ol

Using RNNs to generate Super Mario Maker levels, Adam Geitgey
-

02 000000200 8493

DEEP UNSUPERVAISED
LEARNING

ey
Lecture #3 — Neural Networks Basics |l:

Sequential Processing with Nl;\l__;sf

KOC 3 Aykut Erdem // Koc¢ University // Sp(i'(iwgg‘zozz
UNIVERSITY’ |
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Loss Landscape created with data from the training process of
a convolutional network, Javier Ideami

Previously on COMP547

» deep learning
e computation in a neural net

* optimization
* backpropagation
* training tricks

e convolutional neural networks




Good news, everyone!

o Paperlist Tor the paper e‘ a)
presentations is out! Each

graduate student should select

— a paper to provide an overview,
— another paper to present either
Its strengths or weaknesses.
» Undergraduate

students will only ‘
submit paper reviews. (gé



Lecture overview

seguence modeling
recurrent neural networks (RNNs)

* language modeling with RNNs
* how to train RNNs

* long short-term memory (LSTM)
gated recurrent unit (GRU)

 Disclaimer: Much of the material and slides for this lecture were borrowed from

—Bill Freeman, Antonio Torralba and Phillip Isola’s MIT 6.869 class
—Phil Blunsom's Oxford Deep NLP class

—Fel-Fei Li, Andrej Karpathy and Justin Johnson's CS231n class
—Arun Mallya's tutorial on Recurrent Neural Networks



Sequential data

“| took the dog for a walk this morning.” sentence

medical signals

speech waveform

video frames

Adapted from Harini Suresh 5



Modeling sequential data

« Sample data sequences from a certain distribution P(z1, ..

* Generate natural sentences to describe animage  P(yq, ..

It

$ TR
Ll 7
et

 Activity recognition from a video sequence

A group of people

ung| |[Shopping at an
N

outdoor market.

There are many
vegetables at the
fruit stand.

P(ylor, .

v/

Running
Jumping
Dancing
Fighting
Eating

7£CN)

Adapted from Xiaogang Wang 6



Modeling sequential data

« Speech recognition | | P(y1,...,yn|z1,...,2N)

— Hey Siri

» Object tracking

Adapted from Xiaogang Wang 7



Modeling sequential data

« Generate natural sentences to describe a video Py, ..., ymlx1, . ., zN)

— A man is riding a bike

 Machine translation P(y1, e ,yM|$1, e ,ZI?N)

= Google Translate

German~ English¥ German ¥ English~
o) GERMAN X o) GERMAN N
Probleme kann man niemals mit derselben

Denkweise losen, durch die sie entstanden

Probleme kann man niemals mit derselben
sind.

Denkweise losen, durch die sie entstanden
sind.

o) ENGLISH o) ENGLISH

No problem can be solved from the same
consciousness that they have arisen.

p* ¢

Problems can never be solved with the same
8. way of thinking that caused them.

Adapted from Xiaogang Wang 8



Convolutions in time

OKQOOQQOOQOQQOOOO
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/watch?v=wxfGT-kKxiM



https://www.youtube.com/watch?v=wxfGT-kKxiM

Rufus
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Recurrent Neural Networks (RNNSs)

Outputs () () ()
Hidden  O—r(O)—O—O)

InputsCJ)ObQQCOOCOOOOQOOQ

15



To model sequences, we need

1. to deal with variable length sequences
2. 10 maintain sequence order

3. to keep track of long-term dependencies
4. to share parameters across the sequence

16



Recurrent Neural
Networks



Recurrent Neural Networks (RNNSs)

oupusy O O O O O O O O
Hidden h () () () () () ()

o E L8 L& b

tlme




Recurrent Neural Networks (RNNSs)

Outputs y - O O O O O O
Hidden h O O O O O
O O O O O

Inputs x O O

vO O O



Recurrent Neural Networks (RNNs)

Qutputs
Hidden Recurrent!
Inputs g}

h(®) = f(h(t=D x(®)

y®) = g(h®)

20



Recurrent Neural Networks (RNNSs)

O O O O O O
O O O O O

Inputs x O C)U O O O O O

Outputs y

Hidden h

2t) — Wh{—1 4 Ux® +b
h® = tanh(a®)
o) = Vh® 4+ ¢

§() = softmax(o®)

VO O O



Deep Recurrent Neural Networks (RNNs)
Outputs § - O ) O O O O O O
h,| O— O O O O O O

Hidden

h oli O O O O O
InputhO 10 O O O O

1O O



Language Modeling



Language modeling

» Language models aim to represent the history of observed text
(wy,...,w, 1) succinctly in order to predict the next word (w)):

KING LEAR:

O, if you were a feeble sight,
the courtesy of your law,

Your sight and several breath,
will wear the gods

With his heads, and my hands
are wonder'd at the deeds,
So drop upon your lordship's
head, and your opinion

Shall be against your honour.

all the works of language
shakespeare model

\

http://karpathy.qgithub.i0o/2015/05/21/rnn-effectiveness/

24
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RNN language models

h = g(V (205 hn—1] + ¢)

a probability distribution over possible
next words, aka a softmax

LY Pa

@I ()

25



RNN language models

h = g(V (205 hn—1] + ¢)
Un = Why, + b

| D2

26



RNN language models

h = g(V (205 hn—1] + ¢)
Un = Why, + b

Y

D3

27



RNN language models

hn B g(V [an; hn—l] T C) Our dictionary also
:l)n — Whn + b includes an EOS token

to decide when to stop

?

A

+
g I s ha )




Beam Search (K = 3)

d

the

red

L VAN J\L J

Fort=1...T:

« For all £ and for all possible output words w:

s(w, ?At) 1) 1ng(ylt 1|z) + logp(w|y1t 1, T)

« Update beam:

~(1: K ~(k
y%t ) K-arg max s(w, yg t) 1)

Slide credit: Alexander Rush 29



Beam Search (K = 3)

4 N\ 4 )
5 s  red
\_ Y, \_ )
( ) 4 N
the > dog
\_ Y, . Y,
( N\ N\
red \[ blue
\ y, )
Fort=1...T:

« For all £ and for all possible output words w:

k
s(w, 917 1) « logp(3\¥) | |x) + log p(w|g) |, x)

« Update beam:

~(1: K ~(k
y%t ) K-arg max s(w, yg t) 1)

Slide credit: Alexander Rush 30



Beam Search (K =

s

d

red

\.
4

L VAN S

-
>

N\ )

Fort=1..

J

VAN J \L J

3)

dog

N

r

~

the > dog dog
" red j blue J cat

A

« For all £ and for all possible output words w:

(u’yltil

« Update beam:

(1:K)
Yi:t

(k)

+— K-argmax s(

) < 10%29(9115 1|z) + log p(w|y

~ (k)
W, Yy1.t—1

)

(k)
1:4—1> L

)

Slide credit: Alexander Rush 31



Beam Search (K = 3)

( ) ( ) ) ( )
a > red dog > smells
. J \_ J J \_ J
( ) ( ) ( ) ( B
the > dog dog > barks
\ J \ J \ J \ J
( ) ( ) )
red \( blue cat \{ walks
\ y. \ y. .
For¢=1...T:

« For all £ and for all possible output words w:

k
s(w, 917 1) « logp(3\¥) | |x) + log p(w|g) |, x)

« Update beam:

~(1: K ~(k
y%t ) K-arg max s(w, yg t) 1)

Slide credit: Alexander Rush 32



Beam Search (K = 3)

z a j ,: red : dog : { smellsj home:
Z the j { dog : : dog : >: barksj :quicklyj
: red j \{ blue : { cat \ \*{ walks j {straightj
For¢=1...T:
« For all £ and for all possible output words w:
s(w, ?A t) 1) 10%]9(9115 1|z) + logp(w|y§kt) 1> Z)

« Update beam:

~(1: K ~(k
y%t ) K-arg max s(w, yg t) 1)

Slide credit: Alexander Rush 33



Beam Search (K =

3)

( N a ) ) 4 ) ) 4 )
a > red dog > smells home ~ today

. J L J J . J J L J

a N & ) r N ( N 4 : N g . N
the > dog dog > barks quickly ~ Friday

L J \ J . J L J \ J L J

~ ™) ™) ~ R ) ~ ; R R
red \{ blue | cat \{ walks > straight \{ now

\ . y. \ . V. \ . y.

For¢=1...T:

« For all £ and for all possible output words w:

s(

« Update beam:

(1:K)
Yi:t

~ (k)

S(W, Y1.4_1

+— K-argmax s(

~ (k)
W, Yy1.t—1

)

(k)

) logp(ylt 1|x) + logp(wl|gyy 1,

)

Slide credit: Alexander Rush 34



at fi rst' tyntd-iafhatawiaoihrdemot 1lytdws e ,tfti, astai f ogoh eoase rrranbyne ‘nhthnee e
- plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns 1lng

i train more
“Tmont thithey" fomesscerliund

Keushey. Thom here
sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome

coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

i train more

Aftair fall unsuch that the hall for Prince Velzonski's that me of
her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort

how, and Gogition is so overelical and ofter.

i train more

"Why do what that day," replied Natasha, and wishing to himself the fact the
princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.

http://karpathy.github.i0/2015/05/21/rnn-effectiveness/ 35
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PANDARUS :

Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,

I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and

my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
I'll drink it.

VIOLA:

Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire,
To show the reining of the raven and the wars

To grace my hand reproach within, and not a fair are hand,

That Caesar and my goodly father's world;

When I was heaven of presence and our fleets,

We spare with hours, but cut thy council I am great,
Murdered and by thy master's ready there

My power to give thee but so much as hell:

Some service in the noble bondman here,

Would show him to her wine.

KING LEAR:

O, if you were a feeble sight, the courtesy of your law,
Your sight and several breath, will wear the gods

With his heads, and my hands are wonder'd at the deeds,
So drop upon your lordship's head, and your opinion
Shall be against your honour.

http://karpathy.qgithub.i0o/2015/05/21/rnn-effectiveness/
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geVlodeli

DeepDrumpf

@DeepDrumpf

I'm a Neural Network trained on Trump's
transcripts. Priming text in [ ]s. Donate
(gofundme.com/deepdrumpf) to interact!
Created by @hayesbh.

& deepdrumpf2016.com
Joined March 2016

€2} Photos and videos

https://twitter.com/deepdrumpf

-~
o N

. \

™y e N

TWEETS

284

A el

FOLLOWING FOLLOWERS LIKES

7 29.4K 19 2+ Follow

Tweets Tweets & replies Media

L o)

In reply to Thomas Paine

DeepDrumpf @DeepDrumpf - Mar 20

There will be no amnesty. It is going to pass because the people are
going to be gone. I'm giving a mandate. #ComeyHearing
@Thomas1774Paine

In reply to David Yankovich

DeepDrumpf @DeepDrumpf - Feb 19

Media hurting and left behind, | say: it looked like a million people.lt's
imploding as we sit with my steak.#swedenincident @DavidYankovich

In reply to Glenn Thrush
DeepDrumpf @DeepDrumpf - Feb 13
Mike. Fantastic guy. Today | heard it. Send signals to Putin and all of

the other people, ruin his whole everything. @GlennThrush @POTUS 37



https://twitter.com/deepdrumpf

-, More Language Modeling Fun -
vy Generating Super Mario Levels

Original Le\}el:

A level generated by a RNN:

https://medium.com/@ageitgey/machine-learning-is-fun-part-2-a26a10b68df3 38
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Is this enough?

» Consider the problem of translation of English to French
* E.g. What is your name — Comment tu t'appelle
* |s the below architecture suitable for this problem?

T

E, E, E,

* No, sentences might be of different length and words might not
align. Need to see entire sentence before translating

Adapted from http://www.cs.toronto.edu/~rgrosse/csc321/lec10.pdf

39
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Encoder-decoder seq2seq model

» Consider the problem of translation of English to French
* E.g. What is your name — Comment tu t'appelle

» Sentences might be of different length and words might not align.
Need to see entire sentence before translating

Fi Fy F3 Fy
Pt vt 1

r 1T 1
E, E, E,

* Input-Output nature depends on the structure of the problem at hand

Seqg2Seq Learning with Neural Networks. Sutskever et al., NIPS 2014

40


https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf

Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
! Pt 1 ! tt 1 t 11
! ! tt Pt 1 Pt 1

\ Vanilla Neural Networks

41



Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
! Pt 1 ! tt 1 t 11
! ! tt Pt 1 Pt 1

\ e.g. Image Captioning
Image -> sequence of words

42



Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
! Pt 1 ! tt 1 t 11
! ! tt Pt 1 Pt 1

\ e.g. Sentiment Classification
seguence of words -> sentiment

43



Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
! Pt 1 ! tt 1 t 11
! ! tt Pt 1 Pt 1

\ e.g. Machine Translation
seq of words -> seq of words

44



Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
! Pt 1 ! tt 1 t 11
! ! tt Pt 1 Pt 1

/

e.g. Video classification on frame level

45



Multi-layer RNNs

* \\We can of course design RNNs with multiple hidden layers

Yi Y2 Y3 Ya VY5 Ve
rt 1 1 1

N N A

X1 Xp, X3 X4 Xg Xg

* Think exotic: Skip connections across layers, across time, ...

46



Bi-directional RNNs

 RNNs can process the input sequence in forward and in the reverse

direction
Y1 V2 V3 V4 Ys
1

Y6
|

I

|

f

// /
K(\( L
/XV\/\T

X1 X3 X4 Xg

&

Xs

* Popular In speech recognition and machine translation

47



How to Train
Recurrent Neural Networks



BackPropagation Refresher

—

f(x; W)

X —>

y=f(X;W)
C= LOSS(M yGT)

Slide credit: Arun Mallya

49



Multiple Layers

- y, = £,(X;W,) SGD Update
T Y, = T,(Yi W) W, W, -1 9C
v{ C =Loss(Y,,Ysr) W,
dC
fz(y1T; W,) Wl < Wl - n 8W1
Y1
T
f1(x; W,)
|

Slide credit: Arun Mallya g



Chain Rule for Gradient Computation

- y, = (W) fing 9C | dC

T Y, = T, (s W,) oW, W,

Y2 C =Loss(Y,, Yer) oC _ (B_Cj( 9Y, j

! oW, | ay, | aw,
o

1 oW, | dy, )\ dW,

| ittt
f(x; W) Y, )\ 9y J\ oW,

| Application of the Chain Rule

Slide credit: Arun Mallya ¢,



Backprop through time
Outputs § O O O O O

oy ay® ph®) ohD oh

0x(©0) ~ 9h® ght-1)  9h() §x(0)

52



Outputs y

Hidden h

VO O O



Recurrent linear layer

NO

oL oL
oh(t=1) ~ dal®)

a = Wht 1D L Ux® 1+ p

A%

oL
Oa(t)

oL oL

ox®) — fal®)

oL AL oh(tD
OW ~ Oh(—D oW

54



We have a loss at each timestep:
(since we're making a prediction at each timestep)

0 1 2

J]
Y
v v‘ v

@U@U@U

S
| |

55



We have a loss at each timestep:
(since we're making a prediction at each timestep)

loss at each
o g timestep

T
v‘ v‘ v‘
-©-@-

56



We sum the losses across time:

loss at each
J, P timestep

i J;
| I
¥, i Y2 Loss at time t: Jt(@)
v‘ V‘ V‘
U @ : @ — Total loss:
. . . J(©) =) Ji(®)
/



Let's try it our for W with the chain rule:

J) J, J, oJ 0Jy
A w3 ow
Y, Y, Y5
" /| /|

&

W

W W

Lo T Ly



Let's try it our for W with the chain rule:

J, J, J, oJ 0Jy
} [ [ oW &= oW
Yo Vi Yo so let's take a single timestep t:
/| /| 1
@ U @ y @ -
W W W
X X X

0 1 2



Let's try it our for W with the chain rule:

J, J, J, oJ 0Jy
o oW " 2w
Yo Y, Yo so let’s take a single timestep t:
0Js
J q J 07
ow
@D
W W W

X X

0 1 x

2



Let's try it our for W with the chain rule:

. , ; 01 _ N~ 0
} [ [ oW &= oW
Yo Y, Yo so let’s take a single timestep t:
‘ ‘ ‘ 8J2 &]2 8y2 882
V Vv V _—
oW 8y2 882 oW
@@ D




Let's try it our for W with the chain rule:

J, J, J, oJ 0Jy

| | | oW S oW

Yo Y, Yo so let's take a single timestep t:
/| /| J 0Js  0Js Oya(0s9

ow oy2 aSQM

' C but walt...




Let's try it our for W with the chain rule:

J, J, J, oJ 0Jy

| | | oW S oW

Yo Y, Yo so let’s take a single timestep t:
/| /| J 0Js  0Js Oya(0s9

ow oy2 aSQM

@T@T’@ J but wait. ..
so = tanh(Us; + Waxs)

65



Let's try it our for W with the chain rule:

J, J, J, oJ 0Jy

| | | oW S oW

Yo Y, Yo so let's take a single timestep t:
/| /| J 0Js  0Js Oya(0s9

OW — 9y2 sy OW)
@ ! @ 1 @ Y but walt...
So = tcmh(—l— Wxs)

s, also depends on W so we can’t just

882
treat === as a constant!
oW

66



Let's try it our for W with the chain rule:

R
| | J

@U

W

1

y
v v
@U@U

W

W

X X

0 1 X

2



Let's try it our for W with the chain rule:

J, J, J, 882
| | | oW
Yo Y1 Yo
J J J

O @

W

W W

Lo T Ly



Let's try it our for W with the chain rule:

/s 882
| oW
0 1 y
|

2 | 882 881
" Os1 OW

Vv V V

b
| |




Let's try it our for W with the chain rule:

/s 882
| oW
0 1 y
|

2 | 882 881
) ! ) " Os1 OW

P& - omom

" Osq OW

b
| |




Backpropagation through time:

3J2 Z (9J2 8?/2 (982 aSk
ay2 0so 08 OW
\ )

Y
Contributions of W in previous

timesteps to the error at timestep ¢

71



Backpropagation through time:

(9Jt Z aJt ayt 8875 5’sk
(’9yt 0s; 0s OW
\

Y
Contributions of W in previous

timesteps to the error at timestep ¢

)

72



Why are RNNs hard to train?



Vanishing Gradient Problem

5’J2

Z

0J2 0y

882

aSk

83/2 052

&Sk

ow



Vanishing Gradient Problem

5’J2 Z 6’J2 8y2 882 (’9sk
(93/2 0S5 Q%é?W

0 1 2

Iod

_ I a =U: e S —
U U \880 681 880/

W

W W

x X

0 1 X

2




Vanishing Gradient Problem

0Jp  ~= 0J,, Oyy, 05, Os}, Osn Osn1  Os3 053 Osy
— Z 0Sn—1 0852 0s9 0s1 0sg

oW — 0y, 0s,, 0s|OW
Wbetween timesteps

gets bigger, this product gets
longer and longer!
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Vanishing Gradient Problem

sw@
®ﬁ
@
$
5
&

what are each of these terms? | _98n Osn— o Js3 032 081
9 5’sn_1 88n_2 5’82 881 (980
Sn .
5 — Wszag [f’(WSj_1+Umj)}
Sn—1 /

W = sampled from standard f=tanh or sigmoid so f' <1
normal distribution = mostly < 1

we're multiplying a lot of small numbers together.

77



Vanishing Gradient Problem

we're multiplying a lot of small numbers together.

so what?

errors due to further back timesteps have increasingly
smaller gradients.

so what?

parameters become biased to capture shorter-term
dependencies.

78



A Toy Example

* 2 categories of sequences

» Can the single tanh unit learn to store for T time steps 1 bit of
iInformation given by the sign of initial input?

1

z, = f(a;) = tanh(a)) W @ | Prob(success | seq. length T)
a; = wTiy + hy °.
h

L]

10 15 20 25 iQ is 10 45 50 55 &0 T

Slide credit: Yoshua Bengio 79



Vanishing Gradient Problem

“In , | had a great time and | learnt some
of the

our parameters are not trained to capture long-term
dependencies, so the word we predict will mostly depend on
the previous few words, not much earlier ones

80



Long-Term Dependencies

 The RNN gradient is a product of Jacobian matrices, each associated with a step
In the forward computation. To store information robustly in a finite-dimensional
state, the dynamics must be contractive [Bengio et al 1994].

L =L(sr(s7—1(...st+1(5¢,--.))))
OL 0L dsp s

Os;  Osp Osp_1 ~ 0Os

* Problems:
* sing. values of Jacobians > 1 - gradients explode
* Or sing. values < - gradients shrink & vanish
e Or random — variance grows exponentially

Slide credit: Yoshua Bengio
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RNN Tricks

(Pascanu et al., 2013; Bengio et al., 2013; Gal and Ghahramani, 2016;Morishita et al., 2017)

* Mini-batch creation strategies (efficient computations)

 Clipping gradients (avoid exploding gradients)

_eaky Integration (propagate long-term dependencies)
Viomentum (cheap 2nd order)
Dropout (avoid overfitting)

nitialization (start in right ballpark avoids exploding/vanishing)

« Sparse Gradients (symmetry breaking)
» Gradient propagation regularizer (avoid vanishing gradient)
» Gated self-loops (LSTM & GRU, reduces vanishing gradient)

Slide adapted from Yoshua Bengio

82



Mini-batching in RNNs

* Mini-batching makes things much faster!

« But mini-batching in RNNs is harder than in feed-forward networks
- Each word depends on the previous word
- Sequences are of various length

« Padding: this  is an example </s>

this is another </s> </s>

* |[f we use sentences of different lengths, too much padding and sorting
can result in decreased performance

* To remedy this: sort sentences so similarly-lengthed segs are in the same
batch

Slide adapted from Graham Neubig 83



Mini-batching in RNNs

* I\/Iany alternatives: Algorithm 1 Create mini-batches

1:
1. Shuffle the corpus randomly before creating 2.

mini-batches (with no sorting).
2. Sort based on the source sequence length.
3. Sort based on the target sequence length.

Sort using the source sequence length, break
ties by sorting by target sequence length.

5. Sort using the target sequence length, break
ties by sorting by source sequence length.

® kR

9:
10:
11:
12:
13:

C < Training corpus
C <+ sort(C) or shuffle(C) © sort or shuffle
the whole corpus
B+ {} > mini-batches
10,70
while : < C'.size() do
B[j] + B[j] + C[i
if B|[j].size() > max mini-batch size then
B|j] - padding(B];]) >
Padding tokens to the longest sentence in the
mini-batch
j—j+1
end if
1< 1+1
end while
B < shuffle(B)  © shuffle the order of the
mini-batches

M. Morishita, Y. Oda, G. Neubig, K. Yoshino, K. Sudoh, and S. Nakamura. "An Empirical Study of Mini-Batch Creation Strategies for Neural

Machine Translation". 1st Workshop on NMT 2017
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Mini-batching in RNNs

* Many

1.

Sh
mi

So
So
So
tie
So
tie

(a) 64 sentences, Ada‘m (b) 32 sentences, Ada‘m

(c) 16 sentences, Adam

8 8 8

7t 7! 7f

6l 6! 6

50 50 5}

4+ 4t 4l

3} 3t 3t

2} 2t 2t

1t 1 1

% M 2M  3M 4 5M % M 2M  3M  4M  5M % IM  2M  3M  4M  5M
8 (d) 8 sentences, Adam 8 (e) 1742 words, Adam 8 (f) 64 sentences, SGD

7t 7 71

6! 6! 6!

50\ 50 5Ny

4+ 4t 4}

3} B 3t

2} 2t 2t

1t 1 1

% IM  2M  3M  4M  5M % M 2M  3M  4M  5M %0 5M 10M 15M 20M

 May affect performance!

shuffle

src

trg

src_trg
=== trg_src

yrt or shuffle

nini-batches

ch size then
>
itence in the

order of the

M. Morishita, Y. Oda, G. Neubig, K. Yoshino, K. Sudoh, and S. Nakamura. "An Empirical Study of Mini-Batch Creation Strategies for Neural
Machine Translation". 1st Workshop on NMT 2017
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Gradient Norm Clipping

A, Oerror
& T
if ||g|| > threshold then

A, threshold 4
8 gl &
end if

4 - :
-2.8 —2.6 _icofb

Recurrent neural netw@rk reqularization. Zaremba et al., arXiv 2014.

0.35
10.30

'0.25 .
L C
0.20 £
3 w
0.15

= [0.10

'0.05
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Regularization: Dropout

 Large recurrent networks often overfit their training data by
memorizing the sequences observed. Such models generalize poorly
to novel sequences.

« A common approach In Deep Learning Is to overparametrize a model,
such that it could easily memorize the training data, and then heavily
regularize it to facilitate generalization.

* The regularization method of choice is often Dropout.

Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Srivastava et al. JMLR 2014.
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Regularization: Dropout

» Dropout is ineffective when applied to recurrent connections, as
repeated random masks zero all hidden units in the limit.

* The most common solution 1s to only apply dropout to non-recurrent
connections

C f; —( h*z — h*s —( htt )

Recurrent neural network reqularization. Zaremba et al., arXiv 2014,
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Regularization: Dropout

* A Better Solution: Use the same dropout mask at each time step

for both inputs, outputs, and recurrent layers.

Yt—1 Yt Yt+1 Yt—1 Yt Yt+1
1 ] 1 ]
————— -------0-------U----> =——>l > > —>
|1 1 ]
————— -------0------->U----> L] [] []

T T [
Ti—1 X Ti41 Ti—1 Xy Tit1

(a) Naive dropout RNN

(b) Variational RNN

Each square represents an RNN unit,
with horizontal arrows representing
recurrent connections. Vertical arrows
represent the input and output to each
RNN unit. Coloured connections rep-
resent dropped-out inputs, with diffe-
rent colours corresponding to different
dropout masks. Dashed lines corres-
pond to standard connections with no
dropout.

A Theoretically Grounded Application of Dropout in Recurrent Neural Networks. Gal and Ghahramani. NIPS 2016




Regularization: Norm-stabilizer

» Stabilize the activations of RNNs by penalizing the squared distance

between successive hidden states’ norms

1 13
Bz > (Al = 1he-1]l,)’

t=1

 Enforce the norms of the hidden
layer activations approximately
constant across time

avg||h, ||

6

5L

4\

3

2k

GO W W w
L

I |

N = T N O
S © © o

e S

1000 2000 3000
timestep (t)

1 L ] L l
0 10 20 30 40 50
timestep (t)

Regularizing RNNs by Stabilizing Activations. Krueger and Memisevic, ICLR 2016



https://arxiv.org/abs/1511.08400

Regularization: Layer Normalization

« Similar to batch normalization

 Computes the normalization statistics separately at each time step
» Effective for stabilizing the hidden state dynamics in RNNs

* Reduces training time

Attentive reader

1.Or~wrsrvsmw :
— LSTM
ht = f {E ® ( t_ ILLt) + b} 0.0 — BN-LSTM
O't 9 — BN-everywhere
808 —— LN-LSTM
H o
1 =
o
pt=— E a; 507
H i=1 [
o 0.6f
g
H
1 0.5
t | & E : t )2
O- _ \ H ( 7 ILL ) 0.4 ‘ ‘ ‘ ‘ ‘ ‘ ‘
. "0 100 200 300 400 500 600 700 800
1=1 trainina steps (thousands)

Layer Normalization [Ba, Kiros & Hinton, 2016]



Scheduled Sampling

* “change the training
process from a fully guided
schgme using the true Loss\m @i\ Logs
previous token, towards a y(t-1) y(t)
less guided scheme which ?
mostly uses the generated
token instead.”

h(1) —»...— h(t-1) —>| ht) >

f 1‘

true y(t-2) /4 true y(t-1)

/

/

P(y¢|hy) with by = f(hi—1,Yt—1)

>X =

Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks. Bengio et al., NIPS 2015
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Scheduled Sampling

* “change the training
process from a fully guided

Sample Sample
scheme using the true L)
previous token, towards a ﬂfn\ i
less guided scheme which T f
mostly uses the generated I — - —— h(t) —*
token instead.” f t !

X sampled y(t-2) sampled y(t-1)

* During training, randomly
replace a conditioning
ground truth token by the P(ys|hs) with by = f(hs—1,91—1)

model's previous prediction

Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks. Bengio et al., NIPS 2015
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Scheduled Sampling

* “change the training
process from a fully guided
scheme using the true
previous token, towards a
less guided scheme which

Sample

Loss 4
\ Softmax over

y(t-1)

Sample

y(t)

i

h(t)

h(1
mostly uses the generated (1)
token instead.” )f(
* During training, randomly e,
replace a conditioning 71 W

ground truth token by the ~ &|

A

| sampled y(t-2) true y(t-2)

o
N
o
o
> |/
o H
o
o
o
o

model's previous prediction °

800

Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks. Bengio et al

1000

*

&

A

X

true y(t-1)

., NIPS 2015
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Gated Cells

 rather each node being just a simple RNN cell, make each node
a more complex unit with gates controlling what information is
passed through

VS Long short term memory cells are
able to keep track of information
throughout many timesteps.

RNN LSTM, GRU, etc
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Long Short-Term Memory (LSTM)

Long Short-Term Memory [Hochreiter et al., 1997]

J

+1

96


http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf
http://www.jmlr.org/proceedings/papers/v28/pascanu13.pdf
http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf

Long Short-Term Memory (LSTM)

C Ji » C ]
forget
irrelevant parts
of previous
state

Long Short-Term Memory [Hochreiter et al., 1997]

+1
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Long Short-Term Memory (LSTM)

» C

Long Short-Term Memory [Hochreiter et al., 1997]

J

+1
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Long Short-Term Memory (LSTM)

output certain
parts of cell
state

Long Short-Term Memory [Hochreiter et al., 1997]

>

j+1
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Long Short-Term Memory (LSTM)

C] > C]_|_ 1
forget selectively output certain
irrelevant parts update cell parts of cell
of previous state values state
state

Long Short-Term Memory [Hochreiter et al., 1997]
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The LSTM Idea

“Dashed line indicates time-lag
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The Original LSTM Caell

Xt\ /ht-1 Xt /ht1
Wxi Whi \/ \lWho
Input Output
Gate Gate
Xt\ch Cell
(D—o——e)—(1
— i
ht_’| WhC

C, :ct1+it®tanhW(

h =0, ®tanhc,

> h,
| =c7(V\/i(htXt1

Similarly for o,

B

X,
N,

J
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The Popular LSTM Cell

ol

Xt
\
Wi ct:ft®ct1+it®tanhW(th
Input ht_1
W Gate
Xi —L7  Xc
1)— > h, ftza[wf(x‘jmf]
— h,
ht_’| hc
h =0 ®tanhc,
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The Popular LSTM Cell

ol

Xt e
\
. W... _
Wi " c="f®c +i ®tanhW( & j
Input ht—l
W Gate
Xt \ji}) “ > h - ( Xt j
) > Ny =0 | W, +Db,
— h_,
ht-’| hc

h =0 ®tanhc,

forget gate decides what information
IS going to be thrown away from the
cell state
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The Popular LSTM Cell

ool

Xt e
\ ]

Wai (35 Wi c=f®c, +i ®tanhW( & j

Input ht_l

W Gate

b el

) > Ny =0 | W, +Db;

— .
ht_’| hc

h =0 ®tanhc,

input gate and a tanh layer decides
what information is going to be stored
In the cell state
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The Popular LSTM Cell

ol

c = ft®ct1+it®tanhW(r? j

-1

>, ftzaﬁwf(r?ljmfj

h =0 ®tanhc,

Update the old cell state with the new
one.
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The Popular LSTM Cell

L, =0| W : +b

|
Xt\ /ht-1 ht—l
W Wi c=f®c +i® tanhW( & j
Input -1
Gate
Xt \ch input forget
E X) > h,| gate  gate behavior
- 0 1 remember the
W, . previous value
hy s 1 1 add to the previous
value
W, 0 0 erase the value
1 0 overwrite the value
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The Popular LSTM Cell

ol

Xt N1
\
Wi (52 Wi c=f®c, +i ®tanhW( & j
Input ht—l
W Gate
Xt \ji}) “ > h - ( ( X j j
) > Ny =0 | W, +Db;
— h.
hc
e h =0 ®tanhc,
fo O, — O WO tt -+ bo
hi_1

Output gate decides what is going to be
outputted. The final output is based on

cell state and output of sigmoid gate. 108



LSTM - Forward/Backward

lllustrated LSTM Forward and Backward Pass

http://arunmallya.github.io/writeups/nn/lstm/index.html
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LSTM variants



The Popular LSTM Cell

Xt

s
\/

ol

WXi Whi
Input
Xt\WXCGate Similarly for i, o,
E & > e X,
/th C = ft®ct1+it®tanhW( j
h, h.,

h =0, ®tanhc,

“Dashed line indicates time-lag 11



Extension I: Peephole LSTM

Xt e [
\ ( X, ) )
W Whi f=c| W | h_ |+D
Inpu
G:tet A\\ \ \ ) )
x; —Wxe , Similarly for i,, o, (uses )
:Q) & > hy X,
i W, . C, = ft®ct1+it®tanhW(h[ j
t-1 -1
e h =0 ®tanhc,

« Add peephole connections.
« All gate layers look at the cell state!

“Dashed line indicates time-lag 112



Other minor variants

* Coupled Input and Forget Gate

e Full Gate Recurrence

t

f=1-1

t

+Db,

114



LSTM: A Search Space Odyssey

» Tested the following variants, using Peephole LSTM as standard:
1.

O NSO WD

No Input Gate (NIG)

No Forget Gate (NFQG)

No Output Gate (NOG)

No Input Activation Function (NIAF)
No Output Activation Function (NOAF)
No Peepholes (NP)

Coupled Input and Forget Gate (CIFQG)
Full Gate Recurrence (FGR)

* On the tasks of:
— Timit Speech Recognition: Audio frame to 1 of 61 phonemes
— |AM Online Handwriting Recognition: Sketch to characters
— JSB Chorales: Next-step music frame prediction

LSTM: A Search Space Odyssey [Greff et al., 2015]
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LSTM: A Search Space Odyssey

* The standard LSTM performed reasonably well on multiple datasets
and none of the modifications significantly improved the performance

» Coupling gates and removing peephole connections simplified the
LSTM without hurting performance much

* The forget gate and output activation are crucial

* Found interaction between learning rate and network size to be
minimal — iIndicates calibration can be done using a small network
first

LSTM: A Search Space Odyssey [Greff et al., 2015]
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Gated Recurrent Unit



Gated Recurrent Unit (GRU)

» A very simplified version of the LSTM
— Merges forget and input gate into a single ‘update’ gate
— Merges cell and hidden state

* Has fewer parameters than an LSTM and has been shown to
outperform LSTM on some tasks

| earning Phrase Representations using BRNN Encoder-Decoder for Statistical Machine Translation

[Cho et al.,14]

118


https://arxiv.org/abs/1406.1078

GRU

ol
S
)

M(

h=0-z)®h_+7
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GRU

ol

computes a reset gate based on
current input and hidden state

W; Reset Gate
Xt hyg
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GRU

)

h, =tanhw( & j
n®h,

computes the hidden state based on
current input and hidden state

If reset gate unit is ~0, then this
ignores previous memory and only
stores the new input information
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GRU

)

h, =tanhw( § j
n®h,

ol

computes an update gate again based
on current input and hidden state
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GRU

ol

h, =tanhw( § j
n®h,

ol

ht :(1_Zt)®ht—1+zt®hlt

Final memory at timestep t combines
both current and previous timesteps
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GRU Intuition

* [f reset Is close to O, ignore previous hidden
state

» Allows model to drop information that is
irrelevant in the future

» Update gate z controls how much of past

state should matter now.

] —If z close to 1, then we can copy information In
that unit through many time steps! Less

) vanishing gradient!

®h

SUNE

h', = tanhW(

ool o

h=01-2z)®h +z

» Units with short-term dependencies often
have reset gates very active

Slide credit: Richard Socher 194



LSTMs and GRUs

Good

« Careful initialization and optimization of vanilla RNNs can enable them to learn
long(ish) dependencies, but gated additive cells, like the LSTM and GRU, often

just work.

Bad

 LSTMs and GRUs have considerably more parameters and computation per
memory cell than a vanilla RNN, as such they have less memory capacity per

parameter®
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Next Lecture:
Attention and Transformers



