
Loss Landscape created with data from the training process of a convolutional network, Javier Ideami

Aykut Erdem // Koç University // Spring 2022

COMP547
DEEP UNSUPERVISED
LEARNING
Lecture #2 – Neural Networks Basics and

Spatial Processing with CNNs

• course logistics

• course topics

• what is deep unsupervised learning

Previously on COMP547
Photo: Detail from Sofia Crespo's Tribute to Manolo Part 2

Good news, everyone!
• Half of the class has

completed the survey so far!

• It will be up until everyone
completes

• My office hour will
be on Tuesdays
btw 11:00-12:00
(will skip next week)

33

Frame: Professor Farnsworth (Futurama)

Lecture overview
• deep learning

• computation in a neural net

• optimization

• backpropagation

• training tricks

• convolutional neural networks

• Disclaimer: Much of the material and slides for this lecture were borrowed from
—Costis Daskalakis and Aleksander Mądry’s MIT 6.883 class

—Bill Freeman, Antonio Torralba and Phillip Isola’s MIT 6.869 class
4

Humble beginnings
• Perceptron [Rosenblatt ‘58]

• Criticism of Perceptrons (XOR affair) [Minsky Papert ‘69]

→ Effectively causes a “deep learning winter”

Humble beginnings
• Perceptron [Rosenblatt ‘58]

• Criticism of Perceptrons (XOR affair) [Minsky Papert ‘69]

→ Effectively causes a “deep learning winter”

Humble beginnings
• Perceptron [Rosenblatt ‘58]

• Criticism of Perceptrons (XOR affair) [Minsky Papert ‘69]
– Effectively causes a "deep learning winter"

5

Humble beginnings
• Perceptron [Rosenblatt ‘58]

• Criticism of Perceptrons (XOR affair) [Minsky Papert ‘69]

→ Effectively causes a “deep learning winter”

(Early) Spring
• Back-propagation [Rumelhart et al. ’86, LeCun ‘85, Parker ‘85]

• Convolutional layers [LeCun et al. ‘90]

• Recurrent Neural Networks/Long Short-Term
Memory (LSTM) [Hochreiter Schmidhuber ‘97]

6

(Early) Spring
• Back-propagation [Rumelhart et al. ’86, LeCun ‘85, Parker ‘85]

• Convolutional layers [LeCun et al. ‘90]

• Recurrent Neural Networks/Long Short-Term
Memory (LSTM) [Hochreiter Schmidhuber ‘97]

(Early) Spring
• Back-propagation [Rumelhart et al. ’86, LeCun ‘85, Parker ‘85]

• Convolutional layers [LeCun et al. ‘90]

• Recurrent Neural Networks/Long Short-Term
Memory (LSTM) [Hochreiter Schmidhuber ‘97]

(Early) Spring
• Back-propagation [Rumelhart et al. ’86, LeCun ‘85, Parker ‘85]

• Convolutional layers [LeCun et al. ‘90]

• Recurrent Neural Networks/Long Short-Term
Memory (LSTM) [Hochreiter Schmidhuber ‘97]

(Early) Spring
• Back-propagation [Rumelhart et al. ’86, LeCun ‘85, Parker ‘85]

• Convolutional layers [LeCun et al. ‘90]

• Recurrent Neural Networks/Long Short-Term
Memory (LSTM) [Hochreiter Schmidhuber ‘97]

Summer
• 2006: First big success: speech recognition

• 2012: Breakthrough in computer vision: AlexNet [Krizhevsky et al. ‘12]

• 2015: Deep learning-based vision
models outperform humans

7

Summer
• 2006: First big success: speech recognition

• 2012: Breakthrough in computer vision: AlexNet [Krizhevsky et al. ‘12]

• 2015: Deep learning-based vision models outperform humans

Summer
• 2006: First big success: speech recognition

• 2012: Breakthrough in computer vision: AlexNet [Krizhevsky et al. ‘12]

• 2015: Deep learning-based vision models outperform humans

Summer
• 2006: First big success: speech recognition

• 2012: Breakthrough in computer vision: AlexNet [Krizhevsky et al. ‘12]

• 2015: Deep learning-based vision models outperform humans

What enabled this success?
• Better architectures (e.g., ReLUs) and regularization

techniques (e.g. Dropout)

• Sufficiently large datasets

• Enough computational power

What enabled this success?
• Better architectures (e.g., ReLUs) and regularization

techniques (e.g. Dropout)

• Sufficiently large datasets

• Enough computational power

What enabled this success?
• Better architectures (e.g., ReLUs) and regularization techniques

(e.g. Dropout)

• Sufficiently large datasets

• Enough computational power

8

What enabled this success?
• Better architectures (e.g., ReLUs) and regularization

techniques (e.g. Dropout)

• Sufficiently large datasets

• Enough computational power

What enabled this success?
• Better architectures (e.g., ReLUs) and regularization

techniques (e.g. Dropout)

• Sufficiently large datasets

• Enough computational power

Deep learning
• Modeling the world is incredibly complicated. We need high capacity

models.

• In the past, we didn’t have enough data to fit these models. But now
we do!

• We want a class of high capacity models that are easy to optimize.

9

Deep neural networks!

Y. LeCun, Y. Bengio, G. Hinton, "Deep Learning", Nature, Vol. 521, 28 May 2015

What is deep learning?
10

“Deep learning allows computational models
that are composed of multiple processing layers
to learn representations of data with multiple
levels of abstraction.”
− Yann LeCun, Yoshua Bengio and Geoff Hinton

Serre, 2014

CHAPTER 1. INTRODUCTION

Visible layer
(input pixels)

1st hidden layer
(edges)

2nd hidden layer
(corners and

contours)

3rd hidden layer
(object parts)

CAR PERSON ANIMAL Output
(object identity)

Figure 1.2: Illustration of a deep learning model. It is difficult for a computer to understand
the meaning of raw sensory input data, such as this image represented as a collection
of pixel values. The function mapping from a set of pixels to an object identity is very
complicated. Learning or evaluating this mapping seems insurmountable if tackled directly.
Deep learning resolves this difficulty by breaking the desired complicated mapping into a
series of nested simple mappings, each described by a different layer of the model. The
input is presented at the visible layer, so named because it contains the variables that
we are able to observe. Then a series of hidden layers extracts increasingly abstract
features from the image. These layers are called “hidden” because their values are not given
in the data; instead the model must determine which concepts are useful for explaining
the relationships in the observed data. The images here are visualizations of the kind
of feature represented by each hidden unit. Given the pixels, the first layer can easily
identify edges, by comparing the brightness of neighboring pixels. Given the first hidden
layer’s description of the edges, the second hidden layer can easily search for corners and
extended contours, which are recognizable as collections of edges. Given the second hidden
layer’s description of the image in terms of corners and contours, the third hidden layer
can detect entire parts of specific objects, by finding specific collections of contours and
corners. Finally, this description of the image in terms of the object parts it contains can
be used to recognize the objects present in the image. Images reproduced with permission
from Zeiler and Fergus (2014).

6

11

“clown fish”

Edges

Feature extractors

Texture

Colors

Segments

Parts

Classifier

Object recognition

12

“clown fish”

Edges

Feature extractors

Texture

Colors

Segments

Parts

Classifier

Learned

Object recognition

13

Learned

Object recognition

“clown fish”

14

“clown fish”

Learned

Neural net

Object recognition

15

“clown fish”

Learned

Deep neural net

Object recognition

16

“clown fish”

Loss

LearnedDeep learning

17

Gradient descent

18

x

Gradient descent

19

learning rate

One iteration of gradient descent:

Gradient descent

20

Input
representation

Output
representation

Computation in a neural net

21

Input
representation

Output
representation

Linear layer

Computation in a neural net

22

Input
representation

Output
representation

Linear layer

weights

bias

Computation in a neural net

23

Input
representation

Output
representation

Linear layer

weights

bias

parameters of the model

Computation in a neural net

24

Input
representation

Output
representation

Linear layer

Example: linear regression with a neural net

25

Input
representation

Output
representation

Pointwise
Non-linearity

“Perceptron”

Computation in a neural net

26

Example: linear classification with a perceptron

27

Example: linear classification with a perceptron

28

Example: linear classification with a perceptron

29

Example: linear classification with a perceptron

30

+
+

++

+

+
-
--

-

-

-

Example: linear classification with a perceptron

31

+
+

++

+

+
-
--

-

-

-

Example: linear classification with a perceptron

32

Input
representation

Output
representation

Computation in a neural net

33

Input
representation

Output
representation

Sigmoid

Computation in a neural net – nonlinearity

34

Sigmoid• Interpretation as firing rate of neuron

• Bounded between [0,1]

• Saturation for large +/- inputs

• Gradients go to zero

• Outputs centered at 0.5
(poor conditioning)

• Not used in practice

Computation in a neural net – nonlinearity

35

Tanh
• Bounded between [-1,+1]

• Saturation for large +/- inputs

• Gradients go to zero

• Outputs centered at 0

• Preferable to sigmoid

tanh(x) = 2 sigmoid(2x) −1

Computation in a neural net – nonlinearity

36

Rectified linear unit (ReLU)• Unbounded output (on positive side)

• Efficient to implement:

• Also seems to help convergence
(see 6x speedup vs tanh in [Krizhevsky et al.])

• Drawback: if strongly in negative region,
unit is dead forever (no gradient).

• Default choice: widely used in current models.

Computation in a neural net – nonlinearity

37

Leaky ReLU
• where α is small (e.g. 0.02)

• Efficient to implement:

• Also known as probabilistic ReLU (PReLU)

• Has non-zero gradients everywhere
(unlike ReLU)

• α can also be learned
(see Kaiming He et al. 2015).

Computation in a neural net – nonlinearity

38

Input
representation

Intermediate
representation

Output
representation

positive

negative

Stacking layers

39

Representational power
• 1 layer? Linear decision surface.
• 2+ layers? In theory, can represent any function.

Assuming non-trivial non-linearity.
– Bengio 2009,

http://www.iro.umontreal.ca/~bengioy/papers/ftml.pdf

– Bengio, Courville, Goodfellow book
http://www.deeplearningbook.org/contents/mlp.html

– Simple proof by M. Neilsen
http://neuralnetworksanddeeplearning.com/chap4.html

– D. Mackay book
http://www.inference.phy.cam.ac.uk/mackay/itprnn/ps/482.491.pdf

• But issue is efficiency: very wide two layers vs narrow deep
model? In practice, more layers helps.

40

http://www.iro.umontreal.ca/~bengioy/papers/ftml.pdf
http://www.deeplearningbook.org/contents/mlp.html
http://neuralnetworksanddeeplearning.com/chap4.html
http://www.inference.phy.cam.ac.uk/mackay/itprnn/ps/482.491.pdf

“clown fish”

Lin
ea

r

Non
-lin

ea
rit

y

…

Clas
sif

y

Deep supervised nets

41

Last layer

…

…

dolphin

cat

grizzly bear

angel fish

chameleon

iguana

elephant

clown fish

“clown fish”argmax

Classifier layer

42

“clown fish”

Loss error

Network output

…

…

dolphin

cat

grizzly bear

angel fish

chameleon

iguana

elephant

clown fish

Ground truth label

Loss function

43

“clown fish”

Loss small

Network output

…

…

dolphin

cat

grizzly bear

angel fish

chameleon

iguana

elephant

clown fish

Ground truth label

Loss function

44

“grizzly bear”

Loss large

Network output

…

…

dolphin

cat

grizzly bear

angel fish

chameleon

iguana

elephant

clown fish

Ground truth label

Loss function

45

Prediction

dolphin

cat

grizzly bear

angel fish

chameleon

iguana

elephant

clown fish

0 1

Ground truth label

dolphin

cat

grizzly bear

angel fish

chameleon

iguana

elephant

clown fish

…

0 1

…

46

Network output

…

dolphin

cat

grizzly bear

angel fish

chameleon

clown fish

Ground truth label

…

iguana

elephant

Probability of the observed
data under the model

47

“clown fish”

Loss

LearnedDeep learning

48

“grizzly bear”

LearnedDeep learning

Loss

49

“chameleon”

LearnedDeep learning

Loss

50

Loss

Loss

Loss

…

Batch (parallel) processing

51

…

Tensors

52

"Tensor flow"

53

• Deep nets have millions of parameters!

• On many datasets, it is easy to overfit — we may have more free
parameters than data points to constrain them.

• How can we regularize to prevent the network from overfitting?
1. Fewer neurons, fewer layers
2. Weight decay
3. Dropout
4. Normalization layers
5. …

Regularizing deep nets

54

Recall: regularized least squares

Only use polynomial terms if you really
need them! Most terms should be zero

ridge regression, a.k.a., Tikhonov regularization

Probabilistic interpretation: R is a Gaussian prior over values of the parameters.

55

weight decay

“We prefer to keep weights small.”

Recall: regularized least squares

56

Input
representation

Intermediate
representation

Output
representation

Dropout

57

Randomly zero out
hidden units.

Input
representation

Intermediate
representation

Output
representation

Dropout

58

Input
representation

Intermediate
representation

Output
representation

Dropout

59

Input
representation

Intermediate
representation

Output
representation

Dropout

60

Prevents network from
relying too much on
spurious correlations
between different
hidden units.

Can be understood as
averaging over an
exponential ensemble
of subnetworks. This
averaging smooths the
function, thereby
reducing the effective
capacity of the network.

x

Gradient descent

61

learning rate

One iteration of gradient descent:

Optimization

• What’s the knowledge we have about J?

– We can evaluate

– We can evaluate and

– We can evaluate , , and

Black box optimization

First order optimization

Gradient

Second order optimization

Hessian

Params

62

Loss

Loss

Loss

…

Batch (parallel) processing

63

Stochastic gradient descent (SGD)
• Want to minimize overall loss function J, which is sum of individual losses over each

example.

• In Stochastic gradient descent, compute gradient on sub-set (batch) of data.

If batchsize=1 then θ is updated after each example.

If batchsize=N (full set) then this is standard gradient descent.

• Gradient direction is noisy, relative to average over all examples (standard gradient
descent).

• Advantages

– Faster: approximate total gradient with small sample

– Implicit regularizer

• Disadvantages

– High variance, unstable updates

64

Momentum
• Basic idea: like a ball rolling down a hill, we should build up

speed so as to make faster progress when “on a roll”

• Can dampen oscillations in SGD updates

• Common in popular variants of SGD

– Nesterov’s method

– RMSProp

– Adam

65

[https://distill.pub/2017/momentum/]
66

https://distill.pub/2017/momentum/

[http://ruder.io/optimizing-gradient-descent/]

Comparison of gradient descent variants

67

http://ruder.io/optimizing-gradient-descent/

…
…

(output)

(input)

Forward pass
• Consider model with layers. Layer has

vector of weights

• Forward pass: takes input and
passes it through each layer :

• Output of layer is .

• Network output (top layer) is .

68

• Loss function compares to .
• Overall energy is the sum of the cost over all

training examples:

…
…

(output)

(input)

• Consider model with layers. Layer has
vector of weights

• Forward pass: takes input and
passes it through each layer :

• Output of layer is .

• Network output (top layer) is .

Forward pass

69

Gradient descent
• We need to compute gradients of the cost with respect to model

parameters .

• By design, each layer is differentiable with respect to its parameters
and input.

70

Computing gradients
• To compute the gradients, we could start by writing

the full energy J as a function of the network
parameters.

And then compute the partial derivatives… instead, we
can use the chain rule to derive a compact algorithm:
backpropagation

…
…

71

…
…

(output)

(input)

Backpropagation
• Forward pass: for each training example,

compute the outputs for all layers:

• Backwards pass: compute loss derivatives
iteratively from top to bottom:

• Compute gradients w.r.t. weights, and
update weights:

…
…

72

73

Convolutional Neural
Networks

Convolutional Neural Networks
LeCun et al. 1989

Neural network with specialized connectivity

Tailored to processing natural signals with a grid topology (e.g., images).

74

“Fish”Classifier

Image classification

image x label y

75

Photo credit: Fredo Durand
76

77

“Bird”Classifier

78

“Bird”Classifier Bird

79

“Sky”Classifier Sky

Bird

80

Sky

Bird

Sky

Sky

SkySky

Sky

Sky

Sky

SkySky

Sky

Sky

Sky

SkySky

Bird

Sky

Sky

Sky

Bird

Sky

Sky

Sky

Sky

Sky

Sky

Sky

Sky

Sky

Sky

Sky

Sky

Sky

BirdBirdBird

SkySkySky

81

82

83

“Sky”

“Sky”

“Bird”

“Bird”

What's the object class of the center pixel?

84

“Sky”

“Sky”

“Bird”

“Bird”

What's the object class of the center pixel?

Training data

…

“Bird”

“Bird”

“Sky”

85

This problem is called semantic segmentation
in computer vision

(Colors represent one-hot codes)

86

“Sky”

“Sky”

“Bird”

“Bird”

What’s the object class of the center pixel?

Translation invariance: process
each patch in the same way.

An equivariant mapping:

87

W computes a weighted sum of all pixels in the patch

W is a convolutional kernel applied to the full image!

88

filter

Convolution

89

Fully-connected (fc) layer

Fully-connected network

90

Often, we assume output is a
local function of input.

If we use the same weights
(weight sharing) to compute
each local function, we get a
convolutional neural network.

Locally connected network

91

Conv layer

Often, we assume output is a
local function of input.

If we use the same weights
(weight sharing) to compute
each local function, we get a
convolutional neural network.

Convolutional neural network

92

Often, we assume output is a
local function of input.

If we use the same weights
(weight sharing) to compute
each local function, we get a
convolutional neural network.

Conv layer

Weight sharing

93

Toeplitz matrix

e.g., pixel image

• Constrained linear layer (infinitely strong regularization)

• Fewer parameters —> easier to learn, less overfitting

94

95

96

Conv layers can be applied to arbitrarily-sized inputs

97

Five views on convolutional layers
1. Equivariant with translation (stationarity)

2. Patch processing (Markov assumption)

3. Image filter

4. Parameter sharing

5. A way to process variable-sized tensors

98

Conv layer

Multiple channels

99

Conv layer

Multiple channels

100

Conv layer

… ……

Multiple channels

101

[Figure from Andrea Vedaldi]

Input features A bank of 2 filters
2-dimensional
output features

102

"Tensor flow"

103

Filter Pool

Max pooling

Pooling

104

Filter Pool

Max pooling

Mean pooling

Pooling

105

Pooling – Why?
Pooling across spatial locations achieves
stability w.r.t. small translations:

106

large response
regardless of exact
position of edge

Pooling – Why?
Pooling across spatial locations achieves
stability w.r.t. small translations:

107

Pooling across spatial locations achieves
stability w.r.t. small translations:

Pooling – Why?

108

[“Unreasonable effectiveness of Deep Features as a Perceptual Metric”, Zhang et al. 2018]

CNNs are stable w.r.t. diffeomorphisms

109

Pooling across feature channels (filter outputs)
can achieve other kinds of invariances:

large
response for

any edge,
regardless of
its orientation

[Derived from slide by Andrea Vedaldi]

Pooling – Why?

110

“clown fish”

Fil
te

r
ReL

U
Poo

l

…

Clas
sif

y

Computation in a neural net

111

Filter Pool and downsample

Downsampling

112

Filter Downsample

Downsampling

113

Conv layer

Stride 2 Strided convolutions combine
convolution and downsampling
into a single operation.

Strided convolution

114

“clown fish”

Fil
te

r
ReL

U

Dow
ns

am
ple

…

Clas
sif

y

Computation in a neural net

115

Receptive fields

116

3x1 Filter
Pool and

downsample by 2

RF = RF + floor(3/2)*2

kernel size

RF = RF*2

scale factor

Pool and
downsample by 2

RF = RF*2

Bird

Sky

Sky

Sky

Receptive fields

117

[http://fomoro.com/tools/receptive-fields/index.html]
118

http://fomoro.com/tools/receptive-fields/index.html

[http://6.869.csail.mit.edu/fa18/notes/simoncelli2005.pdf] 119

Why CNNs?

http://6.869.csail.mit.edu/fa18/notes/simoncelli2005.pdf

Statistical dependences between pixels decay as a power law of distance
between the pixels.

It is therefore often sufficient to model local dependences only. → Convolution

More generally, we should allocate parameters that model dependences in
proportion to the strength of those dependences. → Multiscale, hierarchical
representations

[For more discussion, see “Why does Deep and Cheap Learning Work So Well?”, Lin et al. 2017]

Why CNNs?

120

Capturing long-range dependences:

Why CNNs?

121

Deep Neural Networks for Visual
Recognition

2012: AlexNet
5 conv. layers

Error: 15.3%

2014: VGG
16 conv. layers

Error: 8.5%

2015: GoogLeNet
22 conv. layers

Error: 7.8%

2016: ResNet
>100 conv. layers

Error: 4.4%

122

2012: AlexNet
5 conv. layers

Error: 15.3%

123

2014: VGG
16 conv.
layers

Small convolutional kernels: 3x3
ReLu non-linearities
>100 million parameters.

https://arxiv.org/pdf/1409.1556.pdf

Softmax

Error: 8.5% 124

Chaining convolutions
3x3

25 coefficients, but only
18 degrees of freedom

3x3

=

5x5

=

9 coefficients, but only
6 degrees of freedom.
Only separable filters… would this be enough? 125

a 0 b 0 c

0 0 0 0 0

d 0 e 0 f

0 0 0 0 0

g 0 h 0 i

=

3x3
5x5 7x7

49 coefficients
18 degrees of freedom

25 coefficients
9 degrees of freedom

[https://arxiv.org/pdf/1511.07122.pdf]

Dilated convolutions

126

https://arxiv.org/pdf/1511.07122.pdf

[https://arxiv.org/pdf/1511.07122.pdf]
127

https://arxiv.org/pdf/1511.07122.pdf

2016: ResNet
>100 conv. layers

Error: 4.4%

https://arxiv.org/pdf/1512.03385.pdf

128

W x

If output has a different size:If output has same size as input:

129

Residual Learning

130

• The loss surface of a 56-layer net using the CIFAR-10 dataset, both without (left) and
with (right) residual connections.

Hao Li et al., "Visualizing the Loss Landscape of Neural Nets". ICLR 2018

[Derived from slide by Marc’Aurelio Ranzato]

• Check gradients numerically by finite differences
• Visualize hidden activations — should be uncorrelated and high variance

Good training: hidden units are sparse across samples and across features.

Other good things to know

131

[Derived from slide by Marc’Aurelio Ranzato]

• Check gradients numerically by finite differences
• Visualize hidden activations — should be uncorrelated and high variance

Bad training: many hidden units ignore the input and/or exhibit strong correlations.

Other good things to know

132

[Derived from slide by Marc’Aurelio Ranzato]

• Check gradients numerically by finite differences
• Visualize hidden activations — should be uncorrelated and high variance
• Visualize filters

Good training: learned filters exhibit structure and are uncorrelated.

Other good things to know

133

ReLUNorm

Normalization layers

134

Keep track of mean and variance of a
unit (or a population of units) over time.

Standardize unit activations by
subtracting mean and dividing by
variance.

Squashes units into a standard
range, avoiding overflow.

Also achieves invariance to mean and
variance of the training signal.

Both these properties reduce the
effective capacity of the model, i.e.
regularize the model.

Normalization layers

135

[Figure from Wu & He, arXiv 2018]

Normalize w.r.t. a single hidden unit’s pattern of activation over training
examples (a batch of examples).

Normalization layers

136

[Figure from Wu & He, arXiv 2018]

Normalize w.r.t. the mean and variance of the activations of all the hidden units
(neurons) on this layer (c).

Normalization layers

137

[Figure from Wu & He, arXiv 2018]

Normalize w.r.t. the mean and variance of the activations of all the hidden units
(neurons) on this layer (c) that process this particular location (h,w) in the image.

Normalization layers

138

[Figure from Wu & He, arXiv 2018]

Might as well…

Normalization layers

139

Normalization layers

140[https://theaisummer.com/normalization]

Batch Normalization (2015) Layer Normalization (2016)

Group Normalization (2018)

Instance Normalization (2016)

Weight Standardization (2019)

https://theaisummer.com/normalization

No normalization layers

141

Next Lecture:
Sequential Processing with RNNs

142

