of the closest entities to the given short phrases, using two different models.

Czech + currency	Vietnam + capital	German + airlines	Russian + river	French + actress
koruna	Hanoi	airline Lufthansa	Moscow	Juliette Binoche
Check crown	Ho Chi Minh City	carrier Lufthansa	Volga River	Vanessa Paradis
Polish zolty	Viet Nam	flag carrier Lufthansa	upriver	Charlotte Gainsbourg
CTK	Vietnamese	Lufthansa	Russia	Cecile De

Table 5: Vector compositionality using element-wise addition. Four closest tokens to the sum of two vectors are shown, using the best Skip-gram model.

Model	Redmond	Havel	ninjutsu	graffiti	capitulate
(training time)					
Collobert (50d)	conyers	plauen	reiki	cheesecake	abdicate
(2 months)	lubbock	dzerzhinsky	kohona	gossip	accede
	keene	osterreich	karate	dioramas	rearm
Turian (200d)	McCarthy	Jewell	-	gunfire	-
(few weeks)	Alston	Arzu	-	emotion	-
	Cousins	Ovitz	-	impunity	-
Mnih (100d)	Podhurst	Pontiff	-	anaesthetics	Mavericks
(7 days)	Harlang	Pinochet	-	monkeys	planning
	Agarwal	Rodionov	-	Jews	hesitated
Skip-Phrase	Redmond Wash.	Vaclav Havel	ninja	spray paint	capitulation
(1000d, 1 day)	Redmond Washington	president Vaclav Havel	martial arts	grafitti	capitulated
1.00.00	Microsoft	Velvet Revolution	swordsmanship	taggers	capitulating

Table 6: Examples of the closest tokens given various well known models and the Skip-gram model trained on phrases using over 30 billion training words. An empty cell means that the word was not in the vocabulary.

U Toronto

LEARNING DEEP REPRESENTATIONS BY MUTUAL IN-FORMATION ESTIMATION AND MAXIMIZATION

R Devon HjelmAlex FedorovSamuel Lavoie-MarchildonMSR Montreal, MILA, UdeM, IVADOMRN, UNMMILA, UdeMdevon.hjelm@microsoft.comMRN, UNMMILA, UdeMKaran GrewalPhil BachmanAdam TrischlerYoshua Bengio

MSR Montreal

MILA, UdeM, IVADO, CIFAR

Abstract

MSR Montreal

This work investigates unsupervised learning of representations by maximizing mutual information between an input and the output of a deep neural network encoder. Importantly, we show that structure matters: incorporating knowledge about locality in the input into the objective can significantly improve a representation's suitability for downstream tasks. We further control characteristics of the representation by matching to a prior distribution adversarially. Our method, which we call Deep InfoMax (DIM), outperforms a number of popular unsupervised learning methods and compares favorably with fully-supervised learning on several classification tasks in with some standard architectures. DIM opens new avenues for unsupervised learning of representations and is an important step towards flexible formulations of representation learning objectives for specific end-goals.

- Network encodes the input
- The discriminator estimates mutual information (batch-wise)
- Estimate is used to maximize the MI between encoder input and output

M x M features drawn from another image

Figure 1: The base encoder model in the context of image data. An image (in this case) is encoded using a convnet until reaching a feature map of $M \times M$ feature vectors corresponding to $M \times M$ input patches. These vectors are summarized into a single feature vector, Y. Our goal is to train this network such that useful information about the input is easily extracted from the high-level features.

Figure 2: **Deep InfoMax (DIM) with a global MI**(X; Y) **objective.** Here, we pass both the high-level feature vector, Y, and the lower-level $M \times M$ feature map (see Figure 1) through a discriminator to get the score. Fake samples are drawn by combining the same feature vector with a $M \times M$ feature map from another image.

M x M features drawn from another image

Figure 3: Maximizing mutual information between local features and global features. First we encode the image to a feature map that reflects some structural aspect of the data, e.g. spatial locality, and we further summarize this feature map into a global feature vector (see Figure 1). We then concatenate this feature vector with the lower-level feature map at every location. A score is produced for each local-global pair through an additional function (see the Appendix A.2 for details).

Table 1: Classification accuracy (top 1) results on CIFAR10 and CIFAR100. DIM(L) (i.e., with the local-only objective) outperforms all other unsupervised methods presented by a wide margin. In addition, DIM(L) approaches or even surpasses a fully-supervised classifier with similar architecture. DIM with the global-only objective is competitive with some models across tasks, but falls short when compared to generative models and DIM(L) on CIFAR100. Fully-supervised classification results are provided for comparison.

Modal		CIFAR10			CIFAR100	
MOUEI	conv	fc (1024)	Y(64)	conv	fc (1024)	Y(64)
Fully supervised		75.39			42.27	
VAE	60.71	60.54	54.61	37.21	34.05	24.22
AE	62.19	55.78	54.47	31.50	23.89	27.44
β -VAE	62.4	57.89	55.43	32.28	26.89	28.96
AAE	59.44	57.19	52.81	36.22	33.38	23.25
BiGAN	62.57	62.74	52.54	37.59	33.34	21.49
NAT	56.19	51.29	31.16	29.18	24.57	9.72
DIM(G)	52.2	52.84	43.17	27.68	24.35	19.98
DIM(L) (DV)	72.66	70.60	64.71	48.52	44.44	39.27
DIM(L) (JSD)	73.25	73.62	66.96	48.13	45.92	39.60
DIM(L) (infoNCE)	75.21	75.57	69.13	49.74	47.72	41.61

Table 2: Classification accuracy (top 1) results on Tiny ImageNet and STL-10. For Tiny ImageNet, DIM with the local objective outperforms all other models presented by a large margin, and approaches accuracy of a fully-supervised classifier similar to the Alexnet architecture used here.

	Tiny ImageNet			STL-10 (random crop pretraining)			
	conv	fc (4096)	Y(64)	conv	fc (4096)	Y(64)	SS
Fully supervised		36.60			68.	7	
VAE	18.63	16.88	11.93	58.27	56.72	46.47	68.65
AE	19.07	16.39	11.82	58.19	55.57	46.82	70.29
β -VAE	19.29	16.77	12.43	57.15	55.14	46.87	70.53
AAE	18.04	17.27	11.49	59.54	54.47	43.89	64.15
BiGAN	24.38	20.21	13.06	71.53	67.18	58.48	74.77
NAT	13.70	11.62	1.20	64.32	61.43	48.84	70.75
DIM(G)	11.32	6.34	4.95	42.03	30.82	28.09	51.36
DIM(L) (DV)	30.35	29.51	28.18	69.15	63.81	61.92	71.22
DIM(L) (JSD)	33.54	36.88	31.66	72.86	70.85	65.93	76.96
DIM(L) (infoNCE)	34.21	38.09	33.33	72.57	70.00	67.08	76.81

Representation Learning with Contrastive Predictive Coding

Aaron van den Oord DeepMind avdnoord@google.com Yazhe Li DeepMind yazhe@google.com Oriol Vinyals DeepMind vinyals@google.com

Abstract

While supervised learning has enabled great progress in many applications, unsupervised learning has not seen such widespread adoption, and remains an important and challenging endeavor for artificial intelligence. In this work, we propose a universal unsupervised learning approach to extract useful representations from high-dimensional data, which we call Contrastive Predictive Coding. The key insight of our model is to learn such representations by predicting the future in *latent* space by using powerful autoregressive models. We use a probabilistic contrastive loss which induces the latent space to capture information that is maximally useful to predict future samples. It also makes the model tractable by using negative sampling. While most prior work has focused on evaluating representations for a particular modality, we demonstrate that our approach is able to learn useful representations achieving strong performance on four distinct domains: speech, images, text and reinforcement learning in 3D environments.

$$f_k(x_{t+k}, c_t) = \exp\left(z_{t+k}^T W_k c_t
ight) \qquad \qquad \mathcal{L}_{\mathrm{N}} = -\mathop{\mathbb{E}}_X \left[\lograc{f_k(x_{t+k}, c_t)}{\sum_{x_j \in X} f_k(x_j, c_t)}
ight]$$

Slowly varying: Prosody, phonemes, ... Fast varying: noise, details, ... Context Target

CPC - Speech

Figure 2: t-SNE visualization of audio (speech) representations for a subset of 10 speakers (out of 251). Every color represents a different speaker.

Figure 3: Average accuracy of predicting the positive sample in the contrastive loss for 1 to 20 latent steps in the future of a speech waveform. The model predicts up to 200ms in the future as every step consists of 10ms of audio.

CPC - Speech

Method	ACC
Phone classification	
Random initialization	27.6
MFCC features	39.7
CPC	64.6
Supervised	74.6
Speaker classification	
Random initialization	1.87
MFCC features	17.6
CPC	97.4
Supervised	98.5

Table 1: LibriSpeech phone and speaker classification results. For phone classification there are 41 possible classes and for speaker classification 251. All models used the same architecture and the same audio input sizes.

Method	ACC
#steps predicted	
2 steps	28.5
4 steps	57.6
8 steps	63.6
12 steps	64.6
16 steps	63.8
Negative samples from	
Mixed speaker	64.6
Same speaker	65.5
Mixed speaker (excl.)	57.3
Same speaker (excl.)	64.6
Current sequence only	65.2

Table 2: LibriSpeech phone classification ablation experiments. More details can be found in Section 3.1.

Figure 4: Visualization of Contrastive Predictive Coding for images (2D adaptation of Figure 1).

2	
Method	Top-1 ACC
Using AlexNet conv5	
Video [28]	29.8
Relative Position [11]	30.4
BiGan [35]	34.8
Colorization [10]	35.2
Jigsaw [29] *	38.1
Using ResNet-V2	
Motion Segmentation [36]	27.6
Exemplar [36]	31.5
Relative Position [36]	36.2
Colorization [36]	39.6
CPC	48.7

Table 3: ImageNet top-1 unsupervised classification results. *Jigsaw is not directly comparable to the other AlexNet results because of architectural differences.

Method	Top-5 ACC
Motion Segmentation (MS)	48.3
Exemplar (Ex)	53.1
Relative Position (RP)	59.2
Colorization (Col)	62.5
Combination of	
MS + Ex + RP + Col	69.3
CPC	73.6

Table 4: ImageNet top-5 unsupervised classification results. Previous results with MS, Ex, RP and Col were taken from [36] and are the best reported results on this task.

Figure 5: Every row shows image patches that activate a certain neuron in the CPC architecture.
CPC - Natural Language Processing

Method	MR	CR	Subj	MPQA	TREC
Paragraph-vector [40] Skip-thought vector [26] Skip-thought + LN [41]	74.8 75.5 79.5	78.1 79.3 82.6	90.5 92.1 93.4	74.2 86.9 89.0	91.8 91.4 -
CPC	76.9	80.1	91.2	87.7	96.8

Table 5: Classification accuracy on five common NLP benchmarks. We follow the same transfer learning setup from Skip-thought vectors [26] and use the BookCorpus dataset as source. [40] is an unsupervised approach to learning sentence-level representations. [26] is an alternative unsupervised learning approach. [41] is the same skip-thought model with layer normalization trained for 1M iterations.

CPC - Reinforcement Learning

Auxiliary loss is on policy Predict 30 steps in the future

DATA-EFFICIENT IMAGE RECOGNITION WITH CONTRASTIVE PREDICTIVE CODING

Olivier J. Hénaff, Aravind Srinivas, Jeffrey De Fauw, Ali Razavi, Carl Doersch, S. M. Ali Eslami, Aaron van den Oord DeepMind London, UK

ABSTRACT

Human observers can learn to recognize new categories of images from a handful of examples, yet doing so with machine perception remains an open challenge. We hypothesize that data-efficient recognition is enabled by representations which make the variability in natural signals more predictable. We therefore revisit and improve Contrastive Predictive Coding, an unsupervised objective for learning such representations. This new implementation produces features which support state-of-the-art linear classification accuracy on the ImageNet dataset. When used as input for non-linear classification with deep neural networks, this representation allows us to use $2-5 \times$ less labels than classifiers trained directly on image pixels. Finally, this unsupervised representation substantially improves transfer learning to object detection on PASCAL VOC-2007, surpassing fully supervised pre-trained ImageNet classifiers.

$$f_k(x_{t+k}, c_t) = \exp\left(z_{t+k}^T W_k c_t\right)$$

$$f_k(x_{t+k}, c_t) = \exp\left(z_{t+k}^T W_k c_t\right)$$

$$\mathcal{L}_{N} = - \mathop{\mathbb{E}}_{X} \left[\log \frac{f_{k}(x_{t+k}, c_{t})}{\sum_{x_{j} \in X} f_{k}(x_{j}, c_{t})} \right]$$

$$f_k(x_{t+k}, c_t) = \exp\left(z_{t+k}^T W_k c_t\right)$$

$$\mathcal{L}_{N} = - \mathop{\mathbb{E}}_{X} \left[\log \frac{f_{k}(x_{t+k}, c_{t})}{\sum_{x_{j} \in X} f_{k}(x_{j}, c_{t})} \right]$$

\begin{bmatrix} Negatives

Other patches within image
 Patches from other images

InfoNCE Loss

NCE: Noise-Contrastive Estimation

$$f_k(x_{t+k}, c_t) = \exp\left(z_{t+k}^T W_k c_t\right)$$

$$\mathcal{L}_{N} = - \underset{X}{\mathbb{E}} \left[\log \frac{f_{k}(x_{t+k}, c_{t})}{\sum_{x_{j} \in X} f_{k}(x_{j}, c_{t})} \right]$$

Negatives

Other patches within image
 Patches from other images

Parallel Implementation with PixelCNN (masked conv) and 1x1 conv

InfoNCE Loss

NCE: Noise-Contrastive Estimation

$$f_k(x_{t+k}, c_t) = \exp\left(z_{t+k}^T W_k c_t\right)$$

$$\mathcal{L}_{N} = - \underset{X}{\mathbb{E}} \left[\log \frac{f_{k}(x_{t+k}, c_{t})}{\sum_{x_{j} \in X} f_{k}(x_{j}, c_{t})} \right]$$

Negatives

Other patches within image
 Patches from other images

- Train CPC on unlabeled ImageNet
- Train as long as possible (500 epochs) 1 week
- Augment every patch with a lot of spatial and color augmentation [extremely crucial]
- Effective number of negatives = number of instances * number of patches per instance = $16 \times 36 = 576$

CPCv2 - Linear Classification

Method	PARAMS (M)	Top-1	Top-5
Methods using ResNet-50	÷		
INSTANCE DISCR. [1]	24	54.0	-
LOCAL AGGR. [2]	24	58.8	-
MoCo [3]	24	60.6	-
PIRL [4]	24	63.6	-
CPC v2 - ResNet-50	24	63.8	85.3
Methods using different an MULTLASK [5]	rchitectures:		60.3
ROTATION [6]	86	55 4	-
CPC v1 [7]	28	48.7	73.6
BIGBIGAN [8]	86	61.3	81.9
AMDIM [9]	626	68.1	-
CMC [10]	188	68.4	88.2
MoCo [2]	375	68.6	-
CPC v2 - ResNet-161	305	71.5	90.1

CPCv2 - Data-Efficient Image Recognition

MC: model capacity **BU:** bottom-up spatial predictions LN: layer normalization RC: random colordropping HP: horizontal spatial predictions LP: larger patches. PA: further patchbased augmentation.

CPCv2 - Data-Efficient Supervised Learning

Method	Architecture		Top-5 accuracy				
Labeled data		1%	5%	10%	50%	100%	
[†] Supervised baseline	ResNet-200	44.1	75.2*	83.9	93.1	95.2#	
Methods using label-propagation:						τ	
Pseudolabeling [63]	ResNet-50	51.6	-	82.4	-	-	
VAT + Entropy Minimization [63]	ResNet-50	47.0	-	83.4	-	_	
Unsup. Data Augmentation [61]	ResNet-50	-	-	88.5	-	-	
Rotation + VAT + Ent. Min. [63]	ResNet-50 \times 4	-	-	91.2	-	95.0	
Methods using representation learning only:							
Instance Discrimination [60]	ResNet-50	39.2	-	77.4	-	-	
Rotation [63]	ResNet-152 $\times 2$	57.5	-	86.4	-	-	
ResNet on BigBiGAN (fixed)	RevNet-50 ×4	55.2	73.7	78.8	85.5	87.0	
ResNet on AMDIM (fixed)	Custom-103	67.4	81.8	85.8	91.0	92.2	
ResNet on CPC v2 (fixed)	ResNet-161	77.1	87.5	90.5	95.0	96.2	
esNet on CPC v2 (fine-tuned) ResNet-161		77.9*	88.6	91.2	95.6#	96.5	

CPCv2 - PASCAL VOC-07 Detection

Method	Architecture	mAP
Transfer from labeled data.		
Supervised baseline	ResNet-152	74.7
Transfor from unlaboled data:		
Exemplar [17] by [13]	ResNet-101	60.9
Motion Segmentation [47] by [13]	ResNet-101	61.1
Colorization [64] by [13]	ResNet-101	65.5
Relative Position [14] by [13]	ResNet-101	66.8
Multi-task [13]	ResNet-101	70.5
Instance Discrimination [60]	ResNet-50	65.4
Deep Cluster [7]	VGG-16	65.9
Deeper Cluster [8]	VGG-16	67.8
Local Aggregation [66]	ResNet-50	69.1
Momentum Contrast [25]	ResNet-50	74.9

Faster-RCNN trained on CPC v2 ResNet-161 76.6

Instance Discrimination

 \sum attract repel

Instance Discrimination

Momentum Contrast for Unsupervised Visual Representation Learning

Kaiming He Haoqi Fan Yuxin Wu Saining Xie Ross Girshick Abstract

> We present Momentum Contrast (MoCo) for unsupervised visual representation learning. From a perspective on contrastive learning [29] as dictionary look-up, we build a dynamic dictionary with a queue and a moving-averaged encoder. This enables building a large and consistent dictionary on-the-fly that facilitates contrastive unsupervised learning. MoCo provides competitive results under the common linear protocol on ImageNet classification. More importantly, the representations learned by MoCo transfer well to downstream tasks. MoCo can outperform its supervised pre-training counterpart in 7 detection/segmentation tasks on PASCAL VOC, COCO, and other datasets, sometimes surpassing it by large margins. This suggests that the gap between unsupervised and supervised representation learning has been largely closed in many vision tasks.

Figure 1. Momentum Contrast (MoCo) trains a visual representation encoder by matching an encoded query q to a dictionary of encoded keys using a contrastive loss. The dictionary keys $\{k_0, k_1, k_2, ...\}$ are defined on-the-fly by a set of data samples. The dictionary is built as a queue, with the current mini-batch enqueued and the oldest mini-batch dequeued, decoupling it from the mini-batch size. The keys are encoded by a slowly progressing encoder, driven by a momentum update with the query encoder. This method enables a large and consistent dictionary for learning visual representations.

Algorithm 1 Pseudocode of MoCo in a PyTorch-like style.

```
# f g, f k: encoder networks for query and key
# queue: dictionary as a queue of K keys (CxK)
# m: momentum
# t: temperature
f_k.params = f_q.params # initialize
for x in loader: # load a minibatch x with N samples
   x_q = auq(x) # a randomly augmented version
   x_k = aug(x) # another randomly augmented version
   q = f_q.forward(x_q) # queries: NxC
   k = f_k.forward(x_k) # keys: NxC
   k = k.detach() # no gradient to keys
   # positive logits: Nx1
   l_{pos} = bmm(q.view(N, 1, C), k.view(N, C, 1))
   # negative logits: NxK
   l_neg = mm(q.view(N,C), queue.view(C,K))
   # logits: Nx(1+K)
   logits = cat([l_pos, l_neg], dim=1)
   # contrastive loss, Eqn. (1)
   labels = zeros(N) # positives are the 0-th
   loss = CrossEntropyLoss(logits/t, labels)
   # SGD update: query network
   loss.backward()
   update(f_q.params)
   # momentum update: key network
   f_k.params = m*f_k.params+(1-m)*f_q.params
   # update dictionary
   enqueue (queue, k) # enqueue the current minibatch
   dequeue(queue) # dequeue the earliest minibatch
```


A Simple Framework for Contrastive Learning of Visual Representations

Ting Chen¹ Simon Kornblith¹ Mohammad Norouzi¹ Geoffrey Hinton¹

Abstract

This paper presents SimCLR: a simple framework for contrastive learning of visual representations. We simplify recently proposed contrastive self-supervised learning algorithms without requiring specialized architectures or a memory bank. In order to understand what enables the contrastive prediction tasks to learn useful representations, we systematically study the major components of our framework. We show that (1) composition of data augmentations plays a critical role in defining effective predictive tasks, (2) introducing a learnable nonlinear transformation between the representation and the contrastive loss substantially improves the quality of the learned representations, and (3) contrastive learning benefits from larger batch sizes and more training steps compared to supervised learning. By combining these findings, we are able to considerably outperform previous methods for self-supervised and semi-supervised learning on ImageNet. A linear classifier trained on self-supervised representations learned by Sim-CLR achieves 76.5% top-1 accuracy, which is a 7% relative improvement over previous state-of- the-art, matching the performance of a supervised ResNet-50. When fine-tuned on only 1% of the labels, we achieve 85.8% top-5 accuracy, outperforming AlexNet with $100 \times$ fewer labels.

Figure 2. A simple framework for contrastive learning of visual representations. Two separate data augmentation operators are sampled from the same family of augmentations ($t \sim T$ and $t' \sim T$) and applied to each data example to obtain two correlated views. A base encoder network $f(\cdot)$ and a projection head $g(\cdot)$ are trained to maximize agreement using a contrastive loss. After training is completed, we throw away the projection head $g(\cdot)$ and use encoder $f(\cdot)$ and representation h for downstream tasks.

Algorithm 1 SimCLR's main learning algorithm. **input:** batch size N, constant τ , structure of f, g, \mathcal{T} . for sampled minibatch $\{x_k\}_{k=1}^N$ do for all $k \in \{1, ..., N\}$ do draw two augmentation functions $t \sim T$, $t' \sim T$ # the first augmentation $\tilde{\boldsymbol{x}}_{2k-1} = t(\boldsymbol{x}_k)$ $\boldsymbol{h}_{2k-1} = f(\tilde{\boldsymbol{x}}_{2k-1})$ # representation $\boldsymbol{z}_{2k-1} = g(\boldsymbol{h}_{2k-1})$ # projection # the second augmentation $\tilde{\boldsymbol{x}}_{2k} = t'(\boldsymbol{x}_k)$ $\boldsymbol{h}_{2k} = f(\tilde{\boldsymbol{x}}_{2k})$ # representation $\boldsymbol{z}_{2k} = q(\boldsymbol{h}_{2k})$ # projection end for for all $i \in \{1, ..., 2N\}$ and $j \in \{1, ..., 2N\}$ do $s_{i,j} = \mathbf{z}_i^{\top} \mathbf{z}_j / (\|\mathbf{z}_i\| \|\mathbf{z}_j\|)$ # pairwise similarity end for define $\ell(i,j)$ as $\ell(i,j) = -\log \frac{\exp(s_{i,j}/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k\neq i]} \exp(s_{i,k}/\tau)}$ $\mathcal{L} = \frac{1}{2N} \sum_{k=1}^{N} \left[\ell(2k-1,2k) + \ell(2k,2k-1) \right]$ update networks f and q to minimize \mathcal{L} end for **return** encoder network $f(\cdot)$, and throw away $g(\cdot)$

MoCov2 vs SimCLR

MoCov2 vs SimCLR

	unsup. pre-train			ImageNet	VOC detection			MLP: with an	
case	MLP	aug+	COS	epochs	acc.	AP ₅₀	AP	AP ₇₅	MLP head
supervised					76.5	81.3	53.5	58.8	aug+: with
MoCo v1				200	60.6	81.5	55.9	62.6	extra blur
(a)	\checkmark			200	66.2	82.0	56.4	62.6	augmentation
(b)		\checkmark		200	63.4	82.2	56.8	63.2	cos: cosine
(c)	\checkmark	\checkmark		200	67.3	82.5	57.2	63.9	learning rate
(d)	\checkmark	\checkmark	\checkmark	200	67.5	82.4	57.0	63.6	schedule.
(e)	\checkmark	\checkmark	\checkmark	800	71.1	82.5	57.4	64.0	
MoCov2 vs SimCLR

		ImageNet				
case	MLP	aug+	cos	epochs	batch	acc.
MoCo v1 [6]				200	256	60.6
SimCLR [2]	\checkmark	\checkmark	\checkmark	200	256	61.9
SimCLR [2]	\checkmark	\checkmark	\checkmark	200	8192	66.6
MoCo v2	\checkmark	\checkmark	\checkmark	200	256	67.5
results of longe	e r unsupe	ervised tr	aining j	follow:		
SimCLR [2]	\checkmark	\checkmark	\checkmark	1000	4096	69.3
MoCo v2	\checkmark	\checkmark	\checkmark	800	256	71.1

Bootstrap Your Own Latent A New Approach to Self-Supervised Learning

Jean-Bastien Grill^{*,1} Florian Strub^{*,1} Florent Altché^{*,1} Corentin Tallec^{*,1} Pierre H. Richemond^{*,1,2} Elena Buchatskaya¹ Carl Doersch¹ Bernardo Avila Pires¹ Zhaohan Daniel Guo¹ Mohammad Gheshlaghi Azar¹ Bilal Piot¹ Koray Kavukcuoglu¹ Rémi Munos¹ Michal Valko¹ ¹DeepMind ²Imperial College

[jbgrill,fstrub,altche,corentint,richemond]@google.com

Abstract

We introduce **B**ootstrap **Y**our **O**wn Latent (BYOL), a new approach to self-supervised image representation learning. BYOL relies on two neural networks, referred to as *online* and *target* networks, that interact and learn from each other. From an augmented view of an image, we train the online network to predict the target network representation of the same image under a different augmented view. At the same time, we update the target network with a slow-moving average of the online network. While state-of-the art methods intrinsically rely on negative pairs, BYOL achieves a new state of the art *without them*. BYOL reaches 74.3% top-1 classification accuracy on ImageNet using the standard linear evaluation protocol with a ResNet-50 architecture and 79.6% with a larger ResNet. We show that BYOL performs on par or better than the current state of the art on both transfer and semi-supervised benchmarks.

Figure 2: BYOL's architecture. BYOL minimizes a similarity loss between $q_{\theta}(z)$ and sg(z'), where θ are the trained weights, ξ are an exponential moving average of θ and sg means stop-gradient. At the end of training, everything but f_{θ} is discarded and y is used as the image representation.

• Does not use negative examples!

Method	Top-1	Top-5		Method	Architecture	Param.	Top-1	Top-5
Local Agg.	60.2	-		SimCLR [8]	ResNet-50 (2 \times)	94 M	74.2	92.0
PIRL [35]	63.6	-		CMC [11]	ResNet-50 $(2 \times)$	94 M	70.6	89.7
CPC v2 [32]	63.8	85.3		BYOL (ours)	ResNet-50 $(2 \times)$	94 M	77.4	93.6
CMC [11]	66.2	87.0		CPC v2 [32]	ResNet-161	305M	71.5	90.1
SimCLR [8]	69.3	89.0		MoCo [9]	ResNet-50 ($4 \times$)	375M	68.6	-
MoCo v2 [37]	71.1	-		SimCLR [8]	ResNet-50 ($4 \times$)	375M	76.5	93.2
InfoMin Aug. [12]	73.0	91.1		BYOL (ours)	ResNet-50 $(4 \times)$	375M	78.6	94.2
BYOL (ours)	74.3	91.6	1	BYOL (ours)	ResNet-200 (2 \times)	250M	79.6	94.8

(a) ResNet-50 encoder.

(b) Other ResNet encoder architectures.

Table 1: Top-1 and top-5 accuracies (in %) under linear evaluation on ImageNet.

Method	Food101	CIFAR10	CIFAR100	Birdsnap	SUN397	Cars	Aircraft	VOC2007	DTD	Pets	Caltech-101	Flowers
Linear evaluation:												
BYOL (ours) SimCLR (repro) SimCLR [8]	75.3 72.8 68.4	91.3 90.5 90.6	78.4 74.4 71.6	57.2 42.4 37.4	62.2 60.6 58.8	67.8 49.3 50.3	60.6 49.8 50.3	82.5 81.4 80.5	75.5 75.7 74.5	90.4 84.6 83.6	94.2 89.3 90.3	96.1 92.6 91.2
Fine-tuned:	72.3	93.6	(8.3	53.7	61.9	66.7	61.0	82.8	74.9	91.5	94.5	94.7
BYOL (ours) SimCLR (repro) SimCLR [8] Supervised-IN [8] Random init [8]	88.5 87.5 88.2 88.3 86.9	97.8 97.4 97.7 97.5 95.9	86.1 85.3 85.9 86.4 80.2	76.3 75.0 75.9 75.8 76.1	63.7 63.9 63.5 64.3 53.6	91.6 91.4 91.3 92.1 91.4	88.1 87.6 88.1 86.0 85.9	85.4 84.5 84.1 85.0 67.3	76.2 75.4 73.2 74.6 64.8	91.7 89.4 89.2 92.1 81.5	93.8 91.7 92.1 93.3 72.6	97.0 96.6 97.0 97.6 92.0

Table 3: Transfer learning results from ImageNet (IN) with the standard ResNet-50 architecture.

Emerging Properties in Self-Supervised Vision Transformers

Mathilde Caron^{1,2} Hugo Touvron^{1,3} Ishan Misra¹ Hervé Jegou¹ Julien Mairal² Piotr Bojanowski¹ Armand Joulin¹

¹ Facebook AI Research ² Inria^{*} ³ Sorbonne University

Figure 1: Self-attention from a Vision Transformer with 8×8 patches trained with no supervision. We look at the self-attention of the [CLS] token on the heads of the last layer. This token is not attached to any label nor supervision. These maps show that the model automatically learns class-specific features leading to unsupervised object segmentations.

Abstract

In this paper, we question if self-supervised learning provides new properties to Vision Transformer (ViT) [16] that stand out compared to convolutional networks (convnets). Beyond the fact that adapting self-supervised methods to this architecture works particularly well, we make the following observations: first, self-supervised ViT features contain explicit information about the semantic segmentation of an image, which does not emerge as clearly with supervised ViTs, nor with convnets. Second, these features are also excellent k-NN classifiers, reaching 78.3% top-1 on ImageNet with a small ViT. Our study also underlines the importance of momentum encoder [26], multi-crop training [9], and the use of small patches with ViTs. We implement our findings into a simple self-supervised method, called DINO, which we interpret as a form of self-distillation with no labels. We show the synergy between DINO and ViTs by achieving 80.1% top-1 on ImageNet in linear evaluation with ViT-Base.

Figure 2: Self-distillation with no labels. We illustrate DINO in the case of one single pair of views (x_1, x_2) for simplicity. The model passes two different random transformations of an input image to the student and teacher networks. Both networks have the same architecture but different parameters. The output of the teacher network is centered with a mean computed over the batch. Each networks outputs a K dimensional feature that is normalized with a temperature softmax over the feature dimension. Their similarity is then measured with a cross-entropy loss. We apply a stop-gradient (sg) operator on the teacher to propagate gradients only through the student. The teacher parameters are updated with an exponential moving average (ema) of the student parameters.

Algorithm 1 DINO PyTorch pseudocode w/o multi-crop.

```
# gs, gt: student and teacher networks
# C: center (K)
# tps, tpt: student and teacher temperatures
# 1, m: network and center momentum rates
gt.params = gs.params
for x in loader: # load a minibatch x with n samples
    x1, x2 = augment(x), augment(x) # random views
    s1, s2 = gs(x1), gs(x2) # student output n-by-K
   t1, t2 = gt(x1), gt(x2) \# teacher output n-by-K
    loss = H(t1, s2)/2 + H(t2, s1)/2
    loss.backward() # back-propagate
    # student, teacher and center updates
    update(gs) # SGD
    gt.params = 1*gt.params + (1-1)*gs.params
    C = m * C + (1-m) * cat([t1, t2]).mean(dim=0)
def H(t, s):
   t = t.detach() # stop gradient
    s = softmax(s / tps, dim=1)
   t = softmax((t - C) / tpt, dim=1) # center + sharpen
    return - (t * log(s)).sum(dim=1).mean()
```

Table 2: Linear and k-NN classification on ImageNet. We report top-1 accuracy for linear and k-NN evaluations on the validation set of ImageNet for different self-supervised methods. We focus on ResNet-50 and ViT-small architectures, but also report the best results obtained across architectures. * are run by us. We run the k-NN evaluation for models with official released weights. The throughput (im/s) is calculated on a NVIDIA V100 GPU with 128 samples per forward. Parameters (M) are of the feature extractor.

Method	Arch.	Param.	im/s	Linear	k-NN					
Supervised	RN50	23	1237	79.3	79.3					
SCLR [11]	RN50	23	1237	69.1	60.7					
MoCov2 [13]	RN50	23	1237	71.1	61.9					
InfoMin [54]	RN50	23	1237	73.0	65.3					
BarlowT [66]	RN50	23	1237	73.2	66.0	Comparison act	ross architectures			
OBoW [21]	RN50	23	1237	73.8	61.9	SCLR [11]	RN50w4	375	117	76.8
BYOL [23]	RN50	23	1237	74.4	64.8	SwAV [9]	RN50w2	93	384	77.3
DCv2 [9]	RN50	23	1237	75.2	67.1	BYOL [23]	RN50w2	93	384	77.4
SwAV [9]	RN50	23	1237	75.3	65.7	DINO	ViT-B/16	85	312	78.2
DINO	RN50	23	1237	75.3	67.5	SwAV [9]	RN50w5	586	76	78.5
Supervised	ViT-S	21	1007	79.8	79.8	BYOL [23]	RN50w4	375	117	78.6
BYOL* [23]	ViT-S	21	1007	71.4	66.6	BYOL [23]	RN200w2	250	123	79.6
MoCov2* [13]	ViT-S	21	1007	72.7	64.4	DINO	ViT-S/8	21	180	79.7
SwAV* [9]	ViT-S	21	1007	73.5	66.3	SCLRv2 [12]	RN152w3+SK	794	46	79.8
DINO	ViT-S	21	1007	77.0	74.5	DINO	ViT-B/8	85	63	80.1

69.3 67.3

76.1 67.1 -73.9 **78.3** 73.1 77.4

Supervised

DINO

 Random	Supervised	DINO	

ViT-S/16	22.0	27.3	45.9
ViT-S/8	21.8	23.7	44.7

Figure 4: Segmentations from supervised versus DINO. We visualize masks obtained by thresholding the self-attention maps to keep 60% of the mass. On top, we show the resulting masks for a ViT-S/8 trained with supervision and DINO. We show the best head for both models. The table at the bottom compares the Jaccard similarity between the ground truth and these masks on the validation images of PASCAL VOC12 dataset.

Barlow Twins: Self-Supervised Learning via Redundancy Reduction

Jure Zbontar^{*1} Li Jing^{*1} Ishan Misra¹ Yann LeCun¹² Stéphane Deny¹

Self-supervised learning (SSL) is rapidly closing the gap with supervised methods on large computer vision benchmarks. A successful approach to SSL is to learn embeddings which are invariant to distortions of the input sample. However, a recurring issue with this approach is the existence of trivial constant solutions. Most current methods avoid such solutions by careful implementation details. We propose an objective function that naturally avoids collapse by measuring the cross-correlation matrix between the outputs of two identical networks fed with distorted versions of a sample, and making it as close to the identity matrix as possible. This causes the embedding vectors of distorted versions of a sample to be similar, while minimizing the redundancy between the components of these vectors. The method is called BARLOW TWINS, owing to neuroscientist H. Barlow's *redundancy-reduction principle* applied to a pair of identical networks. BARLOW TWINS does not require large batches nor asymmetry between the network twins such as a predictor network, gradient stopping, or a moving average on the weight updates. Intriguingly it benefits from very high-dimensional output vectors. BARLOW TWINS outperforms previous methods on ImageNet for semi-supervised classification in the low-data regime, and is on par with current state of the art for ImageNet classification with a linear classifier head, and for transfer tasks of classification and object detection.

Figure 1. BARLOW TWINS's objective function measures the crosscorrelation matrix between the embeddings of two identical networks fed with distorted versions of a batch of samples, and tries to make this matrix close to the identity. This causes the embedding vectors of distorted versions of a sample to be similar, while minimizing the redundancy between the components of these vectors. BARLOW TWINS is competitive with state-of-the-art methods for self-supervised learning while being conceptually simpler, naturally avoiding trivial constant (i.e. collapsed) embeddings, and being robust to the training batch size.

Algorithm 1 PyTorch-style pseudocode for Barlow Twins.

```
# f: encoder network
# lambda: weight on the off-diagonal terms
# N: batch size
# D: dimensionality of the embeddings
# mm: matrix-matrix multiplication
# off_diagonal: off-diagonal elements of a matrix
# eye: identity matrix
for x in loader: # load a batch with N samples
    # two randomly augmented versions of x
   y_a, y_b = augment(x)
    # compute embeddings
    z_a = f(y_a) # NxD
    z b = f(y b) \# NxD
    # normalize repr. along the batch dimension
    z_a_norm = (z_a - z_a.mean(0)) / z_a.std(0) # NxD
    z_b_norm = (z_b - z_b.mean(0)) / z_b.std(0) # NxD
    # cross-correlation matrix
    c = mm(z_a_norm.T, z_b_norm) / N # DxD
    # loss
    c_diff = (c - eye(D)).pow(2) # DxD
    # multiply off-diagonal elems of c_diff by lambda
    off diagonal(c diff).mul (lambda)
    loss = c diff.sum()
    # optimization step
    loss.backward()
    optimizer.step()
```

Table 1. Top-1 and top-5 accuracies (in %) under linear evaluation on ImageNet. All models use a ResNet-50 encoder. Top-3 best self-supervised methods are <u>underlined</u>.

Method	Top-1	Top-5
Supervised	76.5	
МоСо	60.6	
PIRL	63.6	. .8
SIMCLR	69.3	89.0
MoCo v2	71.1	90.1
SIMSIAM	71.3	-
SwAV (w/o multi-crop)	71.8	-
BYOL	74.3	91.6
SwAV	75.3	-
BARLOW TWINS (ours)	<u>73.2</u>	91.0

Figure 2. Effect of batch size. To compare the effect of the batch size across methods, for each method we report the difference between the top-1 accuracy at a given batch size and the best obtained accuracy among all batch size tested. BYOL: best accuracy is 72.5% for a batch size of 4096 (data from (Grill et al., 2020) fig. 3A). SIMCLR: best accuracy is 67.1% for a batch size of 4096 (data from (Chen et al., 2020a) fig. 9, model trained for 300 epochs). BARLOW TWINS: best accuracy is 71.7% for a batch size of 1024.

CLIP Contrastive Language-Image Pre-training

Learning Transferable Visual Models From Natural Language Supervision

Alec Radford^{*1} Jong Wook Kim^{*1} Chris Hallacy¹ Aditya Ramesh¹ Gabriel Goh¹ Sandhini Agarwal¹ Girish Sastry¹ Amanda Askell¹ Pamela Mishkin¹ Jack Clark¹ Gretchen Krueger¹ Ilya Sutskever¹

Abstract

State-of-the-art computer vision systems are trained to predict a fixed set of predetermined object categories. This restricted form of supervision limits their generality and usability since additional labeled data is needed to specify any other visual concept. Learning directly from raw text about images is a promising alternative which leverages a much broader source of supervision. We demonstrate that the simple pre-training task of predicting which caption goes with which image is an efficient and scalable way to learn SOTA image representations from scratch on a dataset of 400 million (image, text) pairs collected from the internet. After pre-training, natural language is used to reference learned visual concepts (or describe new ones) enabling zero-shot transfer of the model to downstream tasks. We study the performance of this approach by benchmarking on over 30 different existing computer vision datasets, spanning tasks such as OCR, action recognition in videos, geo-localization, and many types of fine-grained object classification. The model transfers non-trivially to most tasks and is often competitive with a fully supervised baseline without the need for any dataset specific training. For instance, we match the ac- curacy of the original ResNet-50 on ImageNet zero-shot without needing to use any of the 1.28 million training examples it was trained on.

Figure 1. Summary of our approach. While standard image models jointly train an image feature extractor and a linear classifier to predict some label, CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training examples. At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions of the target dataset's classes.

164

```
# image_encoder - ResNet or Vision Transformer
# text encoder - CBOW or Text Transformer
# I[n, h, w, c] - minibatch of aligned images
# T[n, 1] - minibatch of aligned texts
# W_i[d_i, d_e] - learned proj of image to embed
# W_t[d_t, d_e] - learned proj of text to embed
# t - learned temperature parameter
# extract feature representations of each modality
I_f = image_encoder(I) #[n, d_i]
T_f = text_encoder(T) \#[n, d_t]
# joint multimodal embedding [n, d_e]
I_e = l2_normalize(np.dot(I_f, W_i), axis=1)
T_e = l2_normalize(np.dot(T_f, W_t), axis=1)
# scaled pairwise cosine similarities [n, n]
logits = np.dot(I_e, T_e.T) * np.exp(t)
# symmetric loss function
labels = np.arange(n)
loss_i = cross_entropy_loss(logits, labels, axis=0)
loss_t = cross_entropy_loss(logits, labels, axis=1)
loss = (loss_i + loss_t)/2
```

Figure 3. Numpy-like pseudocode for the core of an implementation of CLIP.

Figure 13. Zero-shot CLIP is much more robust to distribution shift than standard ImageNet models. (Left) An ideal robust model (dashed line) performs equally well on the ImageNet distribution and on other natural image distributions. Zero-shot CLIP models shrink this "robustness gap" by up to 75%. Linear fits on logit transformed values are shown with bootstrap estimated 95% confidence intervals. (Right) Visualizing distribution shift for bananas, a class shared across 5 of the 7 natural distribution shift datasets. The performance of the best zero-shot CLIP model, ViT-L/14@336px, is compared with a model that has the same performance on the ImageNet validation set, ResNet-101.

Next lecture: Pretraining Language Models