
Illustration: DeepMind

Lecture #4 – Attention and Transformers

Aykut Erdem // Koç University // Spring 2022

COMP547
DEEP UNSUPERVISED
LEARNING

Previously on COMP547
• sequence modeling

• recurrent neural networks (RNNs)

• language modeling with RNNs

• how to train RNNs

• long short-term memory (LSTM)

• gated recurrent unit (GRU)

image: Oleg Soroko2

Using RNNs to generate Super Mario Maker levels, Adam Geitgey

Lecture overview
• content-based attention
• location-based attention
• soft vs. hard attention
• case study: Show, Attend and Tell
• self-attention
• case study: Transformer networks

Disclaimer: Much of the material and slides for this lecture were borrowed from
— Dzmitry Bahdanau’s IFT 6266 slides
— Graham Neubig’s CMU CS11-747 Neural Networks for NLP class
— Mateusz Malinowski’s lecture on Attention-based Networks
— Yoshua Bengio’s talk on From Attention to Memory and towards Longer-Term Dependencies
— Kyunghyun Cho’s slides on neural sequence modeling
— Arian Hosseini’s IFT 6135 slides
— Phillip Isola’s MIT 6.S898 slides

3

Encoder-Decoder Framework
• Intermediate representation of meaning

= ‘universal representation’

• Encoder: from word sequence to sentence representation

• Decoder: from representation to word sequence distribution

4

�� �� ��

��� �� ��

�

�	�
�	�

��
�	�

French
encoder

English
decoder

French sentence

English sentence

English
encoder

English
decoder

English sentence

English sentence

Fo
r

bi
te

xt
da

ta

Fo
r

un
ili

ng
ua

ld
at

a

Sequence Representations
• But what if we could use multiple vectors, based on the length of

the sequence

5

Sentence Representations

• But what if we could use multiple vectors, based on
the length of the sentence.

this is an example

this is an example

“You can’t cram the meaning of a whole %&!$ing
sentence into a single $&!*ing vector!”

— Ray Mooney

Problem!

Attention Models
in Deep Learning

6

A lot of things are called “attention”
these days...
1. Attention (alignment) models used in applications of deep learning with

variable-length inputs and outputs (typical sequential).

2. Models of visual attention that process a region of an image at high resolution
or the whole image at low resolution.

3. Internal self-attention mechanisms can be used to replace recurrent and
convolutional networks for sequential data.

4. Addressing schemes of memory-augmented neural networks

The shared idea: focus on the relevant parts of the input (output).

7

Attention in Deep Learning Applications
[to Language Processing]

machine translation speech recognition

speech synthesis, summarization, … any sequence-to-sequence
(seq2seq) task

8

Example: Machine Translation

[“An”, “RNN”, “example”, “.”] → [“Un”, “example”, “de”, “RNN”, “.”]

Machine translation presented a challenge to vanilla deep learning

● input and output are sequences

● the lengths vary

● input and output may have different lengths

● no obvious correspondence between positions in the input and
in the output

10

Vanilla seq2seq learning for machine
translation

Recurrent Continuous Translation Models, Kalchbrenner et al, EMNLP 2013
Sequence to Sequence Learning with Recurrent Neural Networks, Sutskever et al., NIPS 2014
Learning Phrase Representations using RNN Encoder–Decoder for
Statistical Machine Translation, Cho et al., EMNLP 2014

input sequence output sequence

fixed size representation

11

Problems with vanilla seq2seq

● training the network to encode 50 words in a vector is hard ⇒ very big
models are needed

● gradients has to flow for 50 steps back without vanishing ⇒ training can
be slow and require lots of data

bottleneck

long term dependencies

12

Soft attention

lets decoder focus on the relevant hidden states
of the encoder, avoids squeezing everything
into the last hidden state ⇒ no bottleneck!

dynamically creates shortcuts in the computation
graph that allow the gradient to flow freely
⇒ shorter dependencies!

best with a bidirectional encoder

13Neural Machine Translation by Jointly Learning to Align and Translate, Bahdanau et al, ICLR 2015

Soft attention - math 1
At each step the decoder consumes a different weighted combination
of the encoder states, called context vector or glimpse.

14

Soft attention - math 2
But where do the weights come from?
They are computed by another network!

The choice from the original paper is
1-layer MLP:

15

Soft attention - computational aspects
The computational complexity of using soft attention is quadratic. But it’s not slow:

● for each pair of i and j
○ sum two vectors
○ apply tanh
○ compute dot product

● can be done in parallel for all j, i.e.
○ add a vector to a matrix
○ apply tanh
○ compute vector-matrix product

● softmax is cheap

● weighted combination is another vector-matrix product

● in summary: just vector-matrix products = fast!

16

Soft attention - visualization

[penalty???]Great visualizations at http://distill.pub/2016/augmented-rnns/#attentional-interfaces

17

Great visualizations at https://distill.pub/2016/augmented-rnns/#attentional-interfaces

https://distill.pub/2016/augmented-rnns/

18

(Bahdanau et al 2014, Jean et al 2014,
Gulcehre et al 2015, Jean et al 2015)

Soft attention -
visualization

Soft attention - improvements
no performance drop on long sentences

much better than RNN
Encoder-Decoder

without unknown words
comparable with the
SMT system

19

Progress in Machine Translation
[Edinburgh En-De WMT newstest2013 Cased BLEU; NMT 2015 from U. Montréal]

0

5

10

15

20

25

2013 2014 2015 2016

Phrase-based SMT Syntax-based SMT Neural MT

From [Sennrich 2016, http://www.meta-net.eu/events/meta-forum-2016/slides/09_sennrich.pdf]

End-to-End Machine Translation with Recurrent Nets
and Attention Mechanism

20

(Bahdanau et al 2014, Jean et al 2014, Gulcehre et al 2015, Jean et al 2015)

Figure credit: Rico Sennrich

Progress in Machine Translation
[Edinburgh En-De WMT newstest2013 Cased BLEU; NMT 2015 from U. Montréal]

0

5

10

15

20

25

2013 2014 2015 2016

Phrase-based SMT Syntax-based SMT Neural MT

From [Sennrich 2016, http://www.meta-net.eu/events/meta-forum-2016/slides/09_sennrich.pdf]

Progress in Machine Translation
[Edinburgh En-De WMT newstest2013 Cased BLEU; NMT 2015 from U. Montréal]

0

5

10

15

20

25

2013 2014 2015 2016

Phrase-based SMT Syntax-based SMT Neural MT

From [Sennrich 2016, http://www.meta-net.eu/events/meta-forum-2016/slides/09_sennrich.pdf]

Progress in Machine Translation
[Edinburgh En-De WMT newstest2013 Cased BLEU; NMT 2015 from U. Montréal]

0

5

10

15

20

25

2013 2014 2015 2016

Phrase-based SMT Syntax-based SMT Neural MT

From [Sennrich 2016, http://www.meta-net.eu/events/meta-forum-2016/slides/09_sennrich.pdf]

Soft content-based attention pros and cons

Pros
● faster training, better performance
● good inductive bias for many tasks → lowers sample complexity

Cons
● not good enough inductive bias for tasks with monotonic

alignment (handwriting recognition, speech recognition)
● chokes on sequences of length >1000

21

Location-based attention

● in content-based attention the attention weights depend
on the content at different positions of the input (hence
BiRNN)

● in location-based attention the current attention weights
are computed relative to the previous attention weights

22

Gaussian mixture location-based attention
Originally proposed for handwriting synthesis.

The (unnormalized) weight of the input
position u at the time step t is parametrized
as a mixture of K Gaussians

23Section 5, Generating Sequence with Recurrent Neural Networks, A. Graves 2014

Gaussian mixture location-based attention
The new locations of Gaussians are computed as a sum of the
previous ones and the predicted offsets

24

Gaussian mixture location-based attention

The first soft attention mechanism ever!

Pros:
● good for problems with monotonic alignment

Cons:
● predicting the offset can be challenging
● only monotonic alignment (although exp in theory could be removed)

25

Various Soft-Attentions

● use dot-product or non-linearity of choice instead of tanh in content-based
attention

● use unidirectional RNN instead of Bi- (but not pure word embeddings!)

● explicitly remember past alignments with an RNN

● use a separate embedding for each of the positions of the input (heavily
used in Memory Networks)

● mix content-based and location-based attentions

See “Attention-Based Models for Speech Recognition” by Chorowski et al
(2015) for a scalability analysis of various attention mechanisms on speech
recognition.

26

Attention Score Functions (2)
• Dot Product (Luong et al. 2015) 
 

• No parameters! But requires sizes to be the same.

• Scaled Dot Product (Vaswani et al. 2017)

• Problem: scale of dot product increases as dimensions get
larger

• Fix: scale by size of the vector

a(q,k) = q|k

a(q,k) =
q|kp
|k|

Attention Score Functions (1)
• q is the query and k is the key

• Multi-layer Perceptron (Bahdanau et al. 2015)  
 

• Flexible, often very good with large data

• Bilinear (Luong et al. 2015)

a(q,k) = w|
2 tanh(W1[q;k])

a(q,k) = q|Wk

Attention Score Functions (1)
• q is the query and k is the key

• Multi-layer Perceptron (Bahdanau et al. 2015)  
 

• Flexible, often very good with large data

• Bilinear (Luong et al. 2015)

a(q,k) = w|
2 tanh(W1[q;k])

a(q,k) = q|Wk

Attention Score Functions (2)
• Dot Product (Luong et al. 2015) 
 

• No parameters! But requires sizes to be the same.

• Scaled Dot Product (Vaswani et al. 2017)

• Problem: scale of dot product increases as dimensions get
larger

• Fix: scale by size of the vector

a(q,k) = q|k

a(q,k) =
q|kp
|k|

Various Attention Score Functions
• q is the query and k is the key

• Multi-layer Perceptron
(Bahdanau et al. 2015)

− Flexible, often very good with large
data

• Bilinear (Luong et al. 2015)

• Dot Product (Luong et al. 2015)

− No parameters! But requires sizes to
be the same.

• Scaled Dot Product (Vaswani et al. 2017)

− Problem: scale of dot product
increases as dimensions get • larger

− Fix: scale by size of the vector

27

Going back in time: Connection Temporal
Classification (CTC)
● CTC is a predecessor of soft

attention that is still widely used

● has very successful inductive
bias for monotonous seq2seq
transduction

● core idea: sum over all possible
ways of inserting blank tokens
in the output so that it aligns
with the input

28Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks, Graves et al, ICML 2006

CTC
labeling

input
sum over all labelling
with blanks

conditional
probability of a
labeling with blanks

probability of
outputting
at the step t

29

⇡t

<latexit sha1_base64="mhXPapO02BthYwYkil0rXkOrYcQ=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cKpi20oWy2m3bpZhN2J0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTxqmSTTjPsskYnuhNRwKRT3UaDknVRzGoeSt8Px3cxvP3FtRKIecZLyIKZDJSLBKFrJ76Wij/1qza27c5BV4hWkBgWa/epXb5CwLOYKmaTGdD03xSCnGgWTfFrpZYanlI3pkHctVTTmJsjnx07JmVUGJEq0LYVkrv6eyGlszCQObWdMcWSWvZn4n9fNMLoJcqHSDLlii0VRJgkmZPY5GQjNGcqJJZRpYW8lbEQ1ZWjzqdgQvOWXV0nrou5d1q8eLmuN2yKOMpzAKZyDB9fQgHtogg8MBDzDK7w5ynlx3p2PRWvJKWaO4Q+czx/ey468</latexit>

CTC
● can be viewed as modelling p(y|x) as sum of all p(y|a,x), where a is

a monotonic alignment

● thanks to the monotonicity assumption the marginalization of a
can be carried out with forward-backward algorithm
(a.k.a. dynamic programming)

● hard stochastic monotonic attention

● popular in speech and handwriting
recognition

● yi are conditionally independent given a
and x but this can be fixed

30

Soft Attention and CTC for seq2seq: summary

● the most flexible and general is content-based soft
attention and it is very widely used, especially in natural
language processing

● location-based soft attention is appropriate for when the
input and the output can be monotonously aligned;
location-based and content-based approaches can be
mixed

● CTC is less generic but can be hard to beat on tasks with
monotonous alignments

31

Visual and Hard Attention

32

Models of Visual Attention

● Convnets are great! But they process the whole image at a high
resolution.

● “Instead humans focus attention selectively on parts of the visual
space to acquire information when and where it is needed, and
combine information from different fixations over time to build up an
internal representation of the scene” (Mnih et al, 2014)

● hence the idea: build a recurrent network that focus on a patch of
an input image at each step and combines information from
multiple steps

33Recurrent Models of Visual Attention, V. Mnih et al, NIPS 2014

A Recurrent Model of Visual Attention

“retina-like”
representation

glimpse

location
(sampled from a Gaussian)

RNN state

action
(e.g. output a class)

34

A Recurrent Model of Visual Attention - math 1

Objective:

When used for classification the correct class is known. Instead of
sampling the actions the following expression is used as a reward:

⇒ optimizes Jensen lower bound on the log-probability p(a*|x)!

interaction sequence

sum of rewards

35

A Recurrent Model of Visual Attention

The gradient of J has to be approximated (REINFORCE)

Baseline is used to lower the variance of the estimator:

next action

36

A Recurrent Visual Attention Model -
visualization

37

Soft and Hard Attention

Recurrent Attention Model (RAM) attention mechanism is hard - it
outputs a precise location where to look.

Content-based attention from neural MT is soft - it assigns weights to
all input locations.

CTC can be interpreted as a hard attention mechanism with tractable
gradient.

38

Soft and Hard Attention

Soft

● deterministic

● exact gradient

● O(input size)

● typically easy to train

Hard

● stochastic*

● gradient approximation**

● O(1)

● harder to train

* deterministic hard attention would not have gradients
** exact gradient can be computed for models with tractable marginalization
(e.g. CTC)

39

Soft and Hard Attention

Can soft content-based attention be used for vision? Yes.

Show Attend and Tell, Xu et al, ICML 2015

Can hard attention be used for seq2seq? Yes.

Learning Online Alignments with
Continuous Rewards Policy Gradient,
Luo et al, NIPS 2016

(but the learning curves are a nightmare…)

40

DRAW: soft location-based attention for
vision

41

Why attention?
• Long term memories - attending to memories

− Dealing with gradient vanishing problem

• Exceeding limitations of a global representation
− Attending/focusing to smaller parts of data

§ patches in images
§ words or phrases in sentences

• Decoupling representation from a problem
− Different problems required different sizes of representations

§ LSTM with longer sentences requires larger vectors

• Overcoming computational limits for visual data
− Focusing only on the parts of images
− Scalability independent of the size of images

• Adds some interpretability to the models (error inspection)
42

Recurrent net memory

Attention
mechanism

Attention on Memory Elements
• Recurrent networks cannot remember things for very long

• The cortex only remember things for 20 seconds

• We need a “hippocampus” (a separate memory module)
• LSTM [Hochreiter 1997], registers
• Memory networks [Weston et 2014] (FAIR), associative memory
• NTM [Graves et al. 2014], “tape”.

Recall: Long-Term Dependencies
• The RNN gradient is a product of Jacobian matrices, each associated

with a step in the forward computation. To store information robustly
in a finite-dimensional state, the dynamics must be contractive
[Bengio et al 1994].

• Problems:
• sing. values of Jacobians > 1 à gradients explode
• or sing. values < 1 à gradients shrink & vanish
• or random à variance grows exponentially

44

Storing bits
robustly requires
sing. values<1

(Hochreiter 1991)

Gradient
clipping

×

input input gate forget gate output gate

output

state

self-loop

×

+ ×

Gated Recurrent Units & LSTM
• Create a path where gradients

can flow for longer with self-loop

• Corresponds to an eigenvalue of
Jacobian slightly less than 1

• LSTM is heavily used
(Hochreiter & Schmidhuber 1997)

• GRU light-weight version
(Cho et al 2014)

45

xtxt�1 xt+1x

unfold

s

o

st�1

ot�1 ot

st st+1

ot+1

W1

W3

W1 W1 W1 W1

W3

st�2

W3 W3 W3

Delays & Hierarchies to Reach Farther
• Delays and multiple time

scales, Elhihi & Bengio NIPS
1995, Koutnik et al ICML 2014

46

Hierarchical RNNs
(words / sentences):
Sordoni et al CIKM 2015,
Serban et al AAAI 2016

Large Memory Networks: Sparse Access
Memory for Long-Term Dependencies
• A mental state stored in an external memory can stay for arbitrarily

long durations, until evoked for read or write

• Forgetting = vanishing gradient.

• Memory = larger state, avoiding the need for forgetting/vanishing

47

passive copy

access

Memory Networks
• Class of models that combine large memory with learning component

that can read and write to it.

• Incorporates reasoning with attention over memory (RAM).

• Most ML has limited memory which is more-or-less all that’s needed for
“low level” tasks e.g. object detection.

48

Jason Weston, Sumit Chopra, Antoine Bordes. Memory Networks. ICLR 2016
S. Sukhbaatar, A. Szlam, J. Weston, R. Fergus. End-to-end Memory Networks. NIPS 2015
Ankit Kumar et al. Ask Me Anything: Dynamic Memory Networks for Natural Language Processing. ICML 2016
Alex Graves et al. Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626): 471–476,
2016.

Case Study: Show, Attend and Tell

49

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov,
R. Zemel, Y. Bengio. ICML 2015

Paying Attention
to Selected Parts
of the Image
While Uttering
Words

50

51

softmax

p̂1

h1

x1

<s>

⇠

Akiko

h2

softmax

x2

⇠

likes

x3

h3

softmax

⇠

Pimm’s

x4

h4

softmax

⇠

</s>

กৼ΅ ϡϭφ͢ অͣͽͯ

Sutskever et al. (2014)Sutskever et al. (2014)

52

softmax

p̂1

h1

x1

<s>

⇠

a

h2

softmax

x2

⇠

man

x3

h3

softmax

⇠

is

x4

h4

softmax

⇠

rowing

Vinyals et al. (2014) Show and Tell: A Neural Image Caption GeneratorVinyals et al. (2014) Show and Tell: A Neural Image Caption Generator

Regions in ConvNets

• Each point in a “higher” level of a convnet defines spatially localized
feature vectors(/matrices).

• Xu et al. calls these “annotation vectors”,
53

Regions in ConvNets

Each point in a “higher” level of a convnet  
defines spatially localised feature vectors(/matrices).

Xu et al. calls these “annotation vectors”, ai, i 2 {1, . . . , L}

Regions in ConvNets

Each point in a “higher” level of a convnet  
defines spatially localised feature vectors(/matrices).

Xu et al. calls these “annotation vectors”, ai, i 2 {1, . . . , L}

Regions in ConvNets

54

a1

a1

h i
F =

Regions in ConvNets

55

Regions in ConvNets

56

Extension of LSTM via the context vector
• Extract L D-dimensional annotations

− Lower convolutional layer to have the correspondence between the feature vectors and
portions of the 2-D image

57

M. Malinowski

Extension of LSTM via the context vector
• Extract L D-dimensional annotations

‣ Lower convolutional layer to have the correspondence between the
feature vectors and portions of the 2-D image

20

Neural Image Caption Generation with Visual Attention

with images, Donahue et al. (2014) also apply LSTMs to
videos, allowing their model to generate video descriptions.

All of these works represent images as a single feature vec-
tor from the top layer of a pre-trained convolutional net-
work. Karpathy & Li (2014) instead proposed to learn a
joint embedding space for ranking and generation whose
model learns to score sentence and image similarity as a
function of R-CNN object detections with outputs of a bidi-
rectional RNN. Fang et al. (2014) proposed a three-step
pipeline for generation by incorporating object detections.
Their model first learn detectors for several visual concepts
based on a multi-instance learning framework. A language
model trained on captions was then applied to the detector
outputs, followed by rescoring from a joint image-text em-
bedding space. Unlike these models, our proposed atten-
tion framework does not explicitly use object detectors but
instead learns latent alignments from scratch. This allows
our model to go beyond “objectness” and learn to attend to
abstract concepts.

Prior to the use of neural networks for generating captions,
two main approaches were dominant. The first involved
generating caption templates which were filled in based
on the results of object detections and attribute discovery
(Kulkarni et al. (2013), Li et al. (2011), Yang et al. (2011),
Mitchell et al. (2012), Elliott & Keller (2013)). The second
approach was based on first retrieving similar captioned im-
ages from a large database then modifying these retrieved
captions to fit the query (Kuznetsova et al., 2012; 2014).
These approaches typically involved an intermediate “gen-
eralization” step to remove the specifics of a caption that
are only relevant to the retrieved image, such as the name
of a city. Both of these approaches have since fallen out of
favour to the now dominant neural network methods.

There has been a long line of previous work incorpo-
rating attention into neural networks for vision related
tasks. Some that share the same spirit as our work include
Larochelle & Hinton (2010); Denil et al. (2012); Tang et al.
(2014). In particular however, our work directly extends
the work of Bahdanau et al. (2014); Mnih et al. (2014); Ba
et al. (2014).

3. Image Caption Generation with Attention

Mechanism

3.1. Model Details

In this section, we describe the two variants of our
attention-based model by first describing their common
framework. The main difference is the definition of the
� function which we describe in detail in Section 4. We
denote vectors with bolded font and matrices with capital
letters. In our description below, we suppress bias terms for
readability.

Figure 4. A LSTM cell, lines with bolded squares imply projec-
tions with a learnt weight vector. Each cell learns how to weigh
its input components (input gate), while learning how to modulate
that contribution to the memory (input modulator). It also learns
weights which erase the memory cell (forget gate), and weights
which control how this memory should be emitted (output gate).

3.1.1. ENCODER: CONVOLUTIONAL FEATURES

Our model takes a single raw image and generates a caption
y encoded as a sequence of 1-of-K encoded words.

y = {y1, . . . ,yC} , yi 2 RK

where K is the size of the vocabulary and C is the length
of the caption.

We use a convolutional neural network in order to extract a
set of feature vectors which we refer to as annotation vec-
tors. The extractor produces L vectors, each of which is
a D-dimensional representation corresponding to a part of
the image.

a = {a1, . . . ,aL} , ai 2 RD

In order to obtain a correspondence between the feature
vectors and portions of the 2-D image, we extract features
from a lower convolutional layer unlike previous work
which instead used a fully connected layer. This allows the
decoder to selectively focus on certain parts of an image by
selecting a subset of all the feature vectors.

3.1.2. DECODER: LONG SHORT-TERM MEMORY
NETWORK

We use a long short-term memory (LSTM) net-
work (Hochreiter & Schmidhuber, 1997) that produces a
caption by generating one word at every time step condi-
tioned on a context vector, the previous hidden state and the
previously generated words. Our implementation of LSTM

E - embedding matrix 
y - captions
h - previous hidden state
z - context vector, a dynamic
representation of the relevant
part of the image input at time t

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

is the ‘attention’ (‘focus’) function - ‘soft’ / ‘hard’

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

is MLP conditioned on the
previous hidden state

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

E: embedding matrix
y: captions
h: previous hidden state
z: context vector, a dynamic representation
of the relevant part of the image input at time t

is the ‘attention’ (‘focus’) function – ‘soft’ / ’hard’

A MLP conditioned on
the previous hidden state

How soft/hard
attention works

62

How soft/hard attention works

63

Sample regions of attention

A variational lower bound of
maximum likelihood Computes the expexted attention

64

Hard
Attention

65
Soft Attention

The Good

66

And the Bad

67

Quantitative results

68

M. Malinowski

Quantitative results

29

7

Instead, here we describe a more recently proposed approach
based on the attention-based encoder–decoder framework in
[22].

Fig. 4. Graphical illustration of the attention-based encoder–decoder model
for image caption generation.

1) Model Description: The usual encoder–decoder based
image caption generation models use the activation of the
last fully-connected hidden layer as the continuous-space
representation, or the context vector, of the input image (see
Sec. II-D.) The authors of [22] however proposed to use the
activation from the last convolutional layer of the pre-trained
convolutional network, as in the bottom half of Fig. 4.

Unlike the fully-connected layer, in this case, the context set
consists of multiple vectors that correspond to different spatial
regions of the input image on which the attention mechanism
can be applied. Furthermore, due to convolution and pooling,
the spatial locations in pixel space represented by each con-
text vector overlaps substantially with those represented by
the neighbouring context vectors, which helps the attention
mechanism distinguish similar objects in an image using its
context information with respect to the whole image, or the
neighbouring pixels.

Similarly to the attention-based neural machine translation
in Sec. IV-A, the decoder is implemented as a conditional
RNN-LM. In [22], the content-based attention mechanism (see
Eq. (16)) with either the weighted sum (see Eq. (13)) or
hard decision (see Eq. (14) was tested by training a model
with the maximum likelihood estimator from Sec. III-C1 and
the variational learning from Sec. III-C2, respectively. The
authors of [22] reported the similar performances with these
two approaches on a number of benchmark datasets.

2) Experimental Result: In [22], the attention-based image
caption generator was evaluated on three datasets; Flickr
8K [47], Flickr 30K [48] and MS CoCo [49]. In addition to
the self-evaluation, an ensemble of multiple attention-based
models was submitted to Microsoft COCO Image Captioning
Challenge6 and evaluated with multiple automatic evaluation
metrics7 as well as by human evaluators.

6https://www.codalab.org/competitions/3221
7 BLEU [50], METEOR [51], ROUGE-L [52] and CIDEr [53].

TABLE III
THE PERFORMANCES OF THE IMAGE CAPTION GENERATION MODELS IN
THE MICROSOFT COCO IMAGE CAPTIONING CHALLENGE. (?) [20], (•)

[18], (�) [45], (⇧) [46] AND (⇤) [22]. THE ROWS ARE SORTED
ACCORDING TO M1.

Human Automatic
Model M1 M2 BLEU CIDEr
Human 0.638 0.675 0.471 0.91

Google? 0.273 0.317 0.587 0.946
MSR• 0.268 0.322 0.567 0.925

Attention-based⇤ 0.262 0.272 0.523 0.878
Captivator� 0.250 0.301 0.601 0.937

Berkeley LRCN⇧ 0.246 0.268 0.534 0.891

In this Challenge, the attention-based approach ranked third
based on the percentage of captions that are evaluated as better
or equal to human caption (M1) and the percentage of captions
that pass the Turing Test (M2). Interestingly, the same model
was ranked eighth according to the most recently proposed
metric of CIDEr and ninth according to the most widely used
metric of BLEU.8 It means that this model has better relative
performance in terms of human evaluation than in terms of the
automatic metrics, which only look at matching subsequences
of words, not directly at the meaning of the generated sentence.
The performance of the top-ranked systems, including the
attention-based model from [22], are listed in Table III.

The attention-based model was further found to be highly
interpretable, especially, compared to the simple encoder–
decoder models. See Fig. 5 for some examples.

C. Video Description Generation
Soon after the neural machine translation based on the

simple encoder–decoder framework was proposed in [25],
[3], it was further applied to video description generation,
which amounts to translating a (short) video clip to its natural
language description [28]. The authors of [28] used a pre-
trained convolutional network (see Sec. II-D) to extract a
feature vector from each frame of the video clip and average all
the frame-specific vectors to obtain a single fixed-dimensional
context vector of the whole video. A conditional RNN-LM
from Sec. II-B was used to generate a description based on
this context vector.

Since any video clip clearly has both temporal and spatial
structures, it is possible to exploit them by using the attention
mechanism described throughout this paper. In [23], the au-
thors proposed an approach based on the attention mechanism
to exploit the global and local temporal structures of the video
clips. Here we briefly describe their approach.

1) Model Description: In [23], two different types of
encoders are tested. The first one is a simple frame-wise
application of the pre-trained convolutional network. However,
they did not pool those per-frame context vectors as was done
in [28], but simply form a context set consisting of all the per-
frame feature vectors. The attention mechanism will work to
select one of those per-frame vectors for each output symbol
being decoded. In this way, the authors claimed that the overall
model captures the global temporal structure (the structure
across many frames, potentially across the whole video clip.)

8http://mscoco.org/dataset/#leaderboard-cap

M1 - humans preferred (or equal) the method over human annotation
M2 - turing test

M1: human preferred (or equal) the method over human annotation
M2: turing test

• Add soft attention to image captioning: +2 BLEU
• Add hard attention to image captioning: +4 BLEU

Figure 2. Illustration of the spatio-
temporal convolutional neural network
(3-D CNN). This network is trained for
activity recognition. Then, only the con-
volutional layers are involved when gen-
erating video descriptions.

image. Here, we thus adapt it to exploit the temporal struc-
ture of video instead.

Instead of a simple averaging strategy (as shown in
Eq. (4)), we take the dynamic weighted sum of the temporal
feature vectors such that

't(V) =
nX

i=1

↵(t)
i vi,

where
Pn

i=1 ↵
(t)
i = 1 and ↵(t)

i ’s are computed at each time
step t inside the LSTM decoder (see Sec. 2.3). We refer to
↵(t)
i as the attention weights at time t.

The attention weight ↵(t)
i reflects the relevance of the

i-th temporal feature in the input video given all the previ-
ously generated words, i.e., y1, . . . yt�1. Hence, we design
a function that takes as input the previous hidden state ht�1

of the LSTM decoder, which summarizes all the previously
generated words, and the feature vector of the i-th temporal
feature and returns the unnormalized relevance score e(t)i :

e(t)i = w> tanh (Waht�1 +Uavi + ba) ,

where w, Wa, Ua and ba are the parameters that are esti-
mated together with all the other parameters of the encoder
and decoder networks.

Once the relevance scores e(t)i for all the frames i =
1, . . . , n are computed, we normalize them to obtain the
↵(t)
i ’s:

↵(t)
i = exp

n
e(t)i

o
/

nX

j=1

exp
n
e(t)j

o
.

We refer to the attention mechanism as this whole process
of computing the unnormalized relevance scores and nor-
malizing them to obtain the attention weights.

The attention mechanism allows the decoder to selec-
tively focus on only a subset of frames by increasing the
attention weights of the corresponding temporal feature.
However, we do not explicitly force this type of selective
attention to happen. Rather, this inclusion of the atten-
tion mechanism enables the decoder to exploit the temporal

structure, if there is useful temporal structure in the data.
Later in Sec. 5, we empirically show that this is indeed the
case. See Fig. 3 for the graphical illustration of the temporal
attention mechanism.

4. Related Work
Video description generation has been investigated and

studied in other work, such as [21, 2, 28]. Most of these
examples have, however, constrained the domain of videos
as well as the activities and objects embedded in the video
clips. Furthermore, they tend to rely on hand-crafted vi-
sual representations of the video, to which template-based
or shallow statistical machine translation approaches were
applied. In contrast, the approach we take and propose
in this paper aims at open-domain video description gen-
eration with deep trainable models starting from low-level
video representations, including raw pixel intensities (see
Sec. 2.2) and local motion features (see Sec. 3.1).

In this sense, the approach we use here is more closely
related to the recently introduced static image caption gen-
eration approaches based mainly on neural networks [20,
12, 42, 44, 18]. A neural approach to static image caption
generation has recently been applied to video description
generation by Venugopalan et al. [41]. However, their di-
rect adaptation of the underlying static image caption gener-
ation mechanism to the videos is limited by the fact that the
model tends to ignore the temporal structure of the under-
lying video. Such structure has demonstrated to be helpful
in the context of event and action classification [35, 13, 6],
and is explored in this paper. Other recent work [27] has
explored the use of DVS annotated video for video descrip-
tion research and has underscored the observation that DVS
descriptions are typically much more relevant and accurate
descriptions of the visual content of a video compared to
movie scripts. They present results using both DVS and
script based annotations as well as cooking activities.

While other work has explored 3-D Deep Networks for
video [36, 16, 18, 30] our particular approach differs in a
number of ways from prior work in that it is based on CNNs
as opposed to other 3-D deep architectures and we focus on

Video Description Generation

69

• Two encoders
− Context set consists of per-frame context vectors, and attention mechanism that selects one of those

vectors for each output symbol being decoded – capturing the global temporal structure across frames
− 3-D conv-net that applies local filters across spatio-temporal dimensions working on motion statistics

• Both encoders are complementary

M. Malinowski

Other applications

31

Applications

Video Description Generation
• L. Yao et. al. “Describing videos by exploiting temporal structure”
• Two encoders

• Context set consists of per-frame context vectors, and attention mechanism that selects one of those vectors  
for each output symbol being decoded - capturing the global temporal structure across frames

• 3-D conv-net that applies local filters across spation-temporal dimensions working on motion statistics
• Both encoders are complementary

8

Fig. 5. Examples of the attention-based model attending to the correct object (white indicates the attended regions, underlines indicated the corresponding
word) [22]

Fig. 6. The 3-D convolutional network for motion from [23].

The other type of encoder in [23] is a so-called 3-D
convolutional network, shown in Fig. 6. Unlike the usual
convolutional network which often works only spatially over a
two-dimensional image, the 3-D convolutional network applies
its (local) filters across the spatial dimensions as well as the
temporal dimensions. Furthermore, those filters work not on
pixels but on local motion statistics, enabling the model to
concentrate on motion rather than appearance. Similarly to
the strategy from Sec. II-D, the model was trained on larger
video datasets to recognize an action from each video clip, and
the activation vectors from the last convolutional layer were
used as context. The authors of [23] suggest that this encoder
extracts more local temporal structures complementing the
global structures extracted from the frame-wise application of
a 2-D convolutional network.

The same type of decoder, a conditional RNN-LM, used in
[22] was used with the content-based attention mechanism in
Eq. (16).

2) Experimental Result: In [23], this approach to video
description generation has been tested on two datasets; (1)
Youtube2Text [54] and (2) Montreal DVS [55]. They showed
that it is beneficial to have both types of encoders together
in their attention-based encoder–decoder model, and that
the attention-based model outperforms the simple encoder–
decoder model. See Table IV for the summary of the evalua-
tion.

TABLE IV
THE PERFORMANCE OF THE VIDEO DESCRIPTION GENERATION MODELS
ON YOUTUBE2TEXT AND MONTREAL DVS. (?) HIGHER THE BETTER.

(�) LOWER THE BETTER.

Youtube2Text Montreal DVS
Model METEOR? Perplexity� METEOR Perplexity

Enc-Dec 0.2868 33.09 0.044 88.28
+ 3-D CNN 0.2832 33.42 0.051 84.41

+ Per-frame CNN 0.2900 27.89 .040 66.63
+ Both 0.2960 27.55 0.057 65.44

Similarly to all the other previous applications of the
attention-based model, the attention mechanism applied to the
task of video description also provides a straightforward way
to inspect the inner workings of the model. See Fig. 7 for
some examples.

Fig. 7. Two sample videos and their corresponding generated and ground-
truth descriptions from Youtube2Text. The bar plot under each frame cor-
responds to the attention weight ↵t

j (see Eq. (11)) for the frame when the
corresponding word (color-coded) was generated. Reprinted from [23].

3-D conv-net

8

Fig. 5. Examples of the attention-based model attending to the correct object (white indicates the attended regions, underlines indicated the corresponding
word) [22]

Fig. 6. The 3-D convolutional network for motion from [23].

The other type of encoder in [23] is a so-called 3-D
convolutional network, shown in Fig. 6. Unlike the usual
convolutional network which often works only spatially over a
two-dimensional image, the 3-D convolutional network applies
its (local) filters across the spatial dimensions as well as the
temporal dimensions. Furthermore, those filters work not on
pixels but on local motion statistics, enabling the model to
concentrate on motion rather than appearance. Similarly to
the strategy from Sec. II-D, the model was trained on larger
video datasets to recognize an action from each video clip, and
the activation vectors from the last convolutional layer were
used as context. The authors of [23] suggest that this encoder
extracts more local temporal structures complementing the
global structures extracted from the frame-wise application of
a 2-D convolutional network.

The same type of decoder, a conditional RNN-LM, used in
[22] was used with the content-based attention mechanism in
Eq. (16).

2) Experimental Result: In [23], this approach to video
description generation has been tested on two datasets; (1)
Youtube2Text [54] and (2) Montreal DVS [55]. They showed
that it is beneficial to have both types of encoders together
in their attention-based encoder–decoder model, and that
the attention-based model outperforms the simple encoder–
decoder model. See Table IV for the summary of the evalua-
tion.

TABLE IV
THE PERFORMANCE OF THE VIDEO DESCRIPTION GENERATION MODELS
ON YOUTUBE2TEXT AND MONTREAL DVS. (?) HIGHER THE BETTER.

(�) LOWER THE BETTER.

Youtube2Text Montreal DVS
Model METEOR? Perplexity� METEOR Perplexity

Enc-Dec 0.2868 33.09 0.044 88.28
+ 3-D CNN 0.2832 33.42 0.051 84.41

+ Per-frame CNN 0.2900 27.89 .040 66.63
+ Both 0.2960 27.55 0.057 65.44

Similarly to all the other previous applications of the
attention-based model, the attention mechanism applied to the
task of video description also provides a straightforward way
to inspect the inner workings of the model. See Fig. 7 for
some examples.

Fig. 7. Two sample videos and their corresponding generated and ground-
truth descriptions from Youtube2Text. The bar plot under each frame cor-
responds to the attention weight ↵t

j (see Eq. (11)) for the frame when the
corresponding word (color-coded) was generated. Reprinted from [23].

8

Fig. 5. Examples of the attention-based model attending to the correct object (white indicates the attended regions, underlines indicated the corresponding
word) [22]

Fig. 6. The 3-D convolutional network for motion from [23].

The other type of encoder in [23] is a so-called 3-D
convolutional network, shown in Fig. 6. Unlike the usual
convolutional network which often works only spatially over a
two-dimensional image, the 3-D convolutional network applies
its (local) filters across the spatial dimensions as well as the
temporal dimensions. Furthermore, those filters work not on
pixels but on local motion statistics, enabling the model to
concentrate on motion rather than appearance. Similarly to
the strategy from Sec. II-D, the model was trained on larger
video datasets to recognize an action from each video clip, and
the activation vectors from the last convolutional layer were
used as context. The authors of [23] suggest that this encoder
extracts more local temporal structures complementing the
global structures extracted from the frame-wise application of
a 2-D convolutional network.

The same type of decoder, a conditional RNN-LM, used in
[22] was used with the content-based attention mechanism in
Eq. (16).

2) Experimental Result: In [23], this approach to video
description generation has been tested on two datasets; (1)
Youtube2Text [54] and (2) Montreal DVS [55]. They showed
that it is beneficial to have both types of encoders together
in their attention-based encoder–decoder model, and that
the attention-based model outperforms the simple encoder–
decoder model. See Table IV for the summary of the evalua-
tion.

TABLE IV
THE PERFORMANCE OF THE VIDEO DESCRIPTION GENERATION MODELS
ON YOUTUBE2TEXT AND MONTREAL DVS. (?) HIGHER THE BETTER.

(�) LOWER THE BETTER.

Youtube2Text Montreal DVS
Model METEOR? Perplexity� METEOR Perplexity

Enc-Dec 0.2868 33.09 0.044 88.28
+ 3-D CNN 0.2832 33.42 0.051 84.41

+ Per-frame CNN 0.2900 27.89 .040 66.63
+ Both 0.2960 27.55 0.057 65.44

Similarly to all the other previous applications of the
attention-based model, the attention mechanism applied to the
task of video description also provides a straightforward way
to inspect the inner workings of the model. See Fig. 7 for
some examples.

Fig. 7. Two sample videos and their corresponding generated and ground-
truth descriptions from Youtube2Text. The bar plot under each frame cor-
responds to the attention weight ↵t

j (see Eq. (11)) for the frame when the
corresponding word (color-coded) was generated. Reprinted from [23].

M. Malinowski

Other applications

31

Applications

Video Description Generation
• L. Yao et. al. “Describing videos by exploiting temporal structure”
• Two encoders

• Context set consists of per-frame context vectors, and attention mechanism that selects one of those vectors  
for each output symbol being decoded - capturing the global temporal structure across frames

• 3-D conv-net that applies local filters across spation-temporal dimensions working on motion statistics
• Both encoders are complementary

8

Fig. 5. Examples of the attention-based model attending to the correct object (white indicates the attended regions, underlines indicated the corresponding
word) [22]

Fig. 6. The 3-D convolutional network for motion from [23].

The other type of encoder in [23] is a so-called 3-D
convolutional network, shown in Fig. 6. Unlike the usual
convolutional network which often works only spatially over a
two-dimensional image, the 3-D convolutional network applies
its (local) filters across the spatial dimensions as well as the
temporal dimensions. Furthermore, those filters work not on
pixels but on local motion statistics, enabling the model to
concentrate on motion rather than appearance. Similarly to
the strategy from Sec. II-D, the model was trained on larger
video datasets to recognize an action from each video clip, and
the activation vectors from the last convolutional layer were
used as context. The authors of [23] suggest that this encoder
extracts more local temporal structures complementing the
global structures extracted from the frame-wise application of
a 2-D convolutional network.

The same type of decoder, a conditional RNN-LM, used in
[22] was used with the content-based attention mechanism in
Eq. (16).

2) Experimental Result: In [23], this approach to video
description generation has been tested on two datasets; (1)
Youtube2Text [54] and (2) Montreal DVS [55]. They showed
that it is beneficial to have both types of encoders together
in their attention-based encoder–decoder model, and that
the attention-based model outperforms the simple encoder–
decoder model. See Table IV for the summary of the evalua-
tion.

TABLE IV
THE PERFORMANCE OF THE VIDEO DESCRIPTION GENERATION MODELS
ON YOUTUBE2TEXT AND MONTREAL DVS. (?) HIGHER THE BETTER.

(�) LOWER THE BETTER.

Youtube2Text Montreal DVS
Model METEOR? Perplexity� METEOR Perplexity

Enc-Dec 0.2868 33.09 0.044 88.28
+ 3-D CNN 0.2832 33.42 0.051 84.41

+ Per-frame CNN 0.2900 27.89 .040 66.63
+ Both 0.2960 27.55 0.057 65.44

Similarly to all the other previous applications of the
attention-based model, the attention mechanism applied to the
task of video description also provides a straightforward way
to inspect the inner workings of the model. See Fig. 7 for
some examples.

Fig. 7. Two sample videos and their corresponding generated and ground-
truth descriptions from Youtube2Text. The bar plot under each frame cor-
responds to the attention weight ↵t

j (see Eq. (11)) for the frame when the
corresponding word (color-coded) was generated. Reprinted from [23].

3-D conv-net

8

Fig. 5. Examples of the attention-based model attending to the correct object (white indicates the attended regions, underlines indicated the corresponding
word) [22]

Fig. 6. The 3-D convolutional network for motion from [23].

The other type of encoder in [23] is a so-called 3-D
convolutional network, shown in Fig. 6. Unlike the usual
convolutional network which often works only spatially over a
two-dimensional image, the 3-D convolutional network applies
its (local) filters across the spatial dimensions as well as the
temporal dimensions. Furthermore, those filters work not on
pixels but on local motion statistics, enabling the model to
concentrate on motion rather than appearance. Similarly to
the strategy from Sec. II-D, the model was trained on larger
video datasets to recognize an action from each video clip, and
the activation vectors from the last convolutional layer were
used as context. The authors of [23] suggest that this encoder
extracts more local temporal structures complementing the
global structures extracted from the frame-wise application of
a 2-D convolutional network.

The same type of decoder, a conditional RNN-LM, used in
[22] was used with the content-based attention mechanism in
Eq. (16).

2) Experimental Result: In [23], this approach to video
description generation has been tested on two datasets; (1)
Youtube2Text [54] and (2) Montreal DVS [55]. They showed
that it is beneficial to have both types of encoders together
in their attention-based encoder–decoder model, and that
the attention-based model outperforms the simple encoder–
decoder model. See Table IV for the summary of the evalua-
tion.

TABLE IV
THE PERFORMANCE OF THE VIDEO DESCRIPTION GENERATION MODELS
ON YOUTUBE2TEXT AND MONTREAL DVS. (?) HIGHER THE BETTER.

(�) LOWER THE BETTER.

Youtube2Text Montreal DVS
Model METEOR? Perplexity� METEOR Perplexity

Enc-Dec 0.2868 33.09 0.044 88.28
+ 3-D CNN 0.2832 33.42 0.051 84.41

+ Per-frame CNN 0.2900 27.89 .040 66.63
+ Both 0.2960 27.55 0.057 65.44

Similarly to all the other previous applications of the
attention-based model, the attention mechanism applied to the
task of video description also provides a straightforward way
to inspect the inner workings of the model. See Fig. 7 for
some examples.

Fig. 7. Two sample videos and their corresponding generated and ground-
truth descriptions from Youtube2Text. The bar plot under each frame cor-
responds to the attention weight ↵t

j (see Eq. (11)) for the frame when the
corresponding word (color-coded) was generated. Reprinted from [23].

8

Fig. 5. Examples of the attention-based model attending to the correct object (white indicates the attended regions, underlines indicated the corresponding
word) [22]

Fig. 6. The 3-D convolutional network for motion from [23].

The other type of encoder in [23] is a so-called 3-D
convolutional network, shown in Fig. 6. Unlike the usual
convolutional network which often works only spatially over a
two-dimensional image, the 3-D convolutional network applies
its (local) filters across the spatial dimensions as well as the
temporal dimensions. Furthermore, those filters work not on
pixels but on local motion statistics, enabling the model to
concentrate on motion rather than appearance. Similarly to
the strategy from Sec. II-D, the model was trained on larger
video datasets to recognize an action from each video clip, and
the activation vectors from the last convolutional layer were
used as context. The authors of [23] suggest that this encoder
extracts more local temporal structures complementing the
global structures extracted from the frame-wise application of
a 2-D convolutional network.

The same type of decoder, a conditional RNN-LM, used in
[22] was used with the content-based attention mechanism in
Eq. (16).

2) Experimental Result: In [23], this approach to video
description generation has been tested on two datasets; (1)
Youtube2Text [54] and (2) Montreal DVS [55]. They showed
that it is beneficial to have both types of encoders together
in their attention-based encoder–decoder model, and that
the attention-based model outperforms the simple encoder–
decoder model. See Table IV for the summary of the evalua-
tion.

TABLE IV
THE PERFORMANCE OF THE VIDEO DESCRIPTION GENERATION MODELS
ON YOUTUBE2TEXT AND MONTREAL DVS. (?) HIGHER THE BETTER.

(�) LOWER THE BETTER.

Youtube2Text Montreal DVS
Model METEOR? Perplexity� METEOR Perplexity

Enc-Dec 0.2868 33.09 0.044 88.28
+ 3-D CNN 0.2832 33.42 0.051 84.41

+ Per-frame CNN 0.2900 27.89 .040 66.63
+ Both 0.2960 27.55 0.057 65.44

Similarly to all the other previous applications of the
attention-based model, the attention mechanism applied to the
task of video description also provides a straightforward way
to inspect the inner workings of the model. See Fig. 7 for
some examples.

Fig. 7. Two sample videos and their corresponding generated and ground-
truth descriptions from Youtube2Text. The bar plot under each frame cor-
responds to the attention weight ↵t

j (see Eq. (11)) for the frame when the
corresponding word (color-coded) was generated. Reprinted from [23].

L. Yao et. al. “Describing videos by exploiting temporal structure”

3D ConvNet

Internal self-attention in deep learning
models

In addition to connecting
the decoder with the
encoder, attention can be
used inside the model,
replacing RNN and CNN!

Transformer from Google
Attention Is All You Need, Vaswani et al, NIPS 2017

70

Parametrization – Recurrent Neural Nets
• Following Bahdanau et al. [2015]

• The encoder turns a sequence of tokens into a sequence of
contextualized vectors.

• The underlying principle behind recently successful contextualized
embeddings
• ELMo [Peters et al., 2018],

BERT [Devlin et al., 2019] and
all the other muppets

71

x1, x2, . . . , xTx
<latexit sha1_base64="Z9/H7I5ZYgNdnrx+gRsrtE3C0ro=">AAACq3icfZHbbhMxEIad5VSWUwpXiBuXCAmhEu2WonJZCS64QRTRtBVxtPJ6J6lVH1b2bElYrXgabuF5eBu8yUaiLWIky5//+Ue2Z/JSSY9J8rsXXbt+4+atjdvxnbv37j/obz488rZyAkbCKutOcu5BSQMjlKjgpHTAda7gOD972+aPz8F5ac0hLkqYaD4zcioFxyBl/cfzLN2m82xnmzJVWPTtoT7M5k3WHyTDZBn0KqQdDEgXB9lm7xsrrKg0GBSKez9OkxInNXcohYImZpWHkoszPoNxQMM1+Em9/ENDnwWloFPrwjJIl+rfFTXX3i90Hpya46m/nGvFf+XGFU7fTGppygrBiNVF00pRtLRtCC2kA4FqEYALJ8NbqTjljgsMbYtjZuCrsFpzU9TMSFNA2QSwyLZYCa4M21aHzUXz2tum6MpG1753EDrk4EN47ccgcbTuRc24m2lpmiWwlv5n5PO1MVAcppVens1VONoZpq+Grz/tDvZ3u7ltkCfkKXlOUrJH9sl7ckBGRJDv5Af5SX5FL6PP0ZeIraxRr6t5RC5EBH8AAQLULQ==</latexit>

Encoder Decoder

p(yl|y<l, X)
<latexit sha1_base64="pjMFZf3jTgp6JRzTYZtnGunX9ag=">AAACoXicfZHLbhMxFIad4VaGS1NYsnGJkApC0QwUlQWLSrCABSIg0kbKRKMzzklq1TfZnsIwzJOwhYfibfAkE4m2iCNZ/vT/v+WjcwojuPNJ8rsXXbl67fqNrZvxrdt37m73d+4dOV1ahmOmhbaTAhwKrnDsuRc4MRZBFgKPi9PXrX98htZxrT77yuBMwlLxBWfgg5T3t81elYvvVV6/Es3TyeO8P0iGyaroZUg7GJCuRvlO71s216yUqDwT4Nw0TYyf1WA9ZwKbOCsdGmCnsMRpQAUS3axedd7QR0GZ04W24ShPV+rfL2qQzlWyCEkJ/sRd9FrxX9609IuXs5orU3pUbP3RohTUa9qOgc65ReZFFQCY5aFXyk7AAvNhWHGcKfzCtJSg5nWmuJqjaQJon+1mBq0J126HzfnwJttadB2jm9wbDBOy+D50+yFI4LV9Umdgl5KrZgVZS/8LwtdNMFActpVe3M1lOHo2TJ8PX3zcHxzud3vbIg/IQ7JHUnJADslbMiJjwkhJfpCf5Fc0iN5Fo+jTOhr1ujf3ybmKpn8A5PjQ1Q==</latexit>

NLL

y⇤l
<latexit sha1_base64="1uItCexg0/++G2JBVfzOFkBTrz4=">AAAClXicfZFNSxxBEIZ7JyYxkw81HnLw0mYJBA/LjBqSS0BQQi6igawKO5ulpqd2bewvuns06zC/wWvy0/Jv0rM7C36EFDT98NZbdHVVbgR3Pkn+dKJHS4+fPF1+Fj9/8fLVyura6xOnS8uwz7TQ9iwHh4Ir7HvuBZ4ZiyBzgaf5xX6TP71E67hW3/3U4FDCRPExZ+CD1J/+2BqJ0Wo36SWzoA8hbaFL2jgerXWus0KzUqLyTIBzgzQxfliB9ZwJrOOsdGiAXcAEBwEVSHTDatZtTd8FpaBjbcNRns7U2xUVSOemMg9OCf7c3c814r9yg9KPPw0rrkzpUbH5Q+NSUK9p83VacIvMi2kAYJaHXik7BwvMhwHFcabwimkpQRVVprgq0NQBtM82M4PWhGuzxfqueeFtUnRuowvfAYYJWTwM3R4FCby2W1UGdiK5qmeQNfQ/I/xcGAPFYVvp/d08hJPtXrrT+/Btt7u32+5tmWyQt+Q9SclHske+kmPSJ4xwckN+kd/Rm+hzdBB9mVujTluzTu5EdPQXstvMjw==</latexit>

y⇤1 , y
⇤
2 , . . . , y

⇤
l�1

<latexit sha1_base64="vx/XlptpfJV8udVlOej677SJ26c=">AAACsXicfZFNbxMxEIadLR9l+WgKRw64REioKtFuWwTHSuXABVEk0hZlQ/B6J6kVf8meLaSrPfJruMKP4d/gTTYSbREjWX78zjuyPZNbKTwmye9OtHbj5q3b63fiu/fuP9jobj489qZ0HAbcSONOc+ZBCg0DFCjh1DpgKpdwks8Om/zJOTgvjP6IcwsjxaZaTARnGKRx98n88/Y43aHNtrtDM1kY9MtjJV+k9bjbS/rJIuh1SFvokTaOxpudi6wwvFSgkUvm/TBNLI4q5lBwCXWclR4s4zM2hWFAzRT4UbX4SU2fBaWgE+PC0kgX6t8VFVPez1UenIrhmb+aa8R/5YYlTl6PKqFtiaD58qJJKSka2rSFFsIBRzkPwLgT4a2UnzHHOIbmxXGm4Ss3SjFdVJkWugBbBzCYbWUWnA3bVov1ZfPK26To0kZXvjcQOuTgXXjt+yAxNG67ypibKqHrBWQN/c/Ivq2MgeIwrfTqbK7D8W4/3eu//LDfO9hv57ZOHpOn5DlJyStyQN6SIzIgnHwnP8hP8ivaiz5FX6J8aY06bc0jcimi2R++OdWj</latexit>

ht = [
�!
h t;
 �
h t], r?2`2 �!h t = _LL(xt,

�!
h t�1),

 �
h t = _LL(xt,

 �
h t+1)

<latexit sha1_base64="WdtZynw8vn0i/T8oyAgirhDM/4U=">AAADVHicfZHRbtMwFIadlsEIMLpxyY1HhVSgqxrYBBJCmgQX3FAGomulpopc96SxltiRfUJbouzheAgk3oUL3DaV1q1wJMu//vMd2/I/SmNhsN3+7VSqt3Zu39m96967/2DvYW3/4NyoTHPochUr3R8xA7GQ0EWBMfRTDSwZxdAbXbxf9HvfQRuh5DecpzBM2ESKUHCG1gpqP6MA6Ts68JWltJhEyLRW0zwqAnxLl24M4RVz2HQvfYQZ5tMINBSX7rZRe+QK+trpFI1ZgE26BcvxyCueNd0t1/zrgA0qxxd2PqjV2632suhN4ZWiTso6C/adH/5Y8SwBiTxmxgy8dorDnGkUPIbC9TMDKeMXbAIDKyVLwAzz5WcX9Kl1xjRU2i6JdOlenchZYsw8GVkyYRiZ672Fua03yDB8M8yFTDMEyVcXhVlMUdFFcnQsNHCM51YwroV9K+UR04yjzdd1fQlTrpKEyXHuSyHHkBZWKPQP/RR0arfDUhab8JpdtOgKo2vuA9gf0vDJvvaztRgq/Tz3mZ4kQhZL4S/U/0A2W4NWuTYt73o2N8X5y5b3qnXy5bh+elzmtksekyekQTzympySj+SMdAl3Gk7H6Tn9yq/Kn2q1urNCK04584hsVHXvL6R/Fn4=</latexit>

Parametrization – Recurrent Neural Nets
• Following Bahdanau et al. [2015]

• The decoder consists of three stages
1. Attention: attend to a small subset of

source vectors
2. Update: update its internal state
3. Predict: predict the next token

• Attention has become the core
component in many recent
advances
• Transformers [Vaswani et al., 2017],

…
72

x1, x2, . . . , xTx
<latexit sha1_base64="Z9/H7I5ZYgNdnrx+gRsrtE3C0ro=">AAACq3icfZHbbhMxEIad5VSWUwpXiBuXCAmhEu2WonJZCS64QRTRtBVxtPJ6J6lVH1b2bElYrXgabuF5eBu8yUaiLWIky5//+Ue2Z/JSSY9J8rsXXbt+4+atjdvxnbv37j/obz488rZyAkbCKutOcu5BSQMjlKjgpHTAda7gOD972+aPz8F5ac0hLkqYaD4zcioFxyBl/cfzLN2m82xnmzJVWPTtoT7M5k3WHyTDZBn0KqQdDEgXB9lm7xsrrKg0GBSKez9OkxInNXcohYImZpWHkoszPoNxQMM1+Em9/ENDnwWloFPrwjJIl+rfFTXX3i90Hpya46m/nGvFf+XGFU7fTGppygrBiNVF00pRtLRtCC2kA4FqEYALJ8NbqTjljgsMbYtjZuCrsFpzU9TMSFNA2QSwyLZYCa4M21aHzUXz2tum6MpG1753EDrk4EN47ccgcbTuRc24m2lpmiWwlv5n5PO1MVAcppVens1VONoZpq+Grz/tDvZ3u7ltkCfkKXlOUrJH9sl7ckBGRJDv5Af5SX5FL6PP0ZeIraxRr6t5RC5EBH8AAQLULQ==</latexit>

Encoder Decoder

p(yl|y<l, X)
<latexit sha1_base64="pjMFZf3jTgp6JRzTYZtnGunX9ag=">AAACoXicfZHLbhMxFIad4VaGS1NYsnGJkApC0QwUlQWLSrCABSIg0kbKRKMzzklq1TfZnsIwzJOwhYfibfAkE4m2iCNZ/vT/v+WjcwojuPNJ8rsXXbl67fqNrZvxrdt37m73d+4dOV1ahmOmhbaTAhwKrnDsuRc4MRZBFgKPi9PXrX98htZxrT77yuBMwlLxBWfgg5T3t81elYvvVV6/Es3TyeO8P0iGyaroZUg7GJCuRvlO71s216yUqDwT4Nw0TYyf1WA9ZwKbOCsdGmCnsMRpQAUS3axedd7QR0GZ04W24ShPV+rfL2qQzlWyCEkJ/sRd9FrxX9609IuXs5orU3pUbP3RohTUa9qOgc65ReZFFQCY5aFXyk7AAvNhWHGcKfzCtJSg5nWmuJqjaQJon+1mBq0J126HzfnwJttadB2jm9wbDBOy+D50+yFI4LV9Umdgl5KrZgVZS/8LwtdNMFActpVe3M1lOHo2TJ8PX3zcHxzud3vbIg/IQ7JHUnJADslbMiJjwkhJfpCf5Fc0iN5Fo+jTOhr1ujf3ybmKpn8A5PjQ1Q==</latexit>

NLL

y⇤l
<latexit sha1_base64="1uItCexg0/++G2JBVfzOFkBTrz4=">AAAClXicfZFNSxxBEIZ7JyYxkw81HnLw0mYJBA/LjBqSS0BQQi6igawKO5ulpqd2bewvuns06zC/wWvy0/Jv0rM7C36EFDT98NZbdHVVbgR3Pkn+dKJHS4+fPF1+Fj9/8fLVyura6xOnS8uwz7TQ9iwHh4Ir7HvuBZ4ZiyBzgaf5xX6TP71E67hW3/3U4FDCRPExZ+CD1J/+2BqJ0Wo36SWzoA8hbaFL2jgerXWus0KzUqLyTIBzgzQxfliB9ZwJrOOsdGiAXcAEBwEVSHTDatZtTd8FpaBjbcNRns7U2xUVSOemMg9OCf7c3c814r9yg9KPPw0rrkzpUbH5Q+NSUK9p83VacIvMi2kAYJaHXik7BwvMhwHFcabwimkpQRVVprgq0NQBtM82M4PWhGuzxfqueeFtUnRuowvfAYYJWTwM3R4FCby2W1UGdiK5qmeQNfQ/I/xcGAPFYVvp/d08hJPtXrrT+/Btt7u32+5tmWyQt+Q9SclHske+kmPSJ4xwckN+kd/Rm+hzdBB9mVujTluzTu5EdPQXstvMjw==</latexit>

y⇤1 , y
⇤
2 , . . . , y

⇤
l�1

<latexit sha1_base64="vx/XlptpfJV8udVlOej677SJ26c=">AAACsXicfZFNbxMxEIadLR9l+WgKRw64REioKtFuWwTHSuXABVEk0hZlQ/B6J6kVf8meLaSrPfJruMKP4d/gTTYSbREjWX78zjuyPZNbKTwmye9OtHbj5q3b63fiu/fuP9jobj489qZ0HAbcSONOc+ZBCg0DFCjh1DpgKpdwks8Om/zJOTgvjP6IcwsjxaZaTARnGKRx98n88/Y43aHNtrtDM1kY9MtjJV+k9bjbS/rJIuh1SFvokTaOxpudi6wwvFSgkUvm/TBNLI4q5lBwCXWclR4s4zM2hWFAzRT4UbX4SU2fBaWgE+PC0kgX6t8VFVPez1UenIrhmb+aa8R/5YYlTl6PKqFtiaD58qJJKSka2rSFFsIBRzkPwLgT4a2UnzHHOIbmxXGm4Ss3SjFdVJkWugBbBzCYbWUWnA3bVov1ZfPK26To0kZXvjcQOuTgXXjt+yAxNG67ypibKqHrBWQN/c/Ivq2MgeIwrfTqbK7D8W4/3eu//LDfO9hv57ZOHpOn5DlJyStyQN6SIzIgnHwnP8hP8ivaiz5FX6J8aY06bc0jcimi2R++OdWj</latexit>

↵t0 / exp(�hh(ht0 , zt�1, yt�1))

ct =
TxX

t0=1

↵t0ht0

zt = _LL([yt�1; ct], zt�1)

p(yt = v|y<t, X) / exp(Plh(zt, v))
<latexit sha1_base64="QAGPd4LHywyn5W8GQpvTvzutNhA=">AAADaHicfZFbb9MwFMeTlssItw4eEOLFW8Vo0agaGAKJVRqCB17YBmq3SnUXOa7bWk0cy3ZK25CvicRX4FNwcinaTRzJ8k/n/P0/Jzm+DLg27fZvu1K9cfPW7Y07zt179x88rG0+OtFRrCjr0SiIVN8nmgVcsJ7hJmB9qRgJ/YCd+rNPWf10zpTmkeiapWTDkEwEH3NKDKS82q8dTAI5JV5iXqQISxVJEyHMFrKBDVuY5GO3mzameXkXreB+5QIsC2g2EcbODvUM6iCs4zDTddz0LOl6C7A7Zz0tO4B8Vchz+++Hh2ljUNp9QOA0/NemMJeNpWc6c/Qza7pvoHm/ed2gRz0YFKx30bzZ9Gr1dqudB7oKbgl1q4xjb9Ne4VFE45AJQwOi9cBtSzNMiDKcBix1cKyZJHRGJmwAKEjI9DDJF5Ci55AZoXGk4AiD8uz5FwkJtV6GPihDYqb6ci1LXlcbxGb8fphwIWPDBC0ajeMAwadn20Qjrhg1wRKAUMVhVkSnRBFqYOeOgwX7QaMwJGKUYMHFiMkUIDJ4C0umJFxbJaYXxWttVkKFDK11nxn8IcW+wrRHkCImUi8TTNQk5CLNAWf0PyFZrIVADmzLvbybq3DyuuW+ab39tlc/2Cv3tmE9s7athuVa76wD64t1bPUsau/bvj2zg8qfaq36pPq0kFbs8s1j60JUt/8C0EcUBQ==</latexit>

Side-note: gated recurrent units to attention
• A key idea behind LSTM and GRU is the additive update

• This additive update creates linear short-cut connections

73

ht = ut � ht�1 + (1� ut)� h̃t, r?2`2 h̃t = f(xt, ht�1)
<latexit sha1_base64="5wriGvWZXFVdX4URBTwRuH1fDFQ=">AAAC9HicfZHNbtQwFIU94a+Evyks2biMkKbQjhIogg1SJViwQRSJaSuNR5Hj3JlYTezIvmlniNInYYfY8hy8Ai/BFpY4MxlBW8SV7Hw659ix7o2LTFoMgu8d79LlK1evrV33b9y8dftOd/3uvtWlETAUOtPmMOYWMqlgiBIzOCwM8DzO4CA+etX4B8dgrNTqA84LGOd8quRECo5OirpxGiF9SUu3M51opGlU4XZY08e0H247ebPVGcosgSqtnV9vnTKEGVYnKRioT/0/ZnPZpD+LcGt102bU7QWDYFH0IoQt9Ehbe9F65yNLtChzUCgybu0oDAocV9ygFBnUPistFFwc8SmMHCqegx1Xi2bU9KFTEjrRxi2FdKH+faLiubXzPHbJnGNqz3uN+C9vVOLkxbiSqigRlFj+aFJmFDVtOksTaUBgNnfAhZHurVSk3HCBrv++zxScCJ3nXCUVU1IlUNQONLINVoAp3GejxfpseJVtLLqM0VXuNbgOGXjrXvvOSRy1eVQxbqa5VPUCWEP/C/LZKujId9MKz8/mIuw/GYRPB8/e7/R2d9q5rZH75AHpk5A8J7vkDdkjQyLIN/KD/CS/vGPvk/fZ+7KMep32zD1ypryvvwHU9/Ep</latexit>

Side-note: gated recurrent units to attention
• What are these shortcuts?

• If we unroll it, we see it’s a weighted combination of all previous
hidden vectors:

74

ht =ut � ht�1 + (1� ut)� h̃t,

=ut � (ut�1 � ht�2 + (1� ut�1)� h̃t�1) + (1� ut)� h̃t,

=ut � (ut�1 � (ut�2 � ht�3 + (1� ut�2)� h̃t�2) + (1� ut�1)� h̃t�1) + (1� ut)� h̃t,

XXX

=
tX

i=1

0

@
t�i+1Y

j=i

uj

1

A

i�1Y

k=1

(1� uk)

!
h̃i

<latexit sha1_base64="cuHZREnpiY4tg92aO0t98HoBsDw=">AAAEaXicrVJdb9MwFHW7AiN8rfCC4MWjYmoZq5puCF4qTYIHXhBDotukuotcx228+iOznUGJ8jeR+A38CZw0Re1WsRcsOT4599x7buI7ijkzttP5Valu1G7dvrN517t3/8HDR1v1x8dGJZrQPlFc6dMRNpQzSfuWWU5PY02xGHF6Mpq+z+Mnl1QbpuRXO4vpUOCJZGNGsHVUUK/8jAILezswcQdSobIwClK752dwFzb9PUe3Sh5ZxkOaRpmLZ6+hh5C3mthMysylOt2/dYrQulp5RusGtxvNvPl7d8V8f9m8u97c0d7/6nAHXVwkOFzzvHQJZvERyCQiSFnPz85cFU7HtolircIgPe+x7Mz5sV3nmATnSLNJZFsrmmmel7K8p6KfaatULTXEvGCr0Wl3igWvA78EDVCuIzcJP1CoSCKotIRjYwZ+J7bDFGvLCKeZhxJDY0ymeEIHDkosqBmmxQRm8KVjQjhW2m1pYcEuZ6RYGDMTI6cU2Ebmaiwn18UGiR2/G6ZMxomlksyNxgmHVsF8nGHINCWWzxzARDPXKyQR1phYN/SehyT9RpQQWIYpkkyGNM4cUBZto5jq2B3bJcxWxQttHoJzGVzoPlD3hzT95Lr97ChslX6VIqwngsmsAChH/xLi7wuhQ/lt+Vfv5jo47rb9/fabLweNw4Py3jbBc/ACNIEP3oJD8BEcgT4g1V6VVHlVbPyu1WtPa8/m0mqlzHkCVlat8Qd2VmkR</latexit>

Side-note: gated recurrent units to attention
1. Can we “free” these dependent

weights?

2. Can we “free” candidate vectors?

3. Can we separate keys and values?

4. Can we have multiple attention
heads?

75

ht =
tX

i=1

0

@
t�i+1Y

j=i

uj

1

A

i�1Y

k=1

(1� uk)

!
h̃i

<latexit sha1_base64="7XVTWD31JIyz3GBUw4py/GnjTYQ=">AAAC+3icfZFLbxMxEICd5VXCoykcubhESCkoURaK4BKpEhy4IIpE2kpxunK8TtaNHyt7FgjW/hpuiCu/gzM/hCvgTTYSaREjWf40841szUxyKRz0+z8a0aXLV65e27revHHz1u3t1s6dI2cKy/iQGWnsyYQ6LoXmQxAg+UluOVUTyY8n8xdV/fg9t04Y/Q4WOR8rOtNiKhiFkEpaIksAD4grVOLFIC5PARPJp9AhuTVp4s8Gojz10BWP4hIXyRmxYpbB3oYzr/q86AajE3eLZL5XW5iAkCn3WZmIZtJq93v9ZeCLENfQRnUcJjuNTyQ1rFBcA5PUuVHcz2HsqQXBJC+bpHA8p2xOZ3wUUFPF3dgvZ1LiByGT4qmx4WjAy+zfHZ4q5xZqEkxFIXPna1XyX7VRAdPnYy90XgDXbPXQtJAYDK4GjFNhOQO5CECZFeGvmGXUUgZhDc0m0fwDM0pRnXqihU55XgYwQHZJzm0ert0ay0157VYlvNLw2nvJw4Qsfx1++yakKBj70BNqZ0rocgmkov+J9ONaDFRtKz6/m4tw9LgXP+k9fbvfPtiv97aF7qH7qINi9AwdoFfoEA0RQ9/RT/QL/Y7K6HP0Jfq6UqNG3XMXbUT07Q84HfSn</latexit>

0

ht =
tX

i=1

↵ih̃i, r?2`2 ↵i / exp(�hh(h̃i, xt))
<latexit sha1_base64="Fj/zphCLxbrgT8mRA0O5Xp2U9Q4=">AAAC+3icfZFLbxMxEICd5VXCK4UjF5cIKUWoykIRXCoVwYELokhJWykOK8c7yVq1vZY9SxNW2z/DDXHld3Dmh3AFvHmIPhAjWf40841szYyskh673R+N6NLlK1evrV1v3rh56/ad1vrdfZ8XTkBf5Cp3hyPuQUkDfZSo4NA64Hqk4GB09KquH3wE52VuejizMNR8YuRYCo4hlbRkliDdYb7QSSl34uoDUsaVzXgiKUOpUiizKpGPTxjCFMvjDBxUJ38V63KLOWUwtZ2F8rLXqzqnW+k0wc3NZtJqd7e686AXIV5CmyxjL1lvfGJpLgoNBoXi3g/irsVhyR1KoaBqssKD5eKIT2AQ0HANfljOZ1LRhyGT0nHuwjFI59nTHSXX3s/0KJiaY+bP1+rkv2qDAscvhqU0tkAwYvHQuFA0TKEeME2lA4FqFoALJ8Nfqci44wLDGppNZuBY5Fpzk5bMSJOCrQLkyDaYBWfDtbHE6qy8cusSXWh05b2GMCEHb8Nv34UUx9w9Khl3Ey1NNQdW0/9EPl2Jgeptxed3cxH2n2zFT7eevd9u724v97ZG7pMHpENi8pzskjdkj/SJIN/JT/KL/I6q6HP0Jfq6UKPGsuceORPRtz994fZv</latexit>

1

ht =
tX

i=1

↵if(xi), r?2`2 ↵i / exp(�hh(f(xi), xt))
<latexit sha1_base64="nanXEc2zQYGev51vQvlRCNXa0V8=">AAAC8XicfZHLbhMxFIad4VbCpSks2bhESAlCUQaKYFOpCBZsEEVK2kpxGDnOSWJ1fJF9hiaMpu/BDrHlOXgInoEt7PEkE0RbxJEsfzr/f2TrPyObSo/d7vdadOnylavXNq7Xb9y8dXuzsXXnwJvMCegLkxp3NOIeUqmhjxJTOLIOuBqlcDg6flnqhx/AeWl0DxcWhopPtZxIwTG0kkYyS5DuMp+pJJe7cfEeKeOpnfFE0klrnsj2o1OGMMf8ZAYOitM/KrPOWDSUwdy2VpYXvV7RqqboPMF2u540mt1Od1n0IsQVNElV+8lW7SMbG5Ep0ChS7v0g7loc5tyhFCkUdZZ5sFwc8ykMAmquwA/zZRIFfRA6YzoxLhyNdNn9eyLnyvuFGgWn4jjz57Wy+S9tkOHk+TCX2mYIWqwemmQpDQGUsdKxdCAwXQTgwsnwVypm3HGBIfx6nWk4EUYprsc501KPwRYBDLJtZsHZcG1XWJw1r72lRFc2uva9gpCQgzfht29Di6NxD3PG3VRJXSyBlfQ/I5+vjYHKbcXnd3MRDh534iedp+92mns71d42yD1yn7RITJ6RPfKa7JM+EeQb+UF+kl+Rjz5Fn6MvK2tUq2bukjMVff0N5HPwzQ==</latexit>

2

ht =
tX

i=1

↵iV (f(xi)), r?2`2 ↵i / exp(�hh(K(f(xi)), Q(xt)))
<latexit sha1_base64="DHCBrs1oBbqSP6I674aSpLe1gBk=">AAAC+nicfZFLbxMxEICd5VXCoykcubhESAlCURaK2kulIjggIUQrJWmlOKwcZ5K1umtb9ixNWLY/hhviyu/gzv/gCsKbR0VbxEiWP818I1szQ5NIh+32j0pw5eq16zfWblZv3b5zd722ca/ndGYFdIVOtD0acgeJVNBFiQkcGQs8HSZwODx+WdYPP4B1UqsOzgwMUj5RciwFR5+KanEcId1lLkujXO6GxXukjCcm5pGkvca4MY1ks/nklCFMMT+JwUJxeiYwY7VBTRlMTWOhvOh0isabs0Z64AGbzWY1qtXbrfY86GUIl1Any9iPNiof2UiLLAWFIuHO9cO2wUHOLUqRQFFlmQPDxTGfQN+j4im4QT4fSUEf+cyIjrX1RyGdZ//uyHnq3CwdejPlGLuLtTL5r1o/w/HOIJfKZAhKLB4aZwn1YyjnS0fSgsBk5oELK/1fqYi55QL9FqpVpuBE6DTlapQzJdUITOFBI9tkBqzx1+YSi/Pyyi1LdKHRlfcK/IQsvPW/fedTHLV9nDNuJ6lUxRxYSf8T+XQleiq3FV7czWXoPW2Fz1rPD7bqe1vLva2RB+QhaZCQbJM98prsky4R5Dv5SX6R38Gn4HPwJfi6UIPKsuc+ORfBtz98DfMM</latexit>

3

ht = [h1
t ; · · · ;hK

t], r?2`2 hk
t =

tX

i=1

↵k
i V

k(f(xi)), r?2`2 ↵k
i / exp(�hh(Kk(f(xi)), Q

k(xt)))
<latexit sha1_base64="kcXR15P1JO0fkCILanYiu9TzVgw=">AAADMnicfZHfahNBFMZnV601/mmql95MDUIiJWS1VaEEKnohFLGFJC1kkmUye5IM2Z0ZZmZt4rJ9Fh/Cl9E78daHcDZ/IE3FA8v85jvfYYfzDVTMjW00fnj+rdt3tu5u3yvdf/Dw0U5593HHyFQzaDMZS30xoAZiLqBtuY3hQmmgySCG88HkfdE//wLacCladqagl9CR4EPOqHVSWP42Di1u4q47+sERJiyS1hzh4nrS278iFqY2uxyDhvyqVKgT3CQmTcKMN4O8bzGhsRrTkLtGpz+pDqvTkNdqG5NrJqK0VFZiAlNVXZjetVp59WRtGJ+5yzS0tVqtFJYrjXpjXvgmBEuooGWdhrveVxJJliYgLIupMd2goWwvo9pyFkNeIqkBRdmEjqDrUNAETC+brzLHz50S4aHU7hMWz9X1iYwmxsySgXMm1I7NZq8Q/9Xrpnb4tpdxoVILgi1+NExj7FZR5IIjroHZeOaAMs3dWzEbU02ZdemVSkTAJZNJQkWUEcFFBCp3IC3ZIwq0csfeEvPr5pW3aOGFDa98H8BtSMMn99rPTqJW6hcZoXqUcJHPgRT0PyOdroyOirSCzWxuQudlPXhVPzw7qBwfLHPbRk/RM1RFAXqDjtFHdIraiHlb3r536L32v/s//V/+74XV95YzT9C18v/8Bf+VBbg=</latexit>

4

keys values

queries

outputs

Generalized dot-product attention - vector
form

76

Generalized dot-product attention - matrix
form

• rows of Q, K, V are keys,
queries, values

• softmax acts row-wise

77

Three types of attention in Transformer
● usual attention between encoder and decoder:

Q=[current state] K=V=[BiRNN states]

● self-attention in the encoder (encoder attends to itself!)
Q=K=V=[encoder states]

● masked self-attention in the decoder (attends to itself,
but a states can only attend previous states)
Q=K=V=[decoder states]

78

Other tricks in Transformer

• allows different processing of information coming from different locations

• positional embeddings are required to preserve the order information:

(trainable parameter embeddings also work)

79

- 6 layers like that in encoder
- 6 layers with masking in the

decoder
- usual soft-attention between

the encoder and the decoder

Transformer Full Model and Performance

80

Transformers
for Text

81

Attention Is All You Need, Vaswani et al,
NIPS 2017

Transformer Model
• It is a sequence to sequence

model (from the original paper)

• the encoder component is a
stack of encoders (6 in this
paper)

• the decoding component is
also a stack of decoders of the
same number

82

Transformer Model

• It is a sequence to sequence
model (from the original paper)

• the encoder component is a
stack of encoders (6 in this
paper)

• the decoding component is
also a stack of decoders of
the same number

Transformer Model: Encoder

• The encoder can be broken
down into 2 parts

83

Transformer Model: Encoder

• The encoder can be broken
down into 2 parts

Transformer Model: Encoder

84

Transformer Model: Encoder

Transformer Model: Encoder
Self-Attention

• Example: “The animal didn't
cross the street because it
was too tired”

• Associate “it” with “animal”

• look for clues when encoding

• checkout tensor2tensor
notebook

Transformer Model: Encoder
• Example: “The animal
didn't cross the street

because it was too tired”

• Associate “it” with “animal”

• look for clues when encoding

85

Self-Attention: Step 1 (Create Vectors)

• Abstractions useful for calculating and thinking about attention 86

Self-Attention: Step 1 (Create Vectors)

• Abstractions useful for calculating and thinking about attention

Self-Attention: Step 2 (Calculate score), 3 and 4

87

Self-Attention: Step 2 (Calculate score), 3 and 4

Self-Attention: Step 5

• multiply each value
vector by the softmax
score

• sum up the weighted
value vectors

• produces the output

Self-Attention:
Step 5

• multiply each value
vector by the softmax
score

• sum up the weighted
value vectors

• produces the output

88

Self-Attention: Matrix Form

89

Self-Attention:
Multiple Heads

90

Self-Attention: Multiple Heads

Self-Attention: Multiple Heads

91

Self-Attention: Multiple Heads

Self-Attention: Multiple Heads

• Where different attention heads are focusing
(the model’s repr of “it” has some of
“animal” and “tired”)

• With all heads in the picture, things are
harder to interpret

Self-Attention: Multiple Heads

• Where different attention heads are
focusing (the model’s repr of “it” has
some of “animal” and “tired”)

• With all heads in the picture, things are
harder to interpret

92

Positional Embeddings
• To give the model a sense of order

• Learned or predefined

93

Positional Embeddings

• To give the model a sense of
order

• learned or predefined

Positional Embeddings
• What does it look like?

Positional Embeddings
• What does it look like?

94

The Residuals
• Each sub-layer in each encoder has a residual connection around it

followed by a layer normalization

95

The Residuals

• Each sub-layer in each encoder has a residual connection around it
followed by a layer normalization

The Residuals
• This goes for

sub-layers in
decoder
as well

96

The Residuals

• this goes for sub-layers in decoder as well

The Decoder
• The self-attention can only attend to earlier positions in the output sequence.

• Done by masking the future positions (setting them to -inf before the softmax in calculation)The Decoder
• The self-attention can

only attend to earlier
positions in the output
sequence.

• Done by masking the
future positions (setting
them to -inf before the
softmax in calculation)

97

Final Layer

98

Final Layer
• The self-attention can only attend to earlier positions in the output sequence.

• Done by masking the future positions (setting them to -inf before the softmax in calculation)

• The self-attention can
only attend to earlier
positions in the output
sequence.

• Done by masking the
future positions (setting
them to -inf before the
softmax in calculation)

Results
• Machine Translation: WMT-2014 BLEU

• Transformer models trained >3x faster than the others

99

*HQHUDWLQJ�:LNLSHGLD�E\�6XPPDUL]LQJ�/RQJ�6HTXHQFHV

528*(

VHT�VHT�DWWHQWLRQ ����

7UDQVIRUPHU�('��/ ���� ����

7UDQVIRUPHU�'0&$��/ ������ ����

PVDOHK#�HW�DO��VXEPLVVLRQ�WR�,&/5¶��

0DFKLQH�7UDQVODWLRQ��:07������%/(8

(1�'((1�)5

*107��RULJ� ���� ����

&RQY6HT�6HT ���� ����

7UDQVIRUPHU
 ���� ����

$WWHQWLRQ�LV�$OO�<RX�1HHG��1HXU,36�������9DVZDQL
��6KD]HHU
��3DUPDU
��8V]NRUHLW
��
-RQHV
��.DLVHU
��*RPH]
��3RORVXNKLQ

7UDQVIRUPHU�PRGHOV�WUDLQHG�!�[�IDVWHU�WKDQ�WKH�RWKHUV�

Results

Attention Is All You Need, Vaswani et al, NIPS 2017

5HVXOWV

What Matters

• row B: reducing attention key size hurts
the model

• row C: bigger model is better

• row D: dropout is helpful

• sinusoidal with learned positional emb
have same results

What Matters
• row B: reducing

attention key size
hurts the model

• row C: bigger
model is better

• row D: dropout is
helpful

• sinusoidal with
learned positional
emb have same
results

100

Transformers
for Vision

101

An Image is Worth 16x16 Words: Transformers for Image Recognition
at Scale, Dosovitskiy et al, ICLR 2021

Deep Nets are Data Transformers
• Deep nets transform datapoints,

layer by layer

• Each layer is a different
representation of the data

• We call these representations
embeddings

102

A New Data Structure: Tokens
• A token is just transformer lingo for a vector of neurons (a.k.a. an embedding)

• But the connotation is that a token is an encapsulated bundle of information;
with transformers we will operate over tokens rather than over neurons

103

linear comb of neurons linear comb of tokens

Tokenizing The Input Data
• When operating over neurons, we represent the input as an array of scalar-

valued measurements (e.g., pixels)

• When operating over tokens, we represent the input as an array of vector-
valued measurements

104

tokens

Convolution over Tokens

105space/time

Local MLP

Attention Layer

106

conv w/o overlap conv w overlap fc layerconv pyramid

Attention Layer

107

Attention Layer

108

Attention Layer

109

Attention Layer

[“Attention is All You Need”, Vaswani et al. 2017]
[“Vision Transformer”, Dosovitskiy et al. 2020] 110

Transformer
(simplified)

111

[“Attention is All You Need”, Vaswani et al. 2017]
[“Vision Transformer”, Dosovitskiy et al. 2020]

Attention Maps In A Trained Transformer

112
[“DINO”, Caron et all. 2021]

Summary

● attention is used to focus on parts of inputs/outputs

● it can be content/location based and hard/soft

● it’s three main distinct uses are
○ connecting encoder and decoder in sequence-to-sequence task
○ achieving scale-invariance and focus in image processing
○ self-attention can be a basic building block for neural nets, often

replacing RNNs and CNNs [recent research, take it with a grain of salt]

113

114

Next lecture:
Autoregressive Models

