Loss Landscape created with data from the training process of a convolutional network, Javier Ideami

COM P547

DEEP UNSUP
LEARNING

lecture #2 — Neura etworks Basics and
Spatial Processing with CNNs

SED

KOC Aykut Erdem // Kog¢ University // Spring 2022
UNIVERSITY

Photo: Detail from SoflasGrespo's Tribute to Manolo Part 2

Previously on COMP547 | .

* course logistics
e course topics

* what Is deep unsupervised learning

Frame: Professor Farnsworth (Futurama)

Good news, everyone!

* Half of the class has
completed the survey so far!

* It will be up until everyone @ a)
completes

* My office hour will

be on Tuesdays
btw 11:00-12:00

(will skip next week
n

Lecture overview

» deep learning

e computation in a neural net

e optimization

* backpropagation

e training tricks

» convolutional neural networks

* Disclaimer: Much of the material and slides for this lecture were borrowed from

—Costis Daskalakis and Aleksander Madry's MIT 6.883 class
—Bill Freeman, Antonio Torralba and Phillip Isola’s MIT 6.869 class

Humble beginnings N (5+3am)

PRINCIPLES OF
NEURODYNAM

* Perceptron [Rosenblatt ‘58]

input layer

» Criticism of Perceptrons (XOR affair) [Minsky Papert ‘69]
— Effectively causes a "deep learning winter’

(Early) Spring | g

. Back—propagatiOn [Rumelhart et al. '86, LeCun ‘85, Parker '85]

» Recurrent Neural Networks/Long Short-Term
Memory (LSTM) [Hochreiter Schmidhuber '97]

'] Layer2

b 199 ¢
[—b_A_—] = A > A > A > A ’l’\.l\—/' £ # e
Yo VUIN==7 ==

& ® & & - &

Summer

« 2006: First big success: speech recognition

» 2012: Breakthrough in computer vision: AlexNet [Krizhevsky et al. "12]

48 ~

22222

» 2015: Deep learning-based vision
models outperform humans

30%
25%

S 20%

Human Performa

0%
NEC-UIUC XRCE AlexNet ZFNet GooglLeNet ResNet SENet

(2010) (2011) (2012) (2013) (2014) (2015) (2017)

What enabled this success?

» Better architectures (e.g., RelLUs) and regularization technigues
(e.g. Dropout)

IMAGE

« Sufficiently large datasets

Deep learning

* Modeling the world Is incredibly complicated. \WWe need high capacity
models.

 |n the past, we didn’t have enough data to fit these models. But now
we do!

* \We want a class of high capacity models that are easy to optimize.

Deep neural networks!

————
-

iR — .|
What is deep learnin

- <)
— & x> ?

-~

levels of abstraction.”
. Yag‘n LeCun, Yoshua Bengio and Geoff Hinton

Y. LeCun, Y. Bengio, G. Hinton, "Deep Learning’, Nature, Vol. 521, 28 May 2015

Classification
units

PIT/AIT

V4 /PIT

V1/V2

e 4 LN DIAY
Nogt Wi My w0

-

000 DR

Py
X
Z

g .
- b B
e - .
Fa :]
- 5/ 7 . o ¢
A b o)
~'a E g
- y
- v
=

Serre, 2014

Output
(object identity)

3rd hidden layer
(object parts)

2nd hidden layer
(corners and
contours)

1st hidden layer
(edges)

Visible layer
(input pixels)

11

Object recognition

Edges

Texture

Colors

Feature extractors

NAK7

Segments

Parts

\ |
/ “clown fish”

§ fol@) = 3 Oegela)

Classifier

12

Object recognition

Edges

Texture

Colors

Feature extractors

NAK7

L earned

Segments

“clown fish”

Parts

§ fol@) = 3 Oegela)

Classifier

13

Object recognition

L earned

“clown fish”

14

Object recognition

Neural net

L earned

“clown fish”

15

Object recognition

Deep neural net

L earned

“clown fish”

16

Deep learning

Y:
“clown fish”

X

L earned

. oss

L(fo(x:),¥:)

17

Gradient descent

0* = argmin
0

Z[:(fO(xi)aYi)

~— —
T

J(0)

18

Gradient descent

J(6)

9* = arg min J(6)
0

19

Gradient descent

N
o* — arg min > L(fo(xi), i)
1=1

~— —
e

J(0)

One iteration of gradient descent:

0J(0)
L P

9t—+—1 — Ht —

 J
learning rate

20

Computation in a neural net

Input
representation

Output
representation

21

Computation in a neural net

Linear layer

Input Output
representation representation

22

Computation in a neural net

Linear layer

Input Output
representation representation

/ weights

Yj = sz‘jwi + b;

k bias

23

Computation in a neural net

Linear layer
Input Output |
representation representation / weights

®
‘ — T . .
®

" o '\ bias
®
‘ ——
. 6 ={W,b}

1C k parameters of the model

24

Example: linear regression with a neural net

Linear layer

Input Output
representation representation

w0y

b fwp(x) = xTw 4+ b

(-

Computation in a neural net

“Perceptron”

Input Output
representation representation

[—

S
ONOl0]0]0/0/0/0]0

@

U

Q
~ N
<
SN’

Non-linearity

9(y)

|

0,

if y>0
otherwise

y 9(y) 02

0.0
b \ Pointwise

26

Example: linear classification with a perceptron

Yy

)

y=x'w+b

80

60

40

20

27

Example: linear classification with a perceptron

)

80

60

40

20

Yy

15

10

5

0

-5

-10

y=x'w+b

() = 1, if y>0
NI = 0, otherwise

28

Example: linear classification with a perceptron

)

80

60

40

20

Yy

15

10

5

0

-5

-10

y=x'w+b

() = 1, if y>0
NI = 0, otherwise

29

Example

: linear classification with a perceptron
9(y)

y=x'w-+b

() = 1, if y>0
NI = 0, otherwise

30

Example: linear classification with a perceptron

)

80

L1, i g>o0
. g(y)={

0, otherwise

40

20 w*,b* = argmin £(g(9), yi)

w,b

31

Example: linear classification with a perceptron

)

g=x'w+b

() = 1, if >0
A 0, otherwise

80
60
40

20 w*,b* = argmin L(g(9), y:)

w,b

32

Computation in a neural net

1, if y>0
9(y) = 0

Input Output otherwise
representation representation el
@
@ 0.8
: 0.6
X|& 9(Y) ..
- 0.2
@
U 0.0-
-4 =2 0 2 4
10O

Computation in a neural net — nonlinearity

Sigmoid
1
Input Output 9(y) = 14+ e Y
representation representation .
~ .
(U 0.8-
: 0.6
x| & 9(Y) ..
o 0.21
o
> oo -4 =2 0 2 4
1C

34

Computation in a neural net — nonlinearity

» Interpretation as firing rate of neuron Sigmoid

1
 Bounded between [0,1] 9(y) = 1+e¥

1.0

 Saturation for large +/- inputs i

» Gradients go to zero e

» Qutputs centered at 0.5 0.2
(poor conditioning)

0.0

* Not used In practice Y

35

Computation in a neural net — nonlinearity

Tanh
* Bounded between [-1,+1] oY — oY
| | 9W) =

« Saturation for large +/- inputs

1.0+
» Gradients go to zero -
 Qutputs centered at 0 g(y) 0.01

_0.54
* Preferable to sigmoid

= -4 =2 0 2 4

tanh(x) = 2 sigmoid(2x) —1

36

Computation in a neural net — nonlinearity

* Unbounded output (on positive side) Rectified linear unit (ReLU)
e . .99 _ JO, if y<O = max(0
Efficient to implement: By~ {1’ £ >0 g(y) (0,9)

» Also seems to help convergence
(see 6x speedup vs tanh in [Krizhevsky et al.])

* Drawback: if strongly in negative region, g(y) 2-
unit i1s dead forever (no gradient). -

» Default choice: widely used In current models. 4 2 0 2 4

37

Computation in a neural net — nonlinearity

| Leaky RelLU

* where a i1s small (e.g. 0.02) max(0,y), if y>0

. . 09 J—a, if y<O 9ly) = {amin(O,y), if y<O
 Efficient to implement: oy 1L if y>0 N
 Also known as probabilistic ReLU (PRelLU) -
3,
« Has non-zero gradients everywhere g<y) 5]

(unlike RelLU)

e o can also be learned

(see Kaiming He et al. 2015). 2 -2 0 2 2

38

Stacking layers

Input Intermediate
representation representation

Output
representation

negative

39

Representational power

* 1 layer? Linear decision surface.

« 2+ layers? In theory, can represent any function.

Assuming non-trivial non-linearity.
— Bengio 2009,

http://www.iro.umontreal.ca/~bengioy/papers/ftiml.pdf

— Bengio, Courville, Goodfellow book
http://www.deeplearningbook.org/contents/mlp.html

— Simple proof by M. Neilsen

http://neuralnetworksanddeeplearning.com/chap4.html

— D. Mackay book
http://www.inference.phy.cam.ac.uk/mackay/itprnn/ps/482.491 .pdf

* But issue is efficiency: very wide two layers vs narrow deep
model? In practice, more layers helps.

40

http://www.iro.umontreal.ca/~bengioy/papers/ftml.pdf
http://www.deeplearningbook.org/contents/mlp.html
http://neuralnetworksanddeeplearning.com/chap4.html
http://www.inference.phy.cam.ac.uk/mackay/itprnn/ps/482.491.pdf

Deep supervised nets

&
@’& \\°®
QIR
VLS

f(x) = fr(... f2(f1(x)))

\:;u . n
—"clown fish

41

Classifier layer

Last layer

W

©oJel JoI Yelele)

dolphin

cat

grizzly bear
angel fish
chameleon
clown fish
iguana

elephant

argmax

P

“clown fish”

42

Loss function

Network output

dolphin
cat
grizzly bear

angel fish

W

©oJel JoI Yelele)

chameleon
clown fish
iguana

elephant

Ground truth label

“clown fish”

/ -oss = error

43

Loss function

Network output

dolphin
cat
grizzly bear

angel fish

W

©oJel JoI Yelele)

chameleon
clown fish
iguana

elephant

Ground truth label

“clown fish”

/ | oss =» small

44

Loss function

Network output

dolphin
cat
grizzly bear

angel fish

W

©oJel JoI Yelele)

chameleon
clown fish
iguana

elephant

Ground truth label

“grizzly bear”

/ Loss =» large

45

Prediction y
fg . X - RE
dolphin ||

cat ||

grizzly bear ||}
angel fish (i}
_

chameleon
clown fish || Gz
iguana |l

1

elephant

©

Ground truth label

dolphin

cat

grizzly bear
angel fish

chameleon

y

clown fish |

iguana

elephant

46

Network output

Ground truth label

#

©OJe] JoI JoleIoln:

dolphin
cat
grizzly bear
angel fish
chameleon
clown fish
iguana

elephant

oJeJelelel Jololn

Probability of the observed
data under the model

K
H(y,9) = —) yrlog ik
k=1

47

Deep learning
y1

“clown fish”

X1

L earned

Loss

‘C(fH(xl)a)’l)

48

Deep learning

“grizzly bear”

L earned

Loss| L(fs(x2),¥2)

49

Deep learning
Yi
“chameleon”

L earned

Loss| L(fo(x:),¥:)

50

Batch (parallel) processing

>

Loss

Tensors

oJ0] 1 10l0)0]0,
00000000
00000000
olele] 1¢] OO,
O000O0O0OO0

N batch

Clojel 10l ICICK

0

h(l) 6 RNbatch X C(l)

"Tensor flow"

IS

e

E A

w TLUL L L \R
D A
Ee A

N, AVAVAVAVAN

< /S /S S S S
e /S S S S
5 /77777
Z, AN NNED
B4 TIITTT 5
)e)M X) H

~

e

//////m
T LU
T ULV \Z

;. /L L L LS
M X H

h(]‘) s RNbatchXH(l) XW(]') XC(I)

53

Regularizing deep nets

* Deep nets have millions of parameters!

 On many datasets, it is easy to overfit — we may have more free
parameters than data points to constrain them.

 How can we regularize to prevent the network from overfitting?
1. Fewer neurons, fewer layers
2. Weight decay

3. Dropout
4. Normalization layers

b.

Recall: regularized least squares

R(H) — \ ”0”3 g (Only use polynomial terms if you really

need them! Most terms should be zero

ridge regression, a.k.a., Tikhonov regularization

Probabilistic interpretation: R is a Gaussian prior over values of the parameters.

55

Recall: regularized least squares

N
0" = arggminz./.l(fg(xi), yi) + R(0)
i—1

R(W) = \||W||2 === weight decay

“We prefer to keep weights small.”

56

Dropout

Input
representation

Intermediate
representation

Output
representation

Randomly zero out

., bF)} hidden units.

57

Dropout

Input
representation

Intermediate
representation

Output
representation

58

Dropout

Input
representation

Intermediate
representation

Output
representation

59

Dropout

Input Intermediate Output

representation representation representation Prevents network from
relying too much on

spurious correlations
between different
hidden units.

Can be understood as
averaging over an
exponential ensemble
of subnetworks. This
averaging smooths the
function, thereby
reducing the effective
capacity of the network.

60

Gradient descent

J(0)

0* = arg min J(0)
0

N
_ 0* — argominz E(fg(xi),yi)
1=1

— —

J ()
One iteration of gradient descent:
8.J(6)
0t+1 — et .
100 |,

L}
[]
n

)
.
.
\J

*
learning rate

61

Optimization

Params
H —> T —> J(0) §* = arg min J(0)
. VoJ(6) 0
Hy(J(0))

* What's the knowledge we have about J?

— We can evaluate J(6) — Gradient <= Black box optimization
— We can evaluate J(#)and VyJ(0) <— First order optimization
— We can evaluate J(6) VyJ(0), and Hy(J(0)) <= Second order optimization

L Hessian

62

Batch (parallel) processing

>

Loss

Stochastic gradient descent (SGD)

 \Want to minimize overall loss function J, which is sum of individual losses over each
example.

* |n Stochastic gradient descent, compute gradient on sub-set (batch) of data.
If batchsize=1 then 0 is updated after each example.
It batchsize=N (full set) then this is standard gradient descent.

« Gradient direction is noisy, relative to average over all examples (standard gradient
descent).

 Advantages
— Faster: approximate total gradient with small sample
— Implicit regularizer

 Disadvantages
— High variance, unstable updates

64

Momentum

» Basic idea: like a ball rolling down a hill, we should build up
speed so as to make faster progress when “on a roll”

» Can dampen oscillations in SGD updates
« Common In popular variants of SGD
— Nesterov's method
— RMSProp
— Adam

65

Why Momentum Really Works

Starting Point

Step-size a = 0.02 Momentum 8 = 0.99
@ @

GABRIEL GOH
UC Davis

April. 4
2017

We often think of Momentum as a means of dampening oscillations

and speeding up the iterations, leading to faster convergence. But it
has other interesting behavior. It allows a larger range of step-sizes

to be used, and creates its own oscillations. What is going on?

Citation:
Goh, 2017

[https://distill.pub/2017/momentum/]

66

https://distill.pub/2017/momentum/

Comparison of gradient descent variants

- Momentum F
~—— NAG
— Adagrad |

Adadelta

[http://ruder.io/optimizing-gradient-descent/]

http://ruder.io/optimizing-gradient-descent/

Forward pass

« Consider model with L layers. Layer ! has
vector of weights W

» Forward pass: takes input x=1 and
passes it through each layer f®:

 Qutput of layer [is x®.

» Network output (top layer) is x&).

(output) x (L)

(Input) x(0)

68

Forward pass

« Consider model with L layers. Layer ! has
vector of weights W

» Forward pass: takes input x=1 and
passes it through each layer f®:

 Qutput of layer [is x®.

» Network output (top layer) is x&).

. Loss function £ compares x¥) to y.
* Qverall energy is the sum of the cost over all

training examples: N
J = Z E(ng),yi)
=1

(Input) x(0)

69

Gradient descent

* \We need to compute gradients of the cost with respect to model
parameters W)

* By design, each layer is differentiable with respect to its parameters
and input.

70

Computing gradients

« To compute the gradients, we could start by writing
the full energy J as a function of the network

parameters. ;

i
L(xD),y)

J(W) Z£ FOLL @ f(l)(x(O) W) W®) WD)y, ‘X<L)
f x(C—1)
A x®
)

And then compute the partial derivatives... instead, we
can use the chain rule to derive a compact algorithm:
backpropagation

NG

<)

Backpropagation

« Forward pass: for each training example,
compute the outputs for all layers:

x(O) = $0)(x(=1) W)

 Backwards pass: compute loss derivatives
iteratively from top to bottom:

oL oL 9f D (xt-1, W)

oxi-1 — 9xO) x(—1)

« Compute gradients w.r.t. weights, and
update weights:

oL oL 9fV(xt-H W)
WO — ax(® AW

72

Convolutional Neural
Networks

Convolutional Neural Networks

LeCun et al. 1989

Neural network with specialized connectivity

Tallored to processing natural signals with a grid topology (e.g., Images).

C3:f. maps 16@10x10

C1: feature maps S4:f. maps 16@5x5
INPUT
3032 6@28x28

6@14x14

|
| FuIIconrl.ection | Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

74

Image classification

Image X

Classifier

— [Fisn’]

label y

75

77

= o Classifier B 2

3 Sl Classifier S S
= R

Bird

= o Classifier B 2

81

A

84

Training data

X

-

Yy

“Bird”

“Bird”

11 Sky 124

What's the object class of the center pixel?

A

85

(Colors represent one-hot codes)

This problem is called semantic segmentation
IN computer vision

86

An eqguivariant mapping:
f(translate(x)) = translate(f(x))

o 41 ,‘\4 ,‘\4‘ ’*
)) w
S

Translation invariance: process
each patch in the same way.

87

ulV

W computes a weighted sum of all pixels in the patch

0w =0

O

W is a convolutional kernel applied to the full image!

88

Convolution

Fully-connected network

Fully-connected (fc) layer

90

Locally connected network

Often, we assume output is a
local function of input.

1T we use the same welights

(weight sharing) to compute
each local function, we get a
convolutional neural network.

91

Convolutional neural network

Conv layer

|
|
—

ejelelel o
d

g@gmﬁg

Often, we assume output is a
local function of input.

1T we use the same welights

(weight sharing) to compute
each local function, we get a
convolutional neural network.

92

Weight sharing

Conv layer

TLNKLLLT

Often, we assume output is a
local function of input.

1T we use the same welights

(weight sharing) to compute
each local function, we get a
convolutional neural network.

93

Toeplitz matrix

;

g
h

\ i

b

>Q e

C

b
a
f
g

d

~~ Q o0

(1) (1)
e.qg., pixel image
® Constrained linear layer (infinitely strong regularization)

® Fewer parameters —> easier to learn, less overfitting

94

(+1)

N0

95

(+1)

(D

96

Conv layers can be applied to arbitrarily-sized inputs

97

Five views on convolutional layers

1.

Equivariant with translation (stationarity)

Patch processing (Markov assumption)

Image filter

Parameter sharing

A way to process variable-sized tensors

f(translate(x)) = translate(f(x))
?I ?I
o e l/
Ve if
PR

98

Multiple channels

Conv layer

4=

=

RNXC_)]RNXI

00000
00000
0000

00000000

S
—
)
~—
S
~
ok
~—

99

Multiple channels

Conv layer

00000

e

00000000

OC000e
00000
C000

P
—
o
~—

P
A~
(-
e’

RNXC(O) —)‘RNXC(I)

100

Multiple channels

Conv layer

]RNXC(I) N RNXC(l+1)

00000000
00000000
\{

v
00000000
00000000

S~

< (D)

101

_ 2-dimensional
Input features A bank of 2 filters output features

F O — F1)3 »O

RHXWXC(” s RHXWXC(l+1)
[Figure from Andrea Vedaldi]

102

"Tensor flow"

VAV AV AAAN 4
(r+M X (4 H

x(l+1) 6 RNbatchXH(l+1) X W(l+1) xC(l+1)

;. /L L L LS
oM X (pH

x(l) i RNbatchXH(l) XW(l) Xc(l)

103

Pooling

Filter Pool

Max pooling

Zr = max :
SeN) Q(yy)

2 00000000

104

Pooling

Filter

Pool

Max pooling

zr = max ¢(y;)
" JEN(F) (s

105

Pooling —= Why?

Pooling across spatial locations achieves
stability w.r.t. small translations:

106

Pooling — Why?

Pooling across spatial locations achieves
stability w.r.t. small translations:

large response
regardless of exact
position of edge

107

Pooling —= Why?

Pooling across spatial locations achieves
stability w.r.t. small translations:

108

CNNs are stable w.r.t. diffeomorphisms

[“Unreasonable effectiveness of Deep Features as a Perceptual Metric”, Zhang et al. 2018]
109

Pooling —= Why?

Pooling across feature channels (filter outputs)
can achieve other kinds of invariances:

large
response for
any edge,
regardless of
Its orientation

[Derived from slide by Andrea Vedaldi]

110

Computation in a neural net

f(x) = fo(... f2(f1(x)))

\.:u . 14
—"clown fish

111

Downsampling

Filter

Pool and downsample

N OOO!OOOO

112

Downsampling

Filter

(1) (1) (1)
RH XW\"’ xC SR

Downsample

O

O
O
0O
Z

O+ (1) o o (+1)

113

Strided convolution

Conv layer
o—wE=——0-
O o Stride 2
o @O
X0
O OO
O
O

y 9(y)

Strided convolutions combine
convolution and downsampling
INto a single operation.

114

Computation in a neural net

f(x) = fo(... f2(f1(x)))

\iu . 14
—"clown fish

115

Receptive fields

Receptive fields

Pool and . Pool and
8 downsample by 2 3x1 Filter downsample by 2
O
O
O O O
O O O
o —@— O O
o —————0- —Q
y | & — & O
| @ O
O O

RF =RF*2 RF = RF + floor(3/2)*2 RF = RF*2

k kernel size k

OO

scale factor

117

Effective Receptive Field
Contributing input units to a convolutional filter. @jimmfleming // fomoro.com

Input Features -
7/2Convotution (I

Each filter sees 7 input units

Convolutional Features _
2 // 2 Max Pool I

Each filter sees 9 input units

Max Pool Features P -

3 // 1 Convolution -
Each filter sees 17 input units
— - : Features .

Conv1D Filter .

- - - Padding or Stride | :

Convolutional Features | - """ Receptive Field |

[http://fomoro.com/tools/receptive-fields/index.html]

118

http://fomoro.com/tools/receptive-fields/index.html

simoanenlli0ba-preprint pat

To appear in: Handbook of Video and Image Processing, 2nd edition
y S od. Alan Bovik, @Academic Press, 2005.

4.7 Statistical Modeling of Photographic Images

Eero P. Simoncelli
New York University

January 18, 2005

The set of all possible visual images is huge, but not all of the @
these are equally likely to be e: ntered by an imaging tai
device such as the eye. Know if

n- How does one build and test a probability model for im-

ssing ages? Many approaches have been developed, but in this
speaking, when chapter, we'll describe an empirically-driven methodol-
cen corrupted by _ogy, based on the study of discretized (pixelated) im-

AX= Ax=16 1
250 250 250 -
O
Q

200 200 200 ® 0.95
(@]
150 150 150 L
[(H)
N

100 100 100 g 0.9
50 50 50 z

0.85

ol 0 0 0 100 200 300
0 100 200 0 100 200 0 100 200 A x (pixels)

Fig. 1. (a) Scatterplots of pairs of pixels at three different spatial displacements, averaged over five examples images.
(b) Autocorrelation function. Photographs are of New York City street scenes, taken with a Canon 10D digital camera,
and processed in RAW linear sensor mode (producing pixel intensities are in roughly proportional to light intensity).
Correlations were computed on the logs of these sensor intensity values [41].

[http://6.869.csail.mit.edu/fal8/notes/simoncelli2005.pdf]

119

http://6.869.csail.mit.edu/fa18/notes/simoncelli2005.pdf

Why CNNs?

Statistical dependences between pixels decay as a power law of distance
between the pixels.

It is therefore often sufficient to model local dependences only. — Convolution

More generally, we should allocate parameters that model dependences In
proportion to the strength of those dependences. — Multiscale, hierarchical
representations

[For more discussion, see “Why does Deep and Cheap Learning Work So Well?"”, Lin et al. 2017]

120

Why CNNs?

Capturing long-range dependences:

121

Deep Neural Networks for Visual
Recognition

2012: AlexNet 2014: VGG 2015: GoogleNet
b conv. layers 16 conv. layers

3x3 conv, 64

3x3 conv, 64, pool/2

2016: ResNet
>100 conv. layers

11x11 conv, 96, /4, pool/2

[5%5 conv, 256, pool/2_]

[3x3 conv, 384 |

3x3 conv, 128, pool/2

[3x3 conv, 384 |

| 3x3 conv, 256, pool/2]

[fc, 4096 |

[fc, 4096 |

v
fc, 1000

Error: 15.3%

3x3 cony, 512, pool/2

3x3 conv, 512
3x3 conv, 512
3x3 conv, 512, pool/2

fc, 4096

Error: 7.8%

Error: 4.4%

122

2012: AlexNet
5 conv. layers

11x11 conv, 96, /4, pool/2

v

5x5 conv, 256, pool/2

3x3 conv, 384

v

3x3 conv, 384

v

3x3 conv, 256, pool/2

fc, 4096

v

fc, 4096

v

fc, 1000

Error: 15.3%

123

2014: VGG
16 conv.
layers

3x3 conv, 64

v

3x3 conv, 64, pool/2

3x3 conv, 128

v

3x3 conv, 128, pool/2

<

3x3 conv, 256

<«

3x3 conv, 256

<«

3x3 conv, 256

<«

3x3 conv, 256, pool/2

<«

3x3 conv, 512

>

3x3 conv, 512

<«

3x3 conv, 512

<

3x3 conv, 512, pool/2

v

3x3 conv, 512

\ 4

3x3 conv, 512

v

3x3 conv, 512

v

3x3 conv, 512, pool/2

fc, 4096

v

fc, 4096

v

[
[
[
l
[
[
|
[
|
|
[
[
I
I
l
[
l
I
l

fc, 1000

!
l
I
]
l
]
J
]
]
]
|
|
)
]
|
I
|
|
l

Error: 8.5%

VERY DEEP CONVOLUTIONAL NETWORKS
FOR LARGE-SCALE IMAGE RECOGNITION
https://arxiv.org/pdf/1409.1556.pdf

Small convolutional kernels: 3x3
Rel.u non-linearities
>100 million parameters.

D=64 Po
ConwNet =
D=128
D=256
,/j/ v
77 VGG
7 D=512

/ D=4096 D=4096 _ D=1000

L0 (P (11—
24x224 112x112 56x56 28x28 14x14 FC FC FC + Softmax

124

Chaining convolutions

3x3 3x3 bxb
O —_
25 coefficients, but only
18 degrees of freedom
O =

9 coefficients, but only
6 degrees of freedom.
Only separable filters... would this be enough? 125

Dilated convolutions

(a) Input

bxb
3x3 al0O|b|]O]|cC
0]01010]O0
O|d|O]e]|O]|f
01]01010]O0
glO|h|O]i
25 coefficients
9 degrees of freedom
H B R
H B R
H B R

(b) Dilation 2

(¢) Output

X7

49 coefficients
18 degrees of freedom

[https://arxiv.org/pdf/1511.07122.pdf]

126

https://arxiv.org/pdf/1511.07122.pdf

(a) (b)

Figure 1: Systematic dilation supports exponential expansion of the receptive field without loss of
resolution or coverage. (a) F} is produced from Fj by a 1-dilated convolution; each element in F}
has a receptive field of 3 x 3. (b) F5 is produced from Fj by a 2-dilated convolution; each element
in F5 has a receptive field of 7x 7. (c) F3 is produced from F5, by a 4-dilated convolution; each
element in F3 has a receptive field of 15 x 15. The number of parameters associated with each layer
is identical. The receptive field grows exponentially while the number of parameters grows linearly.

[https://arxiv.org/pdf/1511.07122.pdf]

127

https://arxiv.org/pdf/1511.07122.pdf

2016: ResNet . . .
>100 conv. layers Deep Residual Learning for Image Recognition

= . https://arxiv.org/pdf/1512.03385.pdf

T

: x
* weight layer

: F(x) | relu .

= weight layer B

%% F(x) + x

§ Figure 2. Residual learning: a building block.

Errorﬂ:~4.4%

128

If output has same size as input:

weight layer

lrehj

weight layer

X
identity

It output has a different size:

Fx)

X
weight layer
lrehj

weight layer

weight layer

F(x) +Wx

relu

129

Residual Learning

* The loss surface of a b6-layer net using the CIFAR-10 dataset, both without (left) and
with (right) residual connections.

Hao Li et al., "Visualizing the Loss Landscape of Neural Nets". ICLR 2018 130

Other good things to know

o Check gradients numerically by finite differences
e Visualize hidden activations — should be uncorrelated and high variance

samples

hidden unit

Good training: hidden units are sparse across samples and across features.

[Derived from slide by Marc'Aurelio Ranzato]
131

Other good things to know

o Check gradients numerically by finite differences
e Visualize hidden activations — should be uncorrelated and high variance

i n
k|
i
r

q

hidden unit

Bad training: many hidden units ignore the input and/or exhibit strong correlations.

[Derived from slide by Marc'Aurelio Ranzato]
132

Other good things to know

o Check gradients numerically by finite differences

e Visualize hidden activations — should be uncorrelated and high variance

e Visualize filters

GOOD

too noisy too
correlated

lack
structure

Good training: learned filters exhibit structure and are uncorrelated.

[Derived from slide by Marc'Aurelio Ranzato]

133

Normalization layers

oJoJelelek

Wi

Keep track of mean and variance of a
unit (or a population of units) over time.

Standardize unit activations by
subtracting mean and dividing by
variance.

Squashes units into a standard
range, avoiding overflow.

Also achieves invariance to mean and
variance of the training signal.

Both these properties reduce the
effective capacity of the model, i.e.
regularize the model.

134

Normalization layers

135

Normalization layers

Batch Norm

H,W
LIt
VAT S A W 4

Normalize w.r.t. a single hidden unit’s pattern of activation over training
examples (a batch of examples).

[Figure from Wu & He, arXiv 2018]

136

Normalization layers

Batch Norm Layer Norm

LS S

A

Normalize w.r.t. the mean and variance of the activations of all the hidden units
(neurons) on this layer (c).

[Figure from Wu & He, arXiv 2018]

137

Normalization layers

Batch Norm Layer Norm Instance Norm

H,W
Lol

@ TSR
y A0 S AT A7 S

LS S

A

Normalize w.r.t. the mean and variance of the activations of all the hidden units
(neurons) on this layer (c) that process this particular location (h,w) in the image.

[Figure from Wu & He, arXiv 2018]

138

Normalization layers

Batch Norm Layer Norm Instance Norm Group Norm

H, W

LS S

W L TR

H, W
H, W

Lol

@ TSR

H, W

Ll

LTSS

A
ERERSAX
LT

iy S 257 AT
LR R

T T

Might as well...

[Figure from Wu & He, arXiv 2018]

139

Normalization layers

Merged Spatial
Dimensions (H,W)

Channels C

Batch Normalization (2015) Layer Normalization (2016) Instance Normalization (2016)
A
S X e A)
N AN =X N = =
Merged Spatial - N
\\ Dimensions (H,W) D%ngl:iir?spg-til.a\ll\l) N
N N
N N
N N
b N\
Channels C Channels C
. = > »
Mini-Bateh Samples N Mink-Batch Samples N Mini-Batch Samples N
Group Normalization (2018) Weight Standardization (2019)
A A AN
S <
. N
Merged Spatial Kernel size N
Dimensions (H,W) \\
\\
\
Channels C cg:rg‘r)\::s
> >
Mini-Batch Samples N Input channels
https://theaisummer.com/normalization] 0

https://theaisummer.com/normalization

No normalization layers

2101.08692v2 [cs.LG] 27 Jan 2021

. 2101.08692.pdf a @ P P R
Page 1 of 30 S £ a)

Published as a conference paper at ICLR 2021

CHARACTERIZING SIGNAL PROPAGATION TO CLOSE
THE PERFORMANCE GAP IN UNNORMALIZED RESNETS

Andrew Brock, Soham De & Samuel L. Smith
Deepmind
{ajbrock, sohamde, slsmith}@google.com

ABSTRACT

Batch Normalization is a key component in almost all state-of-the-art image clas-
sifiers, but it also introduces practical challenges: it breaks the independence be-
tween training examples within a batch, can incur compute and memory overhead,
and often results in unexpected bugs. Building on recent theoretical analyses of
deep ResNets at initialization, we propose a simple set of analysis tools to charac-
terize signal propagation on the forward pass, and leverage these tools to design
highly performant ResNets without activation normalization layers. Crucial to our
success is an adapted version of the recently proposed Weight Standardization.
Our analysis tools show how this technique preserves the signal in networks with
ReL.U or Swish activation functions by ensuring that the per-channel activation
means do not grow with depth. Across a range of FLOP budgets, our networks at-
tain performance competitive with the state-of-the-art EfficientNets on ImageNet.

1 INTRODUCTION

BatchNorm has become a core computational primitive in deep leaming (Toffe & Szegedy, 2015),
and it is used in almost all state-of-the-art image classifiers (Tan & Le, 2019; Wei et al., 2020). A
number of different benefits of BatchNorm have been identified. It smoothens the loss landscape
(Santurkar et al., 2018), which allows training with larger learning rates (Bjorck et al., 2018), and
the noise arising from the minibatch estimates of the batch statistics introduces implicit regular-
ization (Luo et al., 2019). Crucially, recent theoretical work (Balduzzi et al., 2017; De & Smith,
2020) has demonstrated that BatchNorm ensures good signal propagation at initialization in deep
residual networks with identity skip connections (He et al., 2016b;a), and this benefit has enabled
practitioners to train deep ResNets with hundreds or even thousands of layers (Zhang et al., 2019).

Howeuer RatchNaorm aleo has many dicad Tte hohadior ic Ty denendent on the hatch

irXiv:2102.06171v1 [cs.CV] 11 Feb 2021

0~ 2102.0‘6171.pdl a I

Page

High-Performance Large-Scale Image Recognition Without Normalization

Andrew Brock' Soham De' Samuel L. Smith' Karen Simonyan '

Abstract

Batch normalization is a key component of most
image classification models, but it has many unde-
sirable properties stemming from its dependence
on the batch size and interactions between ex-
amples. Although recent work has succeeded
in training deep ResNets without normalization
layers, these models do not match the test ac-
curacies of the best batch-normalized networks,
and are often unstable for large learning rates
or strong data augmentations. In this work, we
develop an adaptive gradient clipping technique
which overcomes these instabilities, and design a
significantly improved class of Normalizer-Free
ResNets. Our smaller models match the test ac-
curacy of an EfficientNet-B7 on ImageNet while
being up to 8.7x faster to train, and our largest
models attain a new state-of-the-art top-1 accu-
racy of 86.5%. In addition, Normalizer-Free mod-
els attain significantly better performance than
their batch-normalized counterparts when fine-
tuning on ImageNet after large-scale pre-training
on a dataset of 300 million labeled images, with
our best models obtaining an accuracy of 89.2%,’

1. Introduction

The vast majority of recent models in computer vision are
variants of deep residual networks (He et al., 2016b;a),
trained with batch normalization (Ioffe & Szegedy, 2015).

NFNet-F5|

LambdaNet-420
e “BoTNet128.T7 _ EffNets?

e

et 85
Lambdafiet-152
1 * o~ *DeiT-384

21 Derr.»zz'.x
¥ BoTNet-59

ImageNet Top-1 Accuracy (%)

JEffNet-B2

%’Dramir\g’iatencyu(‘s/s!ep)(t;n TPU\;;, Ba(d: }Snze pe‘r‘Device“- 32
Figure 1. ImageNet Validation Accuracy vs Training Latency.
All numbers are single-model, single crop. Our NFNet-F1 model
achieves comparable accuracy to an EffNet-B7 while being 8.7 x
faster 1o train. Our NFNet-F5 model has similar training latency to
EffNet-B7, but achieves a state-of-the-art 86.0% top-1 accuracy
on ImageNet. We further improve on this using Sharpness Aware
Minimization (Foret et al., 2021) to achieve 86.5% top-1 accuracy.

However, batch normalization has three significant practical
disadvantages. First, it is a surprisingly expensive computa-
tional primitive, which incurs memory overhead (Rota Bulo
ct al., 2018), and significantly increases the time required to
evaluate the gradient in some networks (Gitman & Ginsburg,
2017). Second, it introduces a discrepancy between the be-
haviour of the model during training and at inference time
(Summers & Dinneen. 2019: Singh & Shrivastava. 2019).

141

Next Lecture:
Sequential Processing with RNNs

