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• Your midterm exam will be 
released on May 26 at 12:00, and 
you will have 36 hours to submit 
your answers.

• I prepared an unofficial course 
feedback form: 
– https://forms.gle/CbN1sbeRS

PdiHMdJ8

• The official course 
evaluation form is 
also up!
– Available in the new 

KU mobile app

22
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Good news, everyone!

https://forms.gle/CbN1sbeRSPdiHMdJ8


Previously on COMP547
• Motivation

• Reconstruct from a corrupted (or 
partial) version

• Proxy tasks in computer vision

• Contrastive learning
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Lecture overview
• Motivation and Intro

• Introduction to Language Models

• History of Neural Language Models

• A digression into Transformers

• Beyond standard LMs

• Why we need Unsupervised Learning

Disclaimer: Much of the material and slides for this lecture were borrowed from 
—Alec Radford’s lecture on "Learning from Text: Language Models and More"
—Jimmy Ba's UToronto CSC413/2516 class
—Irina Rish’s IFT 6760B class
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Lecture overview
• Motivation and Intro

• Introduction to Language Models

• History of Neural Language Models

• A digression into Transformers

• Beyond standard LMs

• Why we need Unsupervised Learning
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Learning From Text

• Standard supervised learning requires “machine learning grade” data

• There is not a lot of “machine learning grade” data (compared to 
what current models need) 

• This lecture focuses on a variety of methods for learning from natural 
language in order to improve the performance of models on standard 
NLP datasets/tasks.
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A Variety of Methods

• Autoregressive maximum likelihood language modeling will be the 
core.

• But, there are many proxy tasks involving predicting / modeling text 
somehow, someway that work well (sometimes even better than 
standard LMs!)
– Word2Vec / Paragraph2Vec
– Contrast Predictive Coding (CPC)
– BERT
– ELECTRA
– T5
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How to use it? Let’s try word-word 
co-occurrences

water steam ice

water 32879 ... ...

steam 250 324 ...

ice 765 23 859

hot 19540 1832 17

hot

...

...

...

48323

8Image credit: OpenAI



How good is counting a 
bunch of stuff?
Combining Retrieval, Statistics, and Inference 
to Answer Elementary Science Questions 
(Clark et al 2016)
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• We carry out ablation studies that quantify the contribu-
tion of each method to Aristo, and show that all levels
of representation help. Our error analysis indicates the
complementary strengths and weaknesses of each method,
and directions for future work.

• We show that the challenge problem itself is a valuable
testbed for AI research, and are releasing our datasets (at
www.allenai.org) to encourage further research.

Related Work

Question Answering (QA) has been extensively studied in
the past few years, but has primarily focused on retriev-
ing answers to short, factoid questions (e.g., “In which
year was Bill Clinton born?”) by locating answers in
databases (Yao and Van Durme 2014; Zou et al. 2014;
Fader, Zettlemoyer, and Etzioni 2014) or large document col-
lections (Brill, Dumais, and Banko 2002; Ferrucci et al. 2010;
Ko, Nyberg, and Si 2007). In contrast, many science
questions do not have answers explicitly stated in text,
and require some form of analysis or inference to answer
them. While there are good examples of inference-based
QA systems (Gunning et al. 2010; Novak 1977), they re-
quire questions to be posed in logic or restricted English,
and were not applied to natural questions. A few sys-
tems have attempted standardized tests, e.g., in geometry
(Seo et al. 2014) and mathematics (Hosseini et al. 2014;
Kushman et al. 2014), and work well due to their limited
domains and stylized wording of questions. Our work investi-
gates a far less constrained domain, and thus utilizes different
methods.

Answering questions using an ensemble has been shown
to be effective in numerous previous cases, (e.g., Töscher,
Jahrer, and Bell (2009)), most famously in IBM’s highly suc-
cessful Watson system (Ferrucci et al. 2010). What is novel
here is the nature of the problem being addressed, namely sin-
gle and multi-sentence science questions whose answers may
require statistical or structured reasoning. By instantiating
this architecture with modules at different levels of structure,
Aristo can both leverage text when an answer is explicitly
stated in a corpus, and perform inference to go beyond tex-
tual information when it is not. This latter capability allows
Aristo to answer questions out of reach of corpus-based meth-
ods, without losing the powerful capabilities such methods
provide.

Approach

Aristo’s overall architecture, shown in Figure 1, consists of
five solvers that work in parallel to answer a multiple choice
question. The IR solver operates directly on the text. The
PMI solver and the SVM solver use statistical data derived
from text. The RULE solver and the ILP solver reason with
knowledge extracted from text. Each solver assigns confi-
dences to each of the answer options, and a combiner module
combines the results together using logistic regression trained
on a set of training examples.

Figure 1: Aristo uses five solvers, each using different types
of knowledge, to answer multiple choice questions.

Layer 1: Text as Knowledge
The Information Retrieval (IR) Solver
The IR solver searches to see if the question q along with an
answer option is explicitly stated in a corpus, and returns the
confidence that such a statement was found. For each answer
option ai, it sends q + ai as a query to a search engine (we
use Lucene), and returns the search engine’s score for the
top retrieved sentence s where s also has at least one non-
stopword overlap with q, and at least one with ai; this ensures
s has some relevance to both q and ai. This is repeated for
all options ai to score them all.

Layer 2: Statistical Knowledge
The IR solver provides a surprisingly strong baseline, but, as
we show later, it is clearly limited in at least two ways. First,
it requires the answer to a question to be explicitly contained
somewhere in the corpus. Second, it requires the wording
of that answer to be reasonably similar to that used in the
question, so that a retrieval engine will rank it highly.

Aggregations over a corpus provides an alternative, weak
source of commonsense knowledge. Consider:

A mother hen clucks loudly when danger is near and
her chicks quickly gather around her. Which sense helps
the chicks receive this warning about danger from their
mother? (A) smell (B) taste (C) sight (D) sound

An IR approach struggles with this wordy question. How-
ever, the simple commonsense knowledge that the question
appeals to is that a “cluck” is a “sound”, or, more weakly,
that “cluck” and “sound” are strongly associated. We can
use corpus statistics to measure such associations. Although
such statistics do not tell us the nature of that association, in
many cases knowing the existence of the association provides
a strong enough signal for question-answering.

The Pointwise Mutual Information (PMI) solver
The PMI solver formalizes a way of computing and applying
such associational knowledge. Given a question q and an an-
swer option ai, it uses pointwise mutual information (Church
and Hanks 1989) to measure the strength of the associations
between parts of q and parts of ai. Given a large corpus C,
PMI for two n-grams x and y is defined as:

PMI (x, y) = log
p(x, y)

p(x)p(y)

����



Problems working with word-word 
co-occurrence matrix
• It’s still huge!

1 million words x 1 million words x 4 byte int32 = 4 terabytes

• Want to come up with a much more compact, but faithful 
representation of the relations between words and the information 
they represent.
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GLoVE (Pennington et al. 2014)

• Take the matrix X counting word-word co-occurrences (cheap so do it 
for 840B tokens!)

• So entry Xij would be the count of word i occuring in a context with 
word j

• Learn low dim vector representations of each word such that their dot 
product = log prob of co-occuring

• Goes from MxM to MxN where N is the dimensionality of the word 
vectors (300 << 1,000,000!)

11

J =
VX

i,j=1

f (Xij)
⇣
wT

i w̃j + bi + b̃j � logXij

⌘2
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Word2Vec (Mikolov et al. 2013)
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Usefulness of Word Vectors

[McCann et al 2017] 13



Problems with word vectors

• Language is a lot more than just counts of words! 

• It has a ton of structure on top of / in addition to words.

• Context is very important and a fixed static representation of a word is 
insufficient.

1.I went to the river bank.
2.I made a withdrawal from the bank.
3.“I wouldn’t bank on it”

14



Problems with word vectors

• Great, so I’ve got a 1,000,000 x 300 matrix ... now what?

• How to use it is up to the practitioner.

• Often involves a lot of task specific models slapped on top.

• Learning just word vectors is like learning just edge detectors 
in computer vision.
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Lecture overview
• Motivation and Intro

• Introduction to Language Models

• History of Neural Language Models

• A digression into Transformers

• Beyond standard LMs

• Why we need Unsupervised Learning
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70 years of samples

17[From Oriol Vinyals’ twitter]



Statistical/Probabilistic Language Modeling

• Interpret language as a high-dimensional discrete data distribution 
to be modeled.

• Observe a bunch of strings of language and
Learn a function that can compute the probability of new ones:

p(Is it going to rain today?)

18



What does it mean to compute the 
probability of a string?
p(The cat sat on the mat.) = ???

19



p(The cat sat on the mat.) = ???

Noam Chomsky in 1969:
But it must be recognized that the notion of 
"probability of a sentence" is an entirely useless one, 
under any known interpretation of this term.

20

What does it mean to compute the 
probability of a string?

• Also see the Norvig - Chomsky debate:
http://norvig.com/chomsky.html
https://www.theatlantic.com/technology/archive/2012/11/noam-
chomsky-on-where-artificial-intelligence-went-wrong/261637/

http://norvig.com/chomsky.html
https://www.theatlantic.com/technology/archive/2012/11/noam-chomsky-on-where-artificial-intelligence-went-wrong/261637/?single_page=true


How can you use the probability of a string?

p(The cat sat on the mat.) > p(The cat sats on the mat.) [grammar]

Should p(The cat sats on the mat.) be 0?

p(The hyena sat on the mat.) < p(The cat sat on the mat.) [world knowledge]

Should p("4" | "2 + 2 = ") be 1?

p(1 star out of 5 | That movie was terrible!I’d rate it) [sentiment analysis]
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How can you use the probability of a string?

• Speech Recognition and Machine Translation are supervised tasks 

• Speech Recognition = 
(audio1, transcript1)

(audio2, transcript2)

(audio3, transcript3)

• Machine Translation =
(french1, english1)

(french2, english2)

(french3, english3)

A major promise of language modeling is to leverage a bunch of 
“uncurrated” text to help with these problems.
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How can you use the probability of a string?

• Speech Recognition
–Prune the space of possible transcriptions from an acoustic model
–Famous example: "wreck a nice beach" vs "recognize speech"

• Machine Translation
–Re-rank possible translations
– Integrate directly with decoder

23



How to compute the probability of a string?

• First, maybe do some preprocessing (like lower-casing)

"THe CaT SAt oN ThE MAT." → "the cat sat on the mat."

24



How to compute the probability of a string?

• Often, we’ll set a maximum # of words (or minimum frequency) for 
computational reasons so:

"the cat sat on the countertop." → "the cat sat on the <UNK>."

25



How to compute the probability of a string?

• A tokenizer takes a string as input and returns a sequence of tokens:

"the cat sat on the mat." → [the, cat, sat, on, the, mat, .]

[the, cat, sat, on, the, mat, .] → [23, 1924, 742, 101, 23, 3946, 7]

26



How to compute the probability of a string?

• A tokenizer takes a string as input and returns a sequence of tokens:

"the cat sat on the mat." → [t,h,e," ",c,a,t," ",s,a,t," ",...]

27



All the different ways to dice a string!

• Character level (throw out non-ascii)

• Byte level (work on UTF-8 byte stream)

• Unicode symbols / codepoints

• Tokenized / pre-processed word level

• Byte Pair Encoding (Sennrich 2016)

• SentencePiece (Kudo and Richardson 2018)

t h  → th
i n  → in
e d  → ed
a n  → an
th e → the
o u  → ou
e r  → er
in g → ing
t o  → to
e r  → er
h e  → he
an d → and

28



How to compute the probability of a string?

1. Assume a uniform prior over tokens
2. Assume all tokens are independent

p(t0) = 1/vocab size

p(t0, t1, t2, t3) = product of p(ti) for all i

29



How to compute the probability of a string?

1. Assume a uniform prior over tokens
2. Assume all tokens are independent

Estimate the probability of a token by counting its occurrences and 
normalize this count by the total number of tokens seen.

p(t0, t1, t2, t3…) = p(t0)p(t1)p(t2)p(t3)...

This is a unigram language model

30



How to compute the probability of a string?

1. Assume a uniform prior over tokens
2. Assume all tokens are independent

Estimate the probability of a token conditioned on the previous token
by counting how many times it co-occurs with that previous token and 
normalize this count by the total number of occurrences of that context.

p(t0, t1, t2, t3…) = p(t0)p(t1 | t0)p(t2 | t1)p(t3 | t2)

This is a bigram language model
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Generalization?

p(self-attention) = 0 = infinite loss…

p(self-attention | the cool thing about) = 0 = infinite loss...

32



Smoothing

p(self-attention) = 0 = infinite loss…

p(self-attention | the cool thing about) = 0 = infinite loss...

• Smooth things out by using a mixture model

pmixture(t1) = 0.01 * puniform(t1)     +     0.99 * punigram(t1)

33



Smoothing

• Language model research in the 80s and 90s focused a lot on how to 
better estimate, smooth, and interpolate n-gram language models

34



Evaluation Type 1

• Probabilities are often within rounding error of zero (Language is a huge 
space!)

• They also are a function of the length of the string.

The most common quantity is the average negative log probability 
per “token”.

• Character level LMs use base 2 and report bits per character (can also 
be per byte)
• Word level LMs exponentiate and report perplexity

35

e�
1
N

P
i ln pwi
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Grounding bits per character and perplexity

• Working with abstract #s like these can be difficult 

–What’s 1.23 BPC vs 1.21 BPC? (especially important when you just 
spent 3 months of your life on it!)

• These quantities are dataset dependent (it’s really easy to guess all 0s -
really hard to guess the arXiv)

• Random guessing gets you log2(1/256) = 8 bits per character

• Current human estimate ranges ~0.6-1.3 BPC. Best models are now a 
little lower than 1 BPC so probably closer to 0.6.

36



Grounding bits per character and perplexity

• Random guessing PPL is just vocab size so with a vocab of 50K = 50K 
PPL

• One way of thinking about perplexity is as a “branching factor of 
language”. PPLn = space of possible generations of length n
–A model can get 10 PPL by uniformly assigning probability across 10 

equally likely next words (and always having the correct word within 
these top 10)

• Human level is probably between 5 and 10 from BPC estimate

Translation is a well constrained space and best models are 
between 3 and 4 PPL! 
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Evaluation Type 2

• There are a lot of ways to use a language models.

• You can evaluate them based on their usefulness for a downstream 
task.

• Improve: 
• WER for speech recognition
• BLEU for translation
• F1 for POS tagging
• ACC for document classification

• This is an increasingly common evaluation setting.
38
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• History of Neural Language Models

• A digression into Transformers
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• Why we need Unsupervised Learning
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A Neural Probabilistic Language Model

• So many things!
• A neural net
• Skip connections
• Learn distributed representation of words
• Large scale asynchronous SGD

40

Bengio
et al. 2003



RNN Based Language Model

• Replace MLP with RNN (allows for unbounded context)

• Showed improvements on speech recognition

41

log p(x) =
dX

i=1

log p (xi | x1:i�1)
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Mikolov et al. 2010



Generating Text with RNNs

• Character level RNN

• Approximates a tensor RNN which has a different set of weights for 
every input character

• Very complicated optimization scheme

Ms . Claire Parters will also have a history temple for him to raise jobs until naked Prodiena to paint baseball partners , provided 
people to ride both of Manhattan in 1978 , but what was largely directed to China in 1946 , focusing on the trademark period is 
the sailboat yesterday and comments on whom they obtain overheard within the 120th anniversary , where many civil rights 
defined , officials said early that forms , ” said Bernard J. Marco Jr. of Pennsylvania , was monitoring New York

(not actually a lot better than 
word level n-gram models)

42

Sutskever et al. 2011



Generating Sequences with RNNs

43

Graves 2013



Generating Sequences with RNNs

44

it = � (Wxixt +Whiht�1 +Wcict�1 + bi)
ft = � (Wxfxt +Whfht�1 +Wcfct�1 + bf )
ct = ftct�1 + it tanh (Wxcxt +Whcht�1 + bc)
ot = � (Wxoxt +Whoht�1 +Wcoct + bo)
ht = ot tanh (ct)
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Skip-Thought Vectors 

• Proposed using an RNN sequence encoder trained to provide 
context to an LM as a sentence level text feature extractor. 

45

Kiros et al. 2015



Semi-supervised Sequence Learning

Proposes finetuning an LM directly for downstream tasks

1.Use LM objective as a pre-training task
2.Then initialize the parameters of downstream model with LM weights
3.Then train like a normal supervised model

46

Dai and Le 2015



Exploring The Limits of Language Modeling

• A larger dataset 1BW (Chelba et al 2013)

• A 8K projection LSTM (Sak et al 2014)

• Character aware (Kim et al 2015)

• A large vocab - 800K words
– Approximate with sampled softmax

• 32 K40s for 3 weeks
• 41.0 -> 23.7 perplexity

47

Jozefowicz et al. 2016



Exploring The Limits of Language Modeling

• Was one of the first neural language models to generally have 
~coherent non-trivial sentences.

With even more new technologies coming onto the market quickly during the past 
three years , an increasing number of companies now must tackle the ever-
changing and ever-changing environmental challenges online .

48

Jozefowicz et al. 2016



Why scale?

• There’s a whole internet out there

• Soooooooooo much information

• A perfect language model would need to fit the internet into its 
parameters.

• This suggests we’re going to need a lot of parameters, compute, 
and data to get as close to this as possible.
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Why scale?

• This is what a very small charRNN learns:

" Als gambrantr 's w thkergtre akld teno 6 10769 tie He Cule a , ssot Goshulan n blve t , to hered arerorinner rrk f . , ate Banat"

• The best architecture in the world is useless without capacity.

• Even classic resources like WordNet are larger than many models 
trained today. (5.5M relational features and the package is 55MB on disk!)

• Ungrounded language learning is grotesquely inefficient. 
–How to make peace with this?
–For now, address it with scale?

50



Why scale?
• Deep Learning Scaling is Predictable, Empirically (Hestness et al. 2017)

• GPipe: Efficient Training of Giant Neural Networks (Huang et al. 2018)

• AI and Compute (Damodei and Hernandez 2018)

• These trends have been consistent across many orders of magnitude
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Learning To Generate Reviews 
and Discovering Sentiment
●Maybe data is the bottleneck!

– Make dataset bigger -> 80 million product reviews (40 GB of text)

• 4096 unit byte level mLSTM - 1 month - 4 Pascal Titan X GPUs
• Model ended up just underfitting by a lot
• But learned what sentiment is

52

Radford et al. 2017



LM pre-training for sentiment analysis
Small World LSTM is here
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Story Cloze Task: UW NLP System

55

Schwartz et al. 2017



The Sparsely-Gated MoEs Layer
• Maybe parameter count is the bottleneck!

– Make a model with as many parameters as possible -> 137 Billion

• More efficient than equivalent compute dense models

• And a lot of very impressive systems work

56

Shazeer et al. 2017



Deep contextualized word representations
• Replace word vectors with a learned weighted sum of features of deep 

bi-directional LM

• Improves baseline models to SOTA

• Uses the LM from (Jozefowicz et al. 2016)

• Extends benefits of LMs to a much wider variety of tasks

57

Peters et al. 2018



Deep contextualized word representations

Word representation

Forward LSTM Layer 
1 State

Backward LSTM Layer 
1 State

Forward LSTM Layer 
2 State

Backward LSTM
Layer 2 State

Word representation

Forward LSTM Layer 
1 State

Backward LSTM Layer 
1 State

Forward LSTM Layer 
2 State

Backward LSTM
Layer 2 State

Contextualized
representation

Contextualized
representation

58

Peters et al. 2018



Improving Language Understanding by 
Generative Pre-Training (GPT-1)
• Transformer based LM
• 12 self-attention blocks - 12 heads - 768 dim state

–~100M params
• Trained on 7,000 books ~ 5 GB of text (BookCorpus Zhu et al 2015)

• Fine-tune on supervised tasks (like Dai et al. 2015)
• Removes the need for task specific architectures
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Improving Language Understanding by 
Generative Pre-Training (GPT-1)



Lecture overview
• Motivation and Intro

• Introduction to Language Models

• History of Neural Language Models

• A digression into Transformers

• Beyond standard LMs

• Why we need Unsupervised Learning
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the cat sat on

Query
Key
Value information you can retrieve

what you can compare to
what you want to look for
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the cat sat on
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the cat sat on
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the cat sat on
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Query
Key
Value information you can retrieve

what you can compare to
what you want to look for



the cat sat on

“the cat”
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Query
Key
Value information you can retrieve

what you can compare to
what you want to look for



[Vaswani et al 2017]
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Lecture overview
• Motivation and Intro

• Introduction to Language Models

• History of Neural Language Models

• A digression into Transformers

• Beyond standard LMs

• Why we need Unsupervised Learning
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A lot of Improvements!

MultiNLI
Premise: Hills and mountains are 
especially sanctified in Jainism.
Hypotheis: Janism hates nature.
Label: Contradiction

CoLa
Sentence: The wagon rumbled down the road.
Label: Acceptable
Sentence: The car honked down the road.
Label: Unacceptable
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A lot of Improvements!
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MultiNLI
Premise: Hills and mountains are 
especially sanctified in Jainism.
Hypotheis: Janism hates nature.
Label: Contradiction

CoLa
Sentence: The wagon rumbled down the road.
Label: Acceptable
Sentence: The car honked down the road.
Label: Unacceptable



BERT: Pre-training of Deep Bidirectional 
Transformers for Language Understanding

Left-Right LM: The cat sat on the [mask] -> The cat sat on the mat
Right-Left LM: [mask] cat sat on the mat -> The cat sat on the mat 
Masked LM:  The [mask] sat on the [mask] -> The cat sat on the mat

72
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BERT Workflow
• The BERT workflow includes: 

– Pretrain on generic, self-supervised tasks, using large amounts of data (like all
of Wikipedia) 

– Fine-tune on specific tasks with limited, labelled data. 

• The pretraining tasks (will talk about this in more detail later): 
– Masked Language Modelling (to learn contextualized token representations) 

– Next Sentence Prediction (summary vector for the whole input) 
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BERT Architecture
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BERT Architecture
Properties:
• Two input sequences.

– Many NLP tasks have two inputs (question answering, paraphrase detection, 
entailment detection etc. )

• Computes embeddings
– Both token, position and segment embeddings. 
– Special start and separation tokens.

• Architecture 
– Basically the same as transformer encoder. 

• Outputs: 
– Contextualized token representations. 

– Special tokens for context. 
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BERT Embeddings

• How we tokenize the inputs is very important!

• BERT uses the WordPiece tokenizer (Wu et. al. 2016) 
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(Aside) Tokenizers
• Tokenizers have to balance the following:

– Being comprehensive (rare words? translation to different languages) 

– Total number of tokens

– How semantically meaningful each token is. 

• This is an activate area of research. 
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Pretraining tasks
• Masked Language Modelling, i.e. Cloze Task (Taylor, 1953) 

• Next sentence prediction
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Masked Language Modelling
• Mask 15% of the input tokens. (i.e. replace with a dummy masking

token) 

• Run the model, obtain the embeddings for the masked tokens.

• Using these embeddings, try to predict the missing token.

• ”I love to eat peanut ___ and jam. ” Can you guess what’s missing? 

• This procedure forces the model to encode context information in 
the features of all of the tokens. 
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Next Sentence Prediction
• Goal is to summarize the complete context (i.e. the two segments) in a 

single feature vector. 

• Procedure for generating data 
– Pick a sentence from the training corpus and feed it as ”segment A”. 
– With 50% probability, pick the following sentence and feed that as ”segment

B”. 
– With 50% probability, pick the a random sentence and feed it as ”segment B”. 

• Using the features for the context token, predict whether segment B is 
the following sentence of segment A. 

• Turns out to be a very effective pretraining technique! 
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Fine Tuning
Procedure: 

• Add a final layer on top of BERT representations.

• Train the whole network on the fine-tuning dataset.

• Pre-training time: In the order of days on TPUs.

• Fine tuning task: Takes only a few hours max. 
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Fine Tuning
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RoBERTa: A Robustly Optimized BERT 
Pretraining Approach
Really well executed refinement / engineering on BERT

• Better tuned (many HPs)

• Remove a few hacks (remove annealing context size)

• Better data generation (online instead of cached)

• A more flexible vocab scheme (more on this later)

• Use more compute / train longer (but same model capacity 
– BERT was undertrained)
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ELECTRA
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T5: Exploring the Limits of Transfer Learning 
with a Unified Text-to-Text Transformer
• Very thorough (50 pages!) exploration of the design space of pretraining 

with a pleasing task formulation (from McCann et al 2018)
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Lecture overview
• Motivation and Intro

• Introduction to Language Models

• History of Neural Language Models

• A digression into Transformers

• Beyond standard LMs

• Why we need Unsupervised Learning
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How well does supervised learning work?

• Natural Language Inference - SNLI (Bowman et al. 2015)
– Predict logical relation between two sentences - P and H.

§ Contradiction → A man inspects a uniform. A man is sleeping.
§ Neutral → An older and younger man smiling. Two men are smiling at cats playing on the floor.
§ Entailment → A soccer game with multiple males playing. Some men are playing a sport.

• Models are near human level according to the standard test set

• Humans                            ~ 88.0%

• ESIM (Chen et al. 2017)   ~ 88.0%
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Annotation Artifacts In Natural Language 
Inference Data

• Turkers were paid to create the training data of SNLI
– They often use a few tricks or heuristics to quickly make data

• For instance:
– Words like (not, never, nothing) hint at negation
– Generic words like (person, animal, sport) hint at entailment
– Modifiers like (tall, sad, popular) hint at neutral

• If you train a classifier on only the second sentence...
– You get ~67.0% compared to ~33.0%

• ESIM performance drops from ~88% to ~72% on the hard examples

90

Gururangan et al. 2018



Breaking NLI Systems with Sentences that 
Require Simple Lexical Inferences
Use known relations between words to construct a new test set

The man is holding a {object}.
The man is holding a {different object}.
Contradiction

A little girl is very {adjective}.
A little girl is very {synonym}.
Entailment

Built a new test set of 8,000 examples from 14 categories to probe this.

ESIM drops from ~88% to ~66% on this new test set
91
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Learning and Evaluating General Linguistic 
Intelligence
• Near SOTA QA model (BERT on SQUAD) drops from 86.5 F1 to:

• 35.6 F1 on TriviaQA
• 56.2 F1 on QuAC
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What might be going wrong?

• Standard training datasets might not encourage generalization

• Models learn spurious associations in the training set

• Models exploit distributional bias of the creation of the training set

• Models “stop learning” once they get to 0 training error

• Current techniques are brittle

• Current techniques are closer to memorization than generalization
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How to make progress?

• Better models / architectures?

• More data?

• Different paths all together?
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How to make progress?

The beautiful story of modern deep learning was supposed to be that 
we cleverly encoded high-level domain knowledge into our architectures 
and built these larger labeled datasets and then let SGD figure out all 
the annoying details for us.
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How to make progress?

• This sets us up for a mindset of architecture engineering.

• There’s a very large design space:
– Multiply by a sigmoid here

– Add a temporal max-pool there

– Convolve with not 1(or 2) but three different width filters

– Throw some attention on top of it all for good measure
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We really like playing with blocks!
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How to make progress?

• We can encode useful information through the choice of model:
– Convolution
– Recurrence
– Weight Sharing
– Attention
– Hierarchy
– Depth

These are all important and impactful
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The value of architecture engineering?
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How to learn?
• Supervised Learning is the dominant approach

• The largest supervised dataset is JFT-300M (Sun et al. 2017)
– 300 million images
– 18,000 classes

101



How to learn?
• Supervised Learning is the dominant approach

• The largest supervised dataset is JFT-300M (Sun et al. 2017)
– 300 million images
– 18,000 classes

• JFT is only 530 MB of constraints
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• KIM (Chen et al. 2017) 

• Gets 83.5% on the new NLI 
test set
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Information and Representation Engineering 
alongside Architecture Engineering



• Word vectors are the classic 
approach!

• GLoVE (Pennington et al. 2014)
– Common Crawl (a good chunk of the internet)

– Represent co-occurrences of 
words in 840 billion tokens

104
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• Word vectors are the classic 
approach!

• GLoVE (Pennington et al. 2014)
– Common Crawl (a good chunk of the internet)

– Represent co-occurrences of 
words in 840 billion tokens
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The NLI models were already using word vectors
So this hasn’t been figured out yet!
But GLoVe -> ELMo -> GPT-1 -> BERT helps a ton!

Information and Representation Engineering 
alongside Architecture Engineering



Information Engineering Taking Off 
(CoVe, ELMo, ULMFiT, GPT-1, BERT)

• GPT-1 performs similarly to KIM (83.75%) on the new NLI test set

• BERT is basically SOTA on everything

• It’s just a “stock” transformer!

• But it makes up for this with all that its learned through pre-training.
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Instead of manually specifying what to predict through the creation of 
large supervised datasets…

Figure out how to learn from and predict everything “out there”.

You can think of everytime we build a dataset as setting the importance 
of everything else in the world to 0 and the importance of everything in 
the dataset to 1.

Our poor models! They know so little and yet still have so much hidden from them.
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A Potential Recipe

1.High capacity and flexible model classes

+
2. Algos for extracting information and learning the structure of domains

+
3. An almost infeasible amount of data tiling everything (billions of unlabeled examples?)

+
4. An offensive amount of compute with which to learn (peta to exaflops?)

= ?
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A Potential Recipe

1.High capacity and flexible model classes

+
2. Algos for extracting information and learning the structure of domains

+
3. An almost infeasible amount of data tiling everything (billions of unlabeled examples?)

+
4. An offensive amount of compute with which to learn (peta to exaflops?)

= 
Is it time to stop? To call it quits?
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A Potential Recipe

1.High capacity and flexible model classes

+
2. Algos for extracting information and learning the structure of domains

+
3. An almost infeasible amount of data tiling everything (billions of unlabeled examples?)

+
4. An offensive amount of compute with which to learn (peta to exaflops?)

= 
Or will it drive a good chunk of progress over the next few years?

110



GPT-2

• More data
– 40GB of text
– 10B tokens
– 8 million webpages

• Bigger model
– Up to 1.5 billion parameters
– 1024 token context
– 48 layers, 1600 dim state

Just a language model - predicts everything (with some unfortunate 
restrictions as BERT shows)
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Performance across tasks
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Performance across tasks

113



Why it’s working?
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Why it’s working?

Question Answering and Reading Comprehension:
6 Million 5 Ws questions in the dataset

Summarization:
~100K TL;DR, In summary…

Translation:
~10MB French data

115



A concrete example of why unsupervised 
learning is necessary
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Chart: Towardsdatascience.com May 31, 2020

GPT-3
175 Billion parameter 
Autoregressive 
Language Model with a 
context length of 2048 
trained via cross-entropy 
minimization to predict 
net token for 
approximately one 
epoch on 200 billion 
words of very diverse 
mostly English text.



https://lambdalabs.com/blog/demystifying-gpt-3/

https://www.nature.com/articles/d41586-021-
00530-0#ref-CR2

GPT-3

https://lambdalabs.com/blog/demystifying-gpt-3/
https://www.nature.com/articles/d41586-021-00530-0


The Scale of GPT-3
Training GPT-3 uses: 

3.64e+23 FLOPs = 1.250e-1 ×
FLOPs human brain uses in 
lifetime

2.00e+11 words   = 2.000e+1 ×
Data (words) human reads in 
lifetime

1.75e+11 params = 4.375e-3 ×
Params that human brain uses 
for language tasks.

2018 (left) through 2019 (right) 2020 onwards

11B

175B

9.4B17B

1.5B
8.3B 2.6B1.5B 66M355M340M330M665M465M340M110M94M 1.5B

📷 The number of parameters in given architectures. Source: State of AI Report 2020 by Nathan 
Benaich and Ian Hogarth



“Meta-learning”: 
unsupervised pretraining
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Title: United Methodists Agree to Historic Split

Subtitle: Those who oppose gay marriage will form their own

denomination

Article:

Figure 7.4: The GPT-3 generated news article that humans had the greatest difficulty distinguishing
from a human written article (accuracy: 12%).

Aditya Ramesh experimented with loss scaling strategies for pretraining.

Melanie Subbiah and Arvind Neelakantan implemented, experimented with, and tested beam
search.

Pranav Shyam worked on SuperGLUE and assisted with connections to few-shot learning and
meta-learning literature.

Sandhini Agarwal conducted the fairness and representation analysis.

Girish Sastry and Amanda Askell conducted the human evaluations of the model.

Ariel Herbert-Voss conducted the threat analysis of malicious use.

Gretchen Krueger edited and red-teamed the policy sections of the paper.

Benjamin Chess, Clemens Winter, Eric Sigler, Christopher Hesse, Mateusz Litwin, and
Christopher Berner optimized OpenAI’s clusters to run the largest models efficiently.

Scott Gray developed fast GPU kernels used during training.

Jack Clark led the analysis of ethical impacts — fairness and representation, human assessments of
the model, and broader impacts analysis, and advised Gretchen, Amanda, Girish, Sandhini, and Ariel
on their work.

Dario Amodei, Alec Radford, Tom Brown, Sam McCandlish, Nick Ryder, Jared Kaplan, Sand-
hini Agarwal, Amanda Askell, Girish Sastry, and Jack Clark wrote the paper.
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The GPT-3 generated news article that 
humans had the greatest difficulty 
distinguishing from a human written article 



GPT-3
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Completion from a 
context suggesting the 
model compose a poem 
in the style of Wallace 
Stevens with the title 
‘Shadows on the Way’. 



What is few-shot learning?

Figure 2.1: Zero-shot, one-shot and few-shot, contrasted with traditional fine-tuning. The panels above show
four methods for performing a task with a language model – fine-tuning is the traditional method, whereas zero-, one-,
and few-shot, which we study in this work, require the model to perform the task with only forward passes at test
time. We typically present the model with a few dozen examples in the few shot setting. Exact phrasings for all task
descriptions, examples and prompts can be found in Appendix G.

• Zero-Shot (0S) is the same as one-shot except that no demonstrations are allowed, and the model is only given
a natural language instruction describing the task. This method provides maximum convenience, potential for
robustness, and avoidance of spurious correlations (unless they occur very broadly across the large corpus of
pre-training data), but is also the most challenging setting. In some cases it may even be difficult for humans
to understand the format of the task without prior examples, so this setting is in some cases “unfairly hard”.
For example, if someone is asked to “make a table of world records for the 200m dash”, this request can be
ambiguous, as it may not be clear exactly what format the table should have or what should be included (and
even with careful clarification, understanding precisely what is desired can be difficult). Nevertheless, for at
least some settings zero-shot is closest to how humans perform tasks – for example, in the translation example
in Figure 2.1, a human would likely know what to do from just the text instruction.

Figure 2.1 shows the four methods using the example of translating English to French. In this paper we focus on
zero-shot, one-shot and few-shot, with the aim of comparing them not as competing alternatives, but as different
problem settings which offer a varying trade-off between performance on specific benchmarks and sample efficiency.
We especially highlight the few-shot results as many of them are only slightly behind state-of-the-art fine-tuned models.
Ultimately, however, one-shot, or even sometimes zero-shot, seem like the fairest comparisons to human performance,
and are important targets for future work.

Sections 2.1-2.3 below give details on our models, training data, and training process respectively. Section 2.4 discusses
the details of how we do few-shot, one-shot, and zero-shot evaluations.
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Models and Data



GPT-3
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Figure 1.2: Larger models make increasingly efficient use of in-context information. We show in-context learning
performance on a simple task requiring the model to remove random symbols from a word, both with and without a
natural language task description (see Sec. 3.9.2). The steeper “in-context learning curves” for large models demonstrate
improved ability to learn a task from contextual information. We see qualitatively similar behavior across a wide range
of tasks.

sufficient to enable a human to perform a new task to at least a reasonable degree of competence. Aside from pointing
to a conceptual limitation in our current NLP techniques, this adaptability has practical advantages – it allows humans
to seamlessly mix together or switch between many tasks and skills, for example performing addition during a lengthy
dialogue. To be broadly useful, we would someday like our NLP systems to have this same fluidity and generality.

One potential route towards addressing these issues is meta-learning1 – which in the context of language models means
the model develops a broad set of skills and pattern recognition abilities at training time, and then uses those abilities
at inference time to rapidly adapt to or recognize the desired task (illustrated in Figure 1.1). Recent work [RWC+19]
attempts to do this via what we call “in-context learning”, using the text input of a pretrained language model as a form
of task specification: the model is conditioned on a natural language instruction and/or a few demonstrations of the task
and is then expected to complete further instances of the task simply by predicting what comes next.

While it has shown some initial promise, this approach still achieves results far inferior to fine-tuning – for example
[RWC+19] achieves only 4% on Natural Questions, and even its 55 F1 CoQa result is now more than 35 points behind
the state of the art. Meta-learning clearly requires substantial improvement in order to be viable as a practical method of
solving language tasks.

Another recent trend in language modeling may offer a way forward. In recent years the capacity of transformer
language models has increased substantially, from 100 million parameters [RNSS18], to 300 million parameters
[DCLT18], to 1.5 billion parameters [RWC+19], to 8 billion parameters [SPP+19], 11 billion parameters [RSR+19],
and finally 17 billion parameters [Tur20]. Each increase has brought improvements in text synthesis and/or downstream
NLP tasks, and there is evidence suggesting that log loss, which correlates well with many downstream tasks, follows a
smooth trend of improvement with scale [KMH+20]. Since in-context learning involves absorbing many skills and
tasks within the parameters of the model, it is plausible that in-context learning abilities might show similarly strong
gains with scale.

1In the context of language models this has sometimes been called “zero-shot transfer”, but this term is potentially ambiguous:
the method is “zero-shot” in the sense that no gradient updates are performed, but it often involves providing inference-time
demonstrations to the model, so is not truly learning from zero examples. To avoid this confusion, we use the term “meta-learning”
to capture the inner-loop / outer-loop structure of the general method, and the term “in context-learning” to refer to the inner
loop of meta-learning. We further specialize the description to “zero-shot”, “one-shot”, or “few-shot” depending on how many
demonstrations are provided at inference time. These terms are intended to remain agnostic on the question of whether the model
learns new tasks from scratch at inference time or simply recognizes patterns seen during training – this is an important issue which
we discuss later in the paper, but “meta-learning” is intended to encompass both possibilities, and simply describes the inner-outer
loop structure.
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PaLM: Scaling Language Modeling with Pathways 

• “A 540-billion parameter, densely 
activated, Transformer language model, 
which we call Pathways Language 
Model (PaLM)”

• “Trained on 6144 TPU v4 chips using 
Pathways, a new ML system which 
enables highly efficient training across 
multiple TPU Pods”
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PaLM
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PaLM
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PaLM
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Results obtained by the PaLM 540B 
model across 29 NLP benchmarks. For 
the few-shot results, the number of 
shots for each task are mentioned in 
parenthesis 



Takeaways from scaling language modeling

• Performance not (usually) limited by something a single paper fixes

• Diminishing returns mean there is always some other bottleneck
– Fancy model -> compute utilization, trainability
– Parameters -> compute
– Data -> capacity
– Capacity -> data, compute

● Be pragmatic about scaling

• If you do everything sensibly - compute will probably be the bottleneck
– If it’s not… there’s an interesting research problem!
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Takeaways from language modeling

• Scale matters go beyond classic datasets like PTB

• Better results come from combining several sources of 
improvement

• Don’t get bottlenecked by something that can be fixed easily

• Don’t let scale slow you down during development

• A medium+ language model on a new dataset / domain will 
probably learn something interesting - but might take some digging 
to find
– Most of my research for the past few years has been exploring the capabilities, behaviors, and 

uses of language models in this regime
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Where is this heading?

• In the next few years language models will be trained on pretty much 
the whole internet (might as well throw in millions of books too!)

• Will scaling trends breakdown?

• How far will this get?
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Next lecture: 
Pretraining for Vision and 

Language
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