
Loss Landscape created with data from the training process of a convolutional network, Javier Ideami

Aykut Erdem // Koç University // Spring 2022

COMP547
DEEP UNSUPERVISED 
LEARNING
Lecture #2 – Neural Networks Basics and 

Spatial Processing with CNNs



• course logistics

• course topics

• what is deep unsupervised learning

Previously on COMP547
Photo: Detail from Sofia Crespo's Tribute to Manolo Part 2



Good news, everyone!
• Half of the class has 

completed the survey so far!

• It will be up until everyone 
completes

• My office hour will 
be on Tuesdays
btw 11:00-12:00
(will skip next week)
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Frame: Professor Farnsworth (Futurama)



Lecture overview
• deep learning

• computation in a neural net

• optimization

• backpropagation

• training tricks

• convolutional neural networks

• Disclaimer: Much of the material and slides for this lecture were borrowed from 
—Costis Daskalakis and Aleksander Mądry’s MIT 6.883 class

—Bill Freeman, Antonio Torralba and Phillip Isola’s MIT 6.869 class
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Humble beginnings
• Perceptron [Rosenblatt ‘58]

• Criticism of Perceptrons (XOR affair) [Minsky Papert ‘69]

→ Effectively causes a “deep learning winter”
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(Early) Spring
• Back-propagation [Rumelhart et al. ’86, LeCun ‘85, Parker ‘85] 

• Convolutional layers [LeCun et al. ‘90] 

• Recurrent Neural Networks/Long Short-Term 
Memory (LSTM) [Hochreiter Schmidhuber ‘97] 
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Summer
• 2006: First big success: speech recognition 

• 2012: Breakthrough in computer vision: AlexNet [Krizhevsky et al. ‘12] 

• 2015: Deep learning-based vision 
models outperform humans 
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What enabled this success?
• Better architectures (e.g., ReLUs) and regularization 

techniques (e.g. Dropout)

• Sufficiently large datasets

• Enough computational power
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Deep learning
• Modeling the world is incredibly complicated. We need high capacity 

models.

• In the past, we didn’t have enough data to fit these models. But now 
we do!

• We want a class of high capacity models that are easy to optimize.
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Deep neural networks!



Y. LeCun, Y. Bengio, G. Hinton, "Deep Learning", Nature, Vol. 521, 28 May 2015

What is deep learning?
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“Deep learning allows computational models 
that are composed of multiple processing layers 
to learn representations of data with multiple 
levels of abstraction.”
− Yann LeCun, Yoshua Bengio and Geoff Hinton



Serre, 2014

CHAPTER 1. INTRODUCTION

Visible layer
(input pixels)

1st hidden layer
(edges)

2nd hidden layer
(corners and

contours)

3rd hidden layer
(object parts)

CAR PERSON ANIMAL Output
(object identity)

Figure 1.2: Illustration of a deep learning model. It is difficult for a computer to understand
the meaning of raw sensory input data, such as this image represented as a collection
of pixel values. The function mapping from a set of pixels to an object identity is very
complicated. Learning or evaluating this mapping seems insurmountable if tackled directly.
Deep learning resolves this difficulty by breaking the desired complicated mapping into a
series of nested simple mappings, each described by a different layer of the model. The
input is presented at the visible layer, so named because it contains the variables that
we are able to observe. Then a series of hidden layers extracts increasingly abstract
features from the image. These layers are called “hidden” because their values are not given
in the data; instead the model must determine which concepts are useful for explaining
the relationships in the observed data. The images here are visualizations of the kind
of feature represented by each hidden unit. Given the pixels, the first layer can easily
identify edges, by comparing the brightness of neighboring pixels. Given the first hidden
layer’s description of the edges, the second hidden layer can easily search for corners and
extended contours, which are recognizable as collections of edges. Given the second hidden
layer’s description of the image in terms of corners and contours, the third hidden layer
can detect entire parts of specific objects, by finding specific collections of contours and
corners. Finally, this description of the image in terms of the object parts it contains can
be used to recognize the objects present in the image. Images reproduced with permission
from Zeiler and Fergus (2014).

6

11



“clown fish”

Edges

Feature extractors

Texture

Colors

Segments

Parts

Classifier

Object recognition
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Feature extractors

Texture

Colors
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Parts
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Learned

Object recognition
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Learned

Object recognition

“clown fish”
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“clown fish”

Learned

Neural net

Object recognition
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“clown fish”

Learned

Deep neural net

Object recognition
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“clown fish”

Loss

LearnedDeep learning
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Gradient descent
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x

Gradient descent
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learning rate

One iteration of gradient descent:

Gradient descent
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Input 
representation

Output 
representation

Computation in a neural net
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Input 
representation

Output 
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Linear layer

Computation in a neural net
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Input 
representation

Output 
representation

Linear layer

weights

bias

Computation in a neural net
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Input 
representation

Output 
representation

Linear layer

weights

bias

parameters of the model

Computation in a neural net
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Input 
representation

Output 
representation

Linear layer

Example: linear regression with a neural net
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Input 
representation

Output 
representation

Pointwise
Non-linearity

“Perceptron”

Computation in a neural net
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Example: linear classification with a perceptron
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Example: linear classification with a perceptron
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Example: linear classification with a perceptron
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Input 
representation

Output 
representation

Computation in a neural net
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Input 
representation

Output 
representation

Sigmoid

Computation in a neural net – nonlinearity
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Sigmoid• Interpretation as firing rate of neuron

• Bounded between [0,1]

• Saturation for large +/- inputs

• Gradients go to zero

• Outputs centered at 0.5 
(poor conditioning)

• Not used in practice

Computation in a neural net – nonlinearity
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Tanh
• Bounded between [-1,+1]

• Saturation for large +/- inputs

• Gradients go to zero

• Outputs centered at 0

• Preferable to sigmoid

tanh(x) = 2 sigmoid(2x) −1

Computation in a neural net – nonlinearity
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Rectified linear unit (ReLU)• Unbounded output (on positive side)

• Efficient to implement:

• Also seems to help convergence 
(see 6x speedup vs tanh in [Krizhevsky et al.])

• Drawback: if strongly in negative region, 
unit is dead forever (no gradient).

• Default choice: widely used in current models.

Computation in a neural net – nonlinearity
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Leaky ReLU
• where α is small (e.g. 0.02)

• Efficient to implement:

• Also known as probabilistic ReLU (PReLU)

• Has non-zero gradients everywhere 
(unlike ReLU)

• α can also be learned 
(see Kaiming He et al. 2015).

Computation in a neural net – nonlinearity
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Input 
representation

Intermediate 
representation

Output 
representation

positive

negative

Stacking layers
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Representational power
• 1 layer? Linear decision surface.
• 2+ layers? In theory, can represent any function. 

Assuming non-trivial non-linearity.
– Bengio 2009,

http://www.iro.umontreal.ca/~bengioy/papers/ftml.pdf

– Bengio, Courville, Goodfellow book
http://www.deeplearningbook.org/contents/mlp.html

– Simple proof by M. Neilsen
http://neuralnetworksanddeeplearning.com/chap4.html

– D. Mackay book 
http://www.inference.phy.cam.ac.uk/mackay/itprnn/ps/482.491.pdf

• But issue is efficiency: very wide two layers vs narrow deep 
model? In practice, more layers helps.

40

http://www.iro.umontreal.ca/~bengioy/papers/ftml.pdf
http://www.deeplearningbook.org/contents/mlp.html
http://neuralnetworksanddeeplearning.com/chap4.html
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Deep supervised nets
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Last layer

…

…

dolphin

cat

grizzly bear

angel fish

chameleon

iguana

elephant

clown fish

“clown fish”argmax

Classifier layer
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“clown fish”

Loss error

Network output

…

…

dolphin

cat

grizzly bear

angel fish

chameleon

iguana

elephant

clown fish

Ground truth label

Loss function
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“clown fish”

Loss small

Network output

…

…

dolphin

cat

grizzly bear

angel fish

chameleon

iguana

elephant

clown fish

Ground truth label

Loss function
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“grizzly bear”

Loss large

Network output

…

…

dolphin

cat

grizzly bear

angel fish

chameleon

iguana

elephant

clown fish

Ground truth label

Loss function
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Prediction

dolphin

cat

grizzly bear

angel fish

chameleon

iguana

elephant

clown fish

0 1

Ground truth label

dolphin

cat

grizzly bear

angel fish

chameleon

iguana

elephant

clown fish

…

0 1

…
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Network output

…

dolphin

cat

grizzly bear

angel fish

chameleon

clown fish

Ground truth label

…

iguana

elephant

Probability of the observed 
data under the model

47



“clown fish”

Loss

LearnedDeep learning
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“grizzly bear”

LearnedDeep learning

Loss
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“chameleon”

LearnedDeep learning

Loss
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Loss

Loss

Loss

…

Batch (parallel) processing
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…

Tensors
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"Tensor flow"
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• Deep nets have millions of parameters!

• On many datasets, it is easy to overfit — we may have more free 
parameters than data points to constrain them.

• How can we regularize to prevent the network from overfitting?
1. Fewer neurons, fewer layers
2. Weight decay
3. Dropout
4. Normalization layers
5. …

Regularizing deep nets
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Recall: regularized least squares

Only use polynomial terms if you really 
need them! Most terms should be zero

ridge regression, a.k.a., Tikhonov regularization

Probabilistic interpretation: R is a Gaussian prior over values of the parameters.
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weight decay

“We prefer to keep weights small.”

Recall: regularized least squares
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Input 
representation

Intermediate 
representation

Output 
representation

Dropout
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Randomly zero out 
hidden units.



Input 
representation

Intermediate 
representation

Output 
representation

Dropout
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Input 
representation

Intermediate 
representation

Output 
representation

Dropout
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Input 
representation

Intermediate 
representation

Output 
representation

Dropout

60

Prevents network from 
relying too much on 
spurious correlations 
between different 
hidden units.

Can be understood as 
averaging over an 
exponential ensemble
of subnetworks. This
averaging smooths the 
function, thereby 
reducing the effective 
capacity of the network.



x

Gradient descent

61

learning rate

One iteration of gradient descent:



Optimization

• What’s the knowledge we have about J?

– We can evaluate

– We can evaluate          and     

– We can evaluate         ,              , and     

Black box optimization

First order optimization

Gradient

Second order optimization

Hessian

Params
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Loss

Loss

Loss

…

Batch (parallel) processing
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Stochastic gradient descent (SGD)
• Want to minimize overall loss function J, which is sum of individual losses over each 

example.

• In Stochastic gradient descent, compute gradient on sub-set (batch) of data.

If batchsize=1 then θ is updated after each example.

If batchsize=N (full set) then this is standard gradient descent.

• Gradient direction is noisy, relative to average over all examples (standard gradient 
descent).

• Advantages

– Faster: approximate total gradient with small sample

– Implicit regularizer

• Disadvantages

– High variance, unstable updates
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Momentum
• Basic idea: like a ball rolling down a hill, we should build up 

speed so as to make faster progress when “on a roll”

• Can dampen oscillations in SGD updates

• Common in popular variants of SGD

– Nesterov’s method

– RMSProp

– Adam

65



[https://distill.pub/2017/momentum/]
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https://distill.pub/2017/momentum/


[http://ruder.io/optimizing-gradient-descent/]

Comparison of gradient descent variants

67

http://ruder.io/optimizing-gradient-descent/


…
…

(output)

(input)

Forward pass
• Consider model with     layers. Layer    has 

vector of weights

• Forward pass: takes input           and 
passes it through each layer      :

• Output of layer    is      . 

• Network output (top layer) is       .
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• Loss function compares         to    .
• Overall energy is the sum of the cost over all 

training examples:

…
…

(output)

(input)

• Consider model with     layers. Layer    has 
vector of weights

• Forward pass: takes input           and 
passes it through each layer      :

• Output of layer    is      . 

• Network output (top layer) is       .

Forward pass
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Gradient descent
• We need to compute gradients of the cost with respect to model 

parameters        .

• By design, each layer is differentiable with respect to its parameters 
and input.
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Computing gradients
• To compute the gradients, we could start by writing 

the full energy J as a function of the network 
parameters.

And then compute the partial derivatives… instead, we 
can use the chain rule to derive a compact algorithm:  
backpropagation

…
…
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…
…

(output)

(input)

Backpropagation
• Forward pass: for each training example, 

compute the outputs for all layers:

• Backwards pass: compute loss derivatives 
iteratively from top to bottom:

• Compute gradients w.r.t. weights, and 
update weights: 

…
…
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73

Convolutional Neural
Networks



Convolutional Neural Networks
LeCun et al. 1989

Neural network with specialized connectivity

Tailored to processing natural signals with a grid topology (e.g., images).
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“Fish”Classifier

Image classification

image x label y
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Photo credit: Fredo Durand
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“Bird”Classifier
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“Bird”Classifier Bird
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“Sky”Classifier Sky

Bird
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Bird

Sky

Sky

SkySky

Sky

Sky

Sky

SkySky

Sky

Sky

Sky

SkySky

Bird

Sky

Sky

Sky

Bird

Sky

Sky

Sky

Sky

Sky

Sky

Sky

Sky

Sky

Sky

Sky

Sky

Sky

BirdBirdBird

SkySkySky
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“Sky”

“Sky”

“Bird”

“Bird”

What's the object class of the center pixel?
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“Sky”

“Sky”

“Bird”

“Bird”

What's the object class of the center pixel?

Training data

…

“Bird”

“Bird”

“Sky”
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This problem is called semantic segmentation
in computer vision

(Colors represent one-hot codes)
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“Sky”

“Sky”

“Bird”

“Bird”

What’s the object class of the center pixel?

Translation invariance: process 
each patch in the same way.

An equivariant mapping:
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W computes a weighted sum of all pixels in the patch

W is a convolutional kernel applied to the full image!

88



filter

Convolution
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Fully-connected (fc) layer

Fully-connected network
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Often, we assume output is a 
local function of input.

If we use the same weights 
(weight sharing) to compute 
each local function, we get a 
convolutional neural network.

Locally connected network

91



Conv layer

Often, we assume output is a 
local function of input.

If we use the same weights 
(weight sharing) to compute 
each local function, we get a 
convolutional neural network.

Convolutional neural network
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Often, we assume output is a 
local function of input.

If we use the same weights 
(weight sharing) to compute 
each local function, we get a 
convolutional neural network.

Conv layer

Weight sharing
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Toeplitz matrix

e.g., pixel image

• Constrained linear layer (infinitely strong regularization)

• Fewer parameters —> easier to learn, less overfitting
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Conv layers can be applied to arbitrarily-sized inputs
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Five views on convolutional layers
1. Equivariant with translation (stationarity)

2. Patch processing (Markov assumption)

3. Image filter

4. Parameter sharing 

5. A way to process variable-sized tensors
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Conv layer

Multiple channels
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Conv layer

Multiple channels
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Conv layer

… ……

Multiple channels

101



[Figure from Andrea Vedaldi]

Input features A bank of 2 filters
2-dimensional 
output features
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"Tensor flow"
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Filter Pool

Max pooling

Pooling
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Filter Pool

Max pooling

Mean pooling

Pooling
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Pooling – Why?
Pooling across spatial locations achieves 
stability w.r.t. small translations:
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large response 
regardless of exact 
position of edge

Pooling – Why?
Pooling across spatial locations achieves 
stability w.r.t. small translations:
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Pooling across spatial locations achieves 
stability w.r.t. small translations:

Pooling – Why?
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[“Unreasonable effectiveness of Deep Features as a Perceptual Metric”, Zhang et al. 2018]

CNNs are stable w.r.t. diffeomorphisms
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Pooling across feature channels (filter outputs) 
can achieve other kinds of invariances:

large 
response for 

any edge, 
regardless of 
its orientation

[Derived from slide by Andrea Vedaldi]

Pooling – Why?

110
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Computation in a neural net
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Filter Pool and downsample

Downsampling
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Filter Downsample

Downsampling
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Conv layer

Stride 2 Strided convolutions combine 
convolution and downsampling
into a single operation.

Strided convolution
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“clown fish”

Fil
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Computation in a neural net
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Receptive fields
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3x1 Filter
Pool and 

downsample by 2

RF = RF + floor(3/2)*2

kernel size

RF = RF*2

scale factor

Pool and 
downsample by 2

RF = RF*2

Bird

Sky

Sky

Sky

Receptive fields
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[http://fomoro.com/tools/receptive-fields/index.html]
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[http://6.869.csail.mit.edu/fa18/notes/simoncelli2005.pdf] 119

Why CNNs?

http://6.869.csail.mit.edu/fa18/notes/simoncelli2005.pdf


Statistical dependences between pixels decay as a power law of distance 
between the pixels.

It is therefore often sufficient to model local dependences only. → Convolution

More generally, we should allocate parameters that model dependences in 
proportion to the strength of those dependences. → Multiscale, hierarchical 
representations

[For more discussion, see “Why does Deep and Cheap Learning Work So Well?”, Lin et al. 2017]

Why CNNs?

120



Capturing long-range dependences:

Why CNNs?
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Deep Neural Networks for Visual 
Recognition

2012: AlexNet
5 conv. layers

Error: 15.3%

2014: VGG
16 conv. layers

Error: 8.5%

2015: GoogLeNet
22 conv. layers

Error: 7.8%

2016: ResNet
>100 conv. layers

Error: 4.4%
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2012: AlexNet
5 conv. layers

Error: 15.3%
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2014: VGG
16 conv. 
layers

Small convolutional kernels: 3x3
ReLu non-linearities
>100 million parameters.

https://arxiv.org/pdf/1409.1556.pdf

Softmax

Error: 8.5% 124



Chaining convolutions
3x3

25 coefficients, but only
18 degrees of freedom

3x3

=

5x5

=

9 coefficients, but only
6 degrees of freedom.
Only separable filters… would this be enough? 125



a 0 b 0 c

0 0 0 0 0

d 0 e 0 f

0 0 0 0 0

g 0 h 0 i

=

3x3
5x5 7x7

49 coefficients
18 degrees of freedom

25 coefficients
9 degrees of freedom

[https://arxiv.org/pdf/1511.07122.pdf]

Dilated convolutions

126

https://arxiv.org/pdf/1511.07122.pdf


[https://arxiv.org/pdf/1511.07122.pdf]
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https://arxiv.org/pdf/1511.07122.pdf


2016: ResNet
>100 conv. layers

Error: 4.4%

https://arxiv.org/pdf/1512.03385.pdf
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W x

If output has a different size:If output has same size as input:

129



Residual Learning

130

• The loss surface of a 56-layer net using the CIFAR-10 dataset, both without (left) and
with (right) residual connections. 

Hao Li et al., "Visualizing the Loss Landscape of Neural Nets". ICLR 2018



[Derived from slide by Marc’Aurelio Ranzato]

• Check gradients numerically by finite differences 
• Visualize hidden activations — should be uncorrelated and high variance

Good training: hidden units are sparse across samples and across features.

Other good things to know
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[Derived from slide by Marc’Aurelio Ranzato]

• Check gradients numerically by finite differences 
• Visualize hidden activations — should be uncorrelated and high variance

Bad training: many hidden units ignore the input and/or exhibit strong correlations.

Other good things to know
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[Derived from slide by Marc’Aurelio Ranzato]

• Check gradients numerically by finite differences 
• Visualize hidden activations — should be uncorrelated and high variance
• Visualize filters

Good training: learned filters exhibit structure and are uncorrelated.

Other good things to know
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ReLUNorm

Normalization layers

134

Keep track of mean and variance of a 
unit (or a population of units) over time.

Standardize unit activations by 
subtracting mean and dividing by 
variance.

Squashes units into a standard 
range, avoiding overflow.

Also achieves invariance to mean and 
variance of the training signal.

Both these properties reduce the 
effective capacity of the model, i.e. 
regularize the model.



Normalization layers

135



[Figure from Wu & He, arXiv 2018]

Normalize w.r.t. a single hidden unit’s pattern of activation over training 
examples (a batch of examples).

Normalization layers
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[Figure from Wu & He, arXiv 2018]

Normalize w.r.t. the mean and variance of the activations of all the hidden units 
(neurons) on this layer (c).

Normalization layers
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[Figure from Wu & He, arXiv 2018]

Normalize w.r.t. the mean and variance of the activations of all the hidden units 
(neurons) on this layer (c) that process this particular location (h,w) in the image.

Normalization layers
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[Figure from Wu & He, arXiv 2018]

Might as well…

Normalization layers
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Normalization layers

140[https://theaisummer.com/normalization]

Batch Normalization (2015) Layer Normalization (2016)

Group Normalization (2018)

Instance Normalization (2016)

Weight Standardization (2019)

https://theaisummer.com/normalization


No normalization layers

141



Next Lecture: 
Sequential Processing with RNNs

142


