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Using RNNs to generate Super Mario Maker levels, Adam Geitgey

Q0

Previously on COMP547

e
.

-

* sequence modeling
e recurrent neural networks (RNNs)

* language modeling with RNNs

 how to train RNNs

* long short-term memory (LSTM)

» gated recurrent unit (GRU)




Lecture overview

* content-based attention

* location-based attention

» so0ft vs. hard attention

 case study: Show, Attend and Tell
* self-attention

» case study: Transformer networks

Disclaimer: Much of the material and slides for this lecture were borrowed from
— Dzmitry Bahdanau's IFT 6266 slides

— Graham Neubig's CMU CS11-747 Neural Networks for NLP class

— Mateusz Malinowski's lecture on Attention-based Networks

— Yoshua Bengio’s talk on From Attention to Memory and towards Longer-Term Dependencies
— Kyunghyun Cho's slides on neural sequence modeling

— Arian Hosseini's IFT 6135 slides

— Phillip Isola’s MIT 6.5898 slides



Encoder-Decoder Framework

* Intermediate representation of meaning
= ‘'universal representation’

* Encoder: from word sequence to sentence representation
» Decoder: from representation to word seqguence distribution

Decoder

English sentence English sentence | Yo /yz..‘ Y
s T T T e ., ;|
@ English kS English | [
o decoder = decoder
+— D)
s 1 2
5 —
- French 5
O —
L encoder o
LL
French sentence English sentence

Encoder



Sequence Representations

« But what if we could use multiple vectors, based on the length of
the sequence

this is an example >

this is an example >




Attention Models
In Deep Learning



A lot of things are called "attention”
these days...

1. Attention (alignment) models used in applications of deep learning with
variable-length inputs and outputs (typical sequential).

2. Models of visual attention that process a region of an image at high resolution
or the whole image at low resolution.

3. Internal self-attention mechanisms can be used to replace recurrent and
convolutional networks for sequential data.

4. Addressing schemes of memory-augmented neural networks

The shared idea: focus on the relevant parts of the input (output).



Attention in Deep Learning Applications
[to Language Processing]

machine translation

Economic

speech recognition
growth  has

. Alignment between the Characters and Audio
slowed down in recent vyears . _ _ -
o b Bl el X e &
"' 4 :_s Fy. B B p | : - > : g
// = : 2 = = - ' fl AR A Y 4“' :
/ b
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|

Das Wirtschaftswachstum hat sich in den letzten Jahren verlangsamt . :
Economic growth has slowed down in recent years

|
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La croissance économique s' est ralentie ces derniéres années

Hypoth:
]

speech synthesis, summarization, .
(seg2seq) task

any seguence-to-sequence



Example: Machine Translation

Vlachine translation presented a challenge to vanilla deep learning

e INput and output are sequences
o the lengths vary
« Input and output may have different lengths

e NO Obvious correspondence between positions In the Input and
IN the output

:llAnII, IIRNNII, llexamplelll ll.II]H[IIUnII, “example”’ llde,” IIRNNII’ ll.”

10



Vanilla seq2seq learning for machine
translation

<EOS>

?
T T T ]

A B C <EOS>

Y

Y
Y
Y
Y

< —> |f—>nN

s —>» [—>»x
X —»  f—> <

input sequence output sequence

/
T Encoder

p(yla € ,yT/‘Q?l, $ s 8 7$T> — p(yt‘;}ayla i ¥ 8 7?/75—1)

=1
fixed size representation

Recurrent Continuous Translation Models, Kalchbrenner et al, EMNLP 2013

Sequence to Sequence Learning with Recurrent Neural Networks, Sutskever et al., NIPS 2014

Learning Phrase Representations using RNN Encoder-Decoder for

Statistical Machine Translation, Cho et al., EMNLP 2014 11



Problems with vanilla seg2seq

long term dependencies

ﬁ ., ¥ 3
O eneC‘ \

A -
>

<EOS>

. A A - A -
” ” ) »”

T T

A B C <EOS> W

Y

A -
>

— <
< —> —>» N
>

X —>

e training the network to encode 50 words In a vector I1s hard = very big
models are needed

e gradients has to flow for b0 steps back without vanishing = training can
be slow and require lots of data



Soft attention

lets decoder focus on the relevant hidden states
of the encoder, avoids squeezing everything
Into the last hidden state = no bottleneck!

dynamically creates shortcuts in the computation
graph that allow the gradient to flow freely
= shorter dependencies!

best with a bidirectional encoder

Neural Machine Translation by Jointly Learning to Align and Translate, Bahdanau et al, ICLR 2015

....................

13



Soft attention - math 1

At each step the decoder consumes a different weighted combination
of the encoder states, called context vector or glimpse.

p<y2|y17 I 7yi—17x) = g(y><178i7 Ci)

Ty
C; — E Oéz'jhj.
j=1

........................................




Soft attention - math 2

But where do the weights come from?
They are computed by another network!

exp (€;;)

i — T 9
> e €XP (€ik)

ei; = a(si—1,h;)

The choice from the original paper Is
T-layer MLP: X % X X

al8—1.0) = v;_ tanh (Wys;—1 + Ugh;)

15



Soft attention - computational aspects

The computational complexity of using soft attention is quadratic. But it's not slow:

o for each pair of rand |

o sum two vectors & —u ! tanh (Wasz’—l +U,h )
J a J
o apply tanh
o compute dot product exp (eij)
e can be done In parallel for all J, 1.e. Xij :ZTaz ox (e' )
o add a vector to a matrix k=1 P \Cik
o apply tanh To
o compute vector-matrix product C; = Z 5 hja
J=1

e softmax is cheap
e welighted combination is another vector-matrix product
e INn summary: just vector-matrix products = fast!

16



Soft attention - visualization

The agreement on the European Economic Area was signed in August 1992 .

el

L' accord sur |I' Espace économique européen a été signé en aodt 1992 .

It is known , that the verb often occupies the last position in German sentences

\V Y/

Es ist bekannt , dass das Verb oft die letzte Position in deutschen Strafen einnimmt

Great visualizations at https:/distill.pub/2016/augmented-rnns/#attentional-interfaces [ pe Na |ty? ? ?]

17


https://distill.pub/2016/augmented-rnns/

Soft attention -
visualization

(Bahdanau et al 2014, Jean et al 2014,
Gulcehre et al 2015, Jean et al 2015)

€
c v
e = o
O Qo O o v A
Q O € ®© Q = 9
5. 05898593 &
o O = O
F o oS WuUw<g =% £ V
i
accord

zone
économique
européenne
a

été

signé

en

aolt

1992

<end>
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Soft attention - improvements

no performance drop on long sentences

11

much better than RNN

Encoder-Decoder

3) l
WL i) :
o 20|
o) z ;
0y z g
- 15 ' :
L ; z z 5
m 10} RNNsearch-50 | 5
= = RNNsearch-30 | 5 : |
5(| == RNNenc-50 [ SR % T Sp— I e
== RNNenc30 | f ' o P
0 ] ] i ]
0 10 20 30 40 50 60

Sentence length

Model All No UNK”
RNNencdec-30 | 13.93 24.19
RNNsearch-30 | 21.50 31.44
RNNencdec-50 (f 17.82 N 26.71
RNNsearch-50 ~26.75 34.16
RNNsearch-50* | 28.45 36.15 \

Moses 33.30 3563

without unknown words
comparable with the
SMT system

19



End-to-End Machine Translation with Recurrent Nets

and Attention Mechanism
(Bahdanau et al 2014, Jean et al 2014, Gulcehre et al 2015, Jean et al 2015)

25

20

15

10

2013

2014

2015

2016

B Phrase-based SMT
B Syntax-based SMT
B Neural MT

Figure credit: Rico Sennrich
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Soft content-based attention pros and cons

Pros
« faster training, better performance
« good inductive bias for many tasks — lowers sample complexity

Cons
« not good enough inductive bias for tasks with monotonic
alignment (handwriting recognition, speech recognition)
« chokes on sequences of length >1000

21



Location-based attention

o In content-based attention the attention weights depend
on the content at different positions of the input (hence
BiIRNN)

o In location-based attention the current attention weights
are computed relative to the previous attention weights

22



Gaussian mixture location-based attention

Originally proposed for handwriting synthesis.

The (unnormalized) weight of the input
position u at the time step t Is parametrized T
as a mixture of K Gaussians 075

Bt u) = éaf exp (—Bf (ki — u)z) A&\

d 1
Wy = E :gb(t,U)Cu ofoJoJofJofrJofoJofo
Ofoffofoqfrgofogrrjojfo
u=1 L{ofjr]Jofojofolo]tr]o
ojofoqgrjojoffojojolqli
Section 5, Generating Sequence with Recurrent Neural Networks, A. Graves 2014 011 f10JOfOjJOf1J0jJO]Jo0 23




Gaussian mixture location-based attention

The new locations of Gaussians are computed as a sum of the
previous ones and the predicted offsets

(&h Bb ’%t) — Whlph% e bp

a; = exp ()
Bt = exp (Bt

t = Kt—1 + exp (K¢)

Thought that the muster from

Mogi\\& Wb Mo woshar \L,W

24



Gaussian mixture location-based attention

The first soft attention mechanism ever!

Pros:
o good for problems with monotonic alignment

Cons:
« predicting the offset can be challenging
o only monotonic alignment (although exp In theory could be removed)

25



Various Soft-Attentions

e Uuse dot-product or non-linearity of choice instead of tanh in content-based
attention

o use unidirectional RNN instead of Bi- (but not pure word embeddings!)
o explicitly remember past alignments with an RNN

e USE a separate embedding for each of the positions of the input (heavily
used iIn Memory Networks)

e MIX content-based and location-based attentions

See “Attention-Based Models for Speech Recognition” by Chorowski et al
(2015) for a scalability analysis of various attention mechanisms on speech
recognition.

26



Various Attention Score Functions

* g is the query and K is the key

* Multi-layer Perceptron
(Bahdanau et al. 2015)

a(q, k) = witanh(W1[q; k])

- Flexible, often very good with large
data

* Bilinear (Luong et al. 2015)
a(g, k) = q"Wk

* Dot Product (Luong et al. 2015)

a(q, k) = q'k
- No parameters! But requires sizes to
be the same.

* Scaled Dot Product (vaswani et al. 2017)

- Problem: scale of dot product
INncreases as dimensions get e larger

- Fix: scale by size of the vector

qTk
a(q7 k) —

VAL .




Going back in time: Connection Temporal
Classification (CTC)

o« CTC is apredecessor of soft
attention that i1s still widely used ep_tv____e_-_c__ana__17__-)

« has very successful inductive "'
bias for monotonous seq2seq , PATHE=CRE-)
transduction =
P_T__H__EE__—-_C__AA__T -)

o core idea: sum over all possible
ways of inserting blank tokens
IN the output so that it aligns
with the input

i BPULEE L R E M AR

| 1l I j" "qsri
i1 ia

Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks, Graves et al, ICML 2006 28



CTC

labeling
$

p(l|z)
1 )

Input

conditional

probability of a

probability of

labeling with blanks

£

= 2rep-1(1) P(T|)

L}

with blanks

P, |

outputting 7

at the step t

4

— ZT(‘EB_l(l) Ht yfrt

sum over all labelling PL_TH____E_-_C__AAA__TT__-)

Ig pr qgu {H -ua. '

P(THE—CAT—)

|

29



CTC

« can be viewed as modelling ply|x) as sum of all p(y|a,x), where a is
a monotonic alignment

« thanks to the monotonicity assumption the marginalization of a
can be carried out with forward-backward algorithm
(a.k.a. dynamic programming)

« hard stochastic monotonic attention P e -cana_17_

.
o popular in speech and handwriting : ——

recognition o+
P(_T__H__EE__-_C__AA__T___-)

« Vy;are conditionally independent given a

. . r' (1 ﬂe" THT
and x but this can be fixed “ T : Pi

30



Soft Attention and CTC for seg2seq: summary

« the most flexible and general is content-based soft

attention and it Is very widely used, especially in natural
anguage processing

o location-based soft attention is appropriate for when the
INnput and the output can be monotonously aligned;
location-based and content-based approaches can be
mixed

« CTC isless generic but can be hard to beat on tasks with
monotonous alignments

31



Visual and Hard Attention

A dog is standing on a hardwood floor.

32



Models of Visual Attention

« Convnets are great! But they process the whole image at a high
resolution.

o 'Instead humans focus attention selectively on parts of the visual
space to acquire information when and where it is heeded, and

combine information from different fixations over time to build up an
internal representation of the scene” (Mnih et al, 2014)

o hence the idea: build a recurrent network that focus on a patch of
an input image at each step and combines information from
multiple steps

Recurrent Models of Visual Attention, V. Mnih et al, NIPS 2014 33



A Recurrent Model of Visual Attention
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A Recurrent Model of Visual Attention - math 1

Objective:

Interaction sequence

. T i
‘](9) — ~Lp(Sll:T;H) [thl Tt} = Lp(s1.7;0) [R]’
1

sum of rewards

\When used for classification the correct class is known. Instead of
sampling the actions the following expression is used as a reward:

log 7(ay|si:T; 0)
= optimizes Jensen lower bound on the log-probability p(a“|x)!

35



A Recurrent Model of Visual Attention

The gradient of J has to be approximated (REINFORCE)

next action

/

T M T
1 e .
VoJ = ZEp(SI:T;Q) Vg log m(us|s1.¢;0) R ~ i Z Z Vo log m(u;|sy.;; 0) R

=1 =1 t=l

Baseline is used to lower the variance of the estimator:

1 L . |
7 2 > Vologm(uy|si.; 0) (R; — b)

=1 =1
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A Recurrent Visual Attention Model
visualization

Figure 3: Examples of the learned policy on 60 x 60 cluttered-translated MNIST task. Column 1:
The input image with glimpse path overlaid in green. Columns 2-7: The six glimpses the network
chooses. The center of each image shows the full resolution glimpse, the outer low resolution areas
are obtained by upscaling the low resolution glimpses back to full image size. The glimpse paths
clearly show that the learned policy avoids computation in empty or noisy parts of the input space
and directly explores the area around the object of interest.

37



Soft and Hard Attention

Recurrent Attention Model (RAM) attention mechanism iIs hard - It
outputs a precise location where to look.

Content-based attention from neural MT Is soft - it assigns weights to
all input locations.

CTC can be interpreted as a hard attention mechanism with tractable
gradient.

38



Soft and Hard Attention

Soft Hard
o deterministic o Stochastic*®
e exact gradient o gradient approximation®**
o Oflinput size) o O(1)
o typically easy to train o harder to train

* deterministic hard attention would not have gradients
** exact gradient can be computed for models with tractable marginalization
(e.g. CTC)

39



Soft and Hard Attention

Can soft content-based attention be used for vision? Yes.

Show Attend and Tell, Xu et al, ICML 2015

Can hard attention be used for seq2seq? Yes. agogis standing on a harawood fioor

Learning Online Alignments with
Continuous Rewards Policy Gradient,
Luo et al, NIPS 2016

H E_COMP ANY D ECLINEDTO _COMMENT ONTHE_R E S UL
T T ullf;.,mm ]

(but the learning curves are a nightmare...) " “10»1 t
Wl ”l

40



DRAW: soft location-based attention for
Vision

Figure 3. Left: A 3 x 3 grid of filters superimposed on an image.
The stride (d) and centre location (gx , gy ) are indicated. Right:
Three N x N patches extracted from the image (N = 12). The
green rectangles on the left indicate the boundary and precision
(o) of the patches, while the patches themselves are shown to the
right. The top patch has a small ) and high o, giving a zoomed-in
but blurry view of the centre of the digit; the middle patch has
large 6 and low o, effectively downsampling the whole image;
and the bottom patch has high  and o.

Reading MNIST

41



Why attention?

* Long term memories - attending to memories
— Dealing with gradient vanishing problem

« Exceeding limitations of a global representation

— Attending/focusing to smaller parts of data
= patches in images
= words or phrases in sentences

* Decoupling representation from a problem

— Different problems required different sizes of representations
= LSTM with longer sentences requires larger vectors

« Overcoming computational limits for visual data
— Focusing only on the parts of images
— Scalability independent of the size of images

 Adds some interpretability to the models (error inspection)

42



Attention on Memory Elements

* Recurrent networks cannot remember things for very long
* The cortex only remember things for 20 seconds

 We need a “hippocampus” (a separate memory module)

 LSTM [Hochreiter 1997], registers
« Memory networks [\Weston et 2014] (FAIR), associative memory
« NTM [Graves et al. 2014], “tape”.

Attention
mechanism

Recurrent net

A

> memory




Recall: Long-Term Dependencies

 The RNN gradient is a product of Jacobian matrices, each associated
with a step in the forward computation. To store information robustly
In a finite-dimensional state, the dynamics must be contractive
[Bengio et al 19941.

L= L(sr(sT—1(---St41(8¢,--.))))
oL OL a5T a575—1—1 Storing bits

= XL robustly requires
ast 8ST 88T—1 8875 sing. values<1

Gradient
 Problems: clipping
* sing. values of Jacobians > 1 = gradients explode
* or sing. values < 1 = gradients shrink & vanish (Hochreiter 1991)
e or random = variance grows exponentially

44



Gated Recurrent Units & LSTM

» Create a path where gradients
can flow for longer with self-loop Cg

» Corresponds to an eigenvalue of
Jacobian slightly less than 1

 LSTM Is heavily used
(Hochreiter & Schmidhuber 1997) Qg

* GRU light-weight version

(Cho et al 2014)

45



Delays & Hierarchies to Reach Farther

. . (0]
e Delays and multiple time

scales, Elhihi & Bengio NIPS
1995, Koutnik et al ICML 2014 §

Hierarchical RNNs
(words / sentences): -
Sordoni et al CIKM 2015,

Serban et al AAAI 2016 = ,_’,_’,_’

wow , | keep on bumping into you . hpy r mango
46




Large Memory Networks: Sparse Access
Memory for Long-Term Dependencies

» A mental state stored in an external memory can stay for arbitrarily
ong durations, until evoked for read or write

* Forgetting = vanishing gradient.

 Memory = larger state, avoiding the need for forgetting/vanishing

47



Memory Networks

 Class of models that combine large memory with learning component
that can read and write to It.

* Incorporates reasoning with attention over memory (RAM).

* Most ML has limited memory which is more-or-less all that's needed for
“low level” tasks e.g. object detection.

Jason Weston, Sumit Chopra, Antoine Bordes. Memory Networks. ICLR 2016
S. Sukhbaatar, A. Szlam, J. Weston, R. Fergus. End-to-end Memory Networks. NIPS 2015
Ankit Kumar et al. Ask Me Anything: Dynamic Memory Networks for Natural Language Processing. ICML 2016

Alex Graves et al. Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626): 471-476,
2016. 48



Case Study: Show, Attend and Tell

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov,
R. Zemel, Y. Bengio. ICML 2015

49



tall(0.19) grass(0.22)

(0.18)

zebra(0.23)

standing(0.20)

Paying Attention
to Selected Parts
of the Image
While Uttering
Words

r

N
A |
[bird ]
f\ flying
~ LSTM™ | over
S |7 a
' body
' of
water
1. Input 2. Convolutional 3, RNN with attention 4. Word by
Image  Feature Extraction over the image word
. generation)
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Sutskever et al. (2014)
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man

softmax

owin

softmax

=
w

=
S
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softmax softmax
hl h2
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X1 X2
A
<S>

X3

X4

Vinyals et al. (2014) Show and Tell: A Neural Image Caption Generator
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Regions in ConvNets

* Each point in a “higher” level of a convnet defines spatially localized
feature vectors(/matrices).

- Xu et al. calls these “annotation vectors”, a;, ¢ € {1,..., L}

53



Regions in ConvNets

a]

54



Regions in ConvNets

a9
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Regions in ConvNets

56



Extension of LSTM via the context vector

e Extract L D-dimensional annotations

— Lower convolutional layer to have the correspondence between the feature vectors and
portions of the 2-D image

1

|

g Ey; 1 E: embedding matrix
— o TD+m—|—n,n htA—l (D) y: captions
tanh 4t h: previous hidden state
¢ =f0c 1 +i0g ) [z: context vector, a dynam.ic repr.esentatio.n
of the relevant part of the image input at time t

h; = o; ® tanh(cy). (3)

eri = fatt(ai, hy—1) -

exp(es:) A MLP conditioned on

Qg the previous hidden state

Zk;:1 eXp(etk)

z: = ¢ ({a;},{a;}) ¢ is the "attention’ (‘focus’) function — ‘soft’ / 'hard’

p(yela, y’i_l) x exp(Lo(Ey:—1 + Lph; + L, 2;))
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How soft/hard
attention works

Word

Recurrent

State

Attention

Mechanism

f=(a, man, 1s, jumping, into, a, lake, .)

Adinotation
Vectors

h.

J

Convolutional Neural Network
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How soft/hard attention works

Sample regions of attention

L,=) logp(y| z)
< (0.0.0.0)

AIying over a body of water.

" conv-512

[6)]
pat ¥
Il\)

conv-512 j

maxpool —p

14x14x512 =
196 x 512 (Lx D)
annotations

[ @0000®
' 961

O

&
75

o

=

L :ZP('S I a) logp(y | Ssa)
° Zy = < |P1 P2 P3 P4 D5 Pe|,

' L 7
A variational lower bound of ‘.“. >

maximum likelihood Computes the expexted attention
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Hard
Attention
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throwing(0.33)

A(0.98)

park(0.35)

woman(0.54)

frisbee(0.37)

Soft Attention
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The Good

LT S ! ot ¢

A woman is throwing a frisbee in a park. A dog is standing on a hardwood floor. A stop sign is on a road with a
- — mountain in the background.

A little girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with

a teddy bear. in the water. trees in the background.

66



And the Bad

A man wearing a hat and
a hat on a skateboard.

A person is standing on a beach A woman is sitting at a table A man is talking on his cell phone
with a surfboard. with a large pizza. while another man watches.

67



Quantitative results

Human Automatic
Model M1 M2 BLEU CIDEr
Human 0.638 0.675 0471 0.91
Google* 0.273 0.317 0.587 0.946
MSR*® 0.268 0.322 0.567 0.925
Attention-based™ 0262 0.272 0.523 0.878
Captivator® 0.250 0.301 | 0.601 0.937
Berkeley LRCN® | 0.246  0.268 0.534 0.891

M1: human preferred (or equal) the method over human annotation

M?2: turing test

« Add soft attention to image captioning: +2 BLEU
* Add hard attention to image captioning: +4 BLEU
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Video Description Generation

e Two encoders

— Context set consists of per-frame context vectors, and attention mechanism that selects one of those
vectors for each output symbol being decoded — capturing the global temporal structure across frames

— 3-D conv-net that applies local filters across spatio-temporal dimensions working on motion statistics

» Both encoders are complementary

A: Low-level Video Representation B: 3D Convolutional Networks
crops
o T=240 15X15X120 crop
D —
@’7’ y e T i i i T
A 3d-convl !! 3d-conv2 ! 3d-conv3 ii FC4 H softmax i
3X3X128 i 3X3X3X256 ii 3X3X3X352 i1 2500 |1 :
l . - ™ | o Pool i Pool ii Pool i} dropout Ei dropout |
2 7{14 4X4X3 11 3X3X3  li 4X4X26 i ' i
+Local+Global: A man and a woman are talking on the 4 | stride(1,1,2) | Stride(1,1,2) H i i :L i
Ref: A man and a woman ride a motorcycle

THE PERFORMANCE OF THE VIDEO DESCRIPTION GENERATION MODELS
3 D ConVN et ON YOUTUBE2TEXT AND MONTREAL DVS. (%) HIGHER THE BETTER.
(o) LOWER THE BETTER.

Youtube2Text Montreal DVS
I I Model METEOR*  Perplexity | METEOR  Perplexity
II. 2 L] I Enc-Dec 0.2868 33.09 0.044 88.28
X ; : teh i + 3-D CNN 0.2832 33.42 0.051 84.41
+Local+Global: Someone is frying a fish in a + Per-frame CNN 0.2900 5789 040 66.63
Ref: Awoman is frying food + Both 0.2960 27.55 0.057 65.44

L. Yao et. al. “Describing videos by exploiting temporal structure”

69



Internal self-attention in deep learning

models

Transformer from Google

Attention Is All You Need, Vaswani et al, NIPS 2017

In addition to connecting
the decoder with the

encoder, attention can beN

used inside the model,
replacing RNN and CNN!

Output
Probabilities

Softmax

Linear

Add & Norm
Feed

it

Forward
4 ) Add & Norm
_Add & Norm | 4
GG SCDITT Multi-Head
Feed Attention
Forward T 7 N x
[ Add & Norm |
Add & Norm Meskad
Multi-Head Multi-Head
Attention Attention
, T T T, T
\_ ‘ J _ —,
Positional Positional
E di D & i
ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)
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Parametrization — Recurrent Neural Nets

» Following Bahdanau et al. [2019]

* The encoder turns a sequence of tokens into a sequence of
contextualized vectors.

— — — — —
ht = [ht, ht], where ht = RNN(Qﬁt, ht—1)7 ht = RNN(QZt, ]’Lt_|_1)

* The underlying principle behind recently successful contextualized
embeddings N
« ELMo [Peters et al., 2018], p<yl|y1<l> )W

BERT [Devlin et al. 2019] and m_

all the other muppets
L1,L2y...,XT, yikay;w"ayik—l Y
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Parametrization — Recurrent Neural Nets

» Following Bahdanau et al. [2019]
oy X exp(ATT (A, ze—1,Y¢-1))

* The decoder consists of three stages

T:L'
1. Attention: attend to a small subset of Ct = Z o e
source vectors t/=1

2. Update: update its internal state
3. Predict: predict the next token

zt = RNN([yt—1; ¢, 2¢-1)
p(yr = v|y<s, X) x exp(OUT (24, v))

» Attention has become the core
component in many recent
advances

e Transformers [Vaswani et al., 2017],

S

* % *
L1,L2y...,XT, Y1+:Y25---5Y1—-1 Y
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Side-note: gated recurrent units to attention

* A key idea behind LSTM and GRU is the additive update

ht = ur © ht—l + (1 — Ut) ® Bt, where ilt = f(flft, ht—l)

* This additive update creates linear short-cut connections

DEOE0 >0
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Side-note: gated recurrent units to attention

* \What are these shortcuts? @
OSOS0<_>6

* [f we unroll it, we see it's a weighted combination of all previous
hidden vectors:
hi =ur @ hy—1 + (1 —ug) © ilta
—u; O (w1 O hyo+ (1 —ui1) @ he1) + (1 —u) © hy,
= O (w1 © (Up—2 @ s + (1 —uy—2) @ hyo) + (1 —w—1) @ hy1) + (1 — wy) @ hy,
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Side-note: gated recurrent units to attention

1. Can we “free” these dependent i izl ~
weights? hy = Zl ( ]11 uj) (E(l — Uk)) h 0
2. Can we “free” candidate vectors? .

hy = Z oziﬁi, where «; o< eXp(ATT(fLi,azt)) 1

3. Can we separate keys and values?’ ~—

4. Can we have multiple attention .
heads? hy = Zaif(a:i), where o; o< exp(ATT(f(x;), 7)) 2

1=1

Zaz x;)), where a; o exp(ATT(K(f(x;)), Q(x))) 3

he = [hi;--- ;hi*], where hY = Zakvk (z;)), where af oc exp(ATT(K"(f(z:)), Q% (x¢))) 4
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Generalized dot-product attention - vector

form

GQ'A:I.

Alg, K,V) =)
keys values : Z]- e’
outputs

%)
'AJ

queries
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Generalized dot-product attention - matrix
form

AQ, K, V) = softmax(QKT)V

 rows of Q, K, V are keys,
queries, values
« softmax acts row-wise
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Three types of attention in Transformer

e usual attention between encoder and decoder: Output
Q=[current state] K=V=[BiRNN states] S

Softmax
| [ I | I | Feed
[ ey | TR | R | Forward
e self-attention in the encoder (encoder attends to itself!) () | | =
Q=K=V=[encoder states] Forward T I
1 1 1 I 1 I Multi-Head Multi-Head
1 I 1 I I I Attention Attention
e R R , T , O
T g W —,
e masked self-attention in the decoder (attends to itself, Postond (36 &-() Prstiore
] n INc ncoaing
but a states can only attend previous states) —ou ~ouon
mbedding mbedding
Q=K=V=[decoder states] i f

Inputs Outputs

/ \ /\ (shifted right)
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Other tricks in Transformer

« allows different processing of information coming from different locations

MultiHead(Q, K, V) = Concat(heads, ..., heady,) W
where head; = Attention(QWiQ, KWE vw)Y)

* positional embeddinas are reauired to preserve the order information:
P E(pos,27;) = sin(pos/ 100002/ dmode
PE(pOS,2i+1) — COS(pOS/lOOOOQi/dmOde]

(trainable parameter embeddings also work)
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Transformer Full Model and Performance

~>| Add &INorm ]\
Fe.ed
Forward
T
o N> | —(Add & Norm )
e BLEU Training Cost (FLOPs) Mui-Head
EN-DE EN-FR EN-DE  EN-FR stenton
ByteNet [18] 23.75 —
Deep-Att + PosUnk [39] 39.2 1.0 - 1020 o "
GNMT + RL [38] 246  39.92 2.3-10° 1.4.10% Pastiong D
ConvS2S [9] 25.16  40.46 0.6-10'% 1.5- 102 =heaging
MOE [32] 26.03  40.56 2.0-10° 1.2-10% i
Deep-Att + PosUnk Ensemble [39] 40.4 8.0-10% T
GNMT + RL Ensemble [38] 26.30  41.16 18-102° 1.1.10*%
ConvS2S Ensemble [9] 26.36  41.29 7.7:10Y% 1.2:10% Inputs
Transformer (base model 273 38.1 3:8-10*S - -
Transformer Ebig) : 28.4 41.8 2.3. 10" ) 6 Iayers like that in encoder

- B layers with masking in the
decoder

- usual soft-attention between
the encoder and the decoder



Output
Probabilities

( ¢ R
Add & Norm
Feed
Forward
4 ~\ Add & Norm
_ .
Add & Norm Multi-Head
Feed Attention
Fon:vard T 7 N x
- 1
i Add & Norm
f—v' Add & Norm l Maeked
Multi-Head Multi-Head
Attention Attention
o J \ —
Positional D 4 Positional
Encoding Encoding

T F'ans fO Frmers T, 1

Inputs Outputs

(shifted right)
O r TeXt Attention Is All You Need, Vaswani et al,

NIPS 2017



N a student

Transformer Model =

Y )
* [t IS a sequence to sequence oA | = [
model (from the original paper)
SRR \ R
* the encoder component Is a
stack of encoders (6 in this ol om = st
paper) ’ , P—
. . c ; " n 3
» the decoding component Is == ==
also a stack of decoders of the [ B ] [ e
Same number i ENC;)DER j [ DEC(:DER
ENC(:DER w t DECiDER
C ENCi)DER ) I DECODER

|



Transformer Model: Encoder

t

[ Feed Forward Neural Network

* The encoder can be broken 7

Self-Attention

down into 2 parts [

:

83



Transformer Model: Encoder

ENCODER #2 kk

ENCODER #1

)

2

Feed Forward Feed Forward
Neural Network Neural Network

2, [ 2 [ []
1 1

(

Self-Attention )

4 [3

1 1
xi L | [ | xe| | | | |

Thinking Machines
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Transformer Model: Encoder

 Example: ” The_ The_
animal_ animal_
" didn_ didn_
* Assoclate “It" with “animal” t t_
Cross._ Cross_
* look for clues when encoding the_ the_
street_ street_
because because _
it_ o
was_ was_
too_ too_
tire tire
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Self-Attention: Step 1 (Create Vectors)

Input

Embedding

Queries a1 Q2 Wwa

Keys

Values

» Abstractions useful for calculating and thinking about attention
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Self-Attention: Step 2 (Calculate score), 3 and 4

Input

Embedding

Queries

Keys

Values

Score

Divide by 8 ( d). )

Softmax

d1

2 bric s
hinking

q2

cnine

S
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Self-Attention:
Step 5

* multiply each value
vector by the softmax
score

* sum up the weighted
value vectors

* produces the output

Input

Embedding
Queries

Keys

Values

Score

Divide by 8 ( d; )
Softmax

Softmax
X

Sum

Thinking

g1

Marhina
viacnines

g2
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Self-Attention: Matrix Form

softmax(
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Self-Attention:
Multiple Heads

ATTENTION HEAD #0

Qo

ATTENTION
HEAD #0

p 3

P

ATTENTION HEAD #1

Q1

ATTENTION
HEAD #1

y

Calculating attention separately in
eight different attention heads

ATTENTION
HEAD #7



Self-Attention: Multiple Heads

1) Concatenate all the attention heads 2) Multiply with a weight
matrix that was trained
jointly with the model

X

3) The result would be the ~ matrix that captures information
from all the attention heads. We can send this forward to the FFNN

91



Self-Attention: Multiple Heads

[

The_ The_ The_
: : animal_
animal_ animal_ did
didn_ didn_ o
, L. L
Cross_
Cross_ Cross_ n
the the_ o
street_ street_ Streer.
because_
because_ because_
; . it_
it_ it_
was
was was_
too
too_ too_ ti
' iim 8- tire c;re
d d =

* \Where different attention heads are « With all heads In the picture, things are
focusing (the model’s repr of “it" has harder to interpret
some of "animal” and “tired”) %



Positional Embeddings

* To give the model a sense of order

» Learned or predefined

POSITIONAL 1 1 0.84 [OLGE 054 1 0.91 [NLZIEERVE 1
ENCODING
+ + +
EMBEDDINGS X1 X X3 |

INPUT Je SUis etudiant



Positional Embeddings

.
D
—
V4
o
O
iy
7))
D
O
O
-+
qu]
=
°




The Residuals

» Each sub-layer in each encoder has a residual connection around it
followed by a layer normalization

4 4
("( Add & Normalize 3\

E ¢ i
; : ( Feed Forward ) ( Feed Forward )
Q | Ymmmemnes | SELEETIS TP PPTTErrT )
> ,-»( Add & Normalize )
“1 & )

E ( Self-Attention )

rosToNAL @) @
« - I

Thinking Machines




The Residuals

 This goes for

sub-layers in
=3
decoder %
@)
as well z | T I
E ( Self-Attention
A S mm m Y —— 3
(-»( Add & Normalize
i i ( Feed Forward ) ( Feed Forward )
| St B s )
= ,.>( Add & Normalize
— —
- Self-Attention
s s T TIT 3

POSITIONAL
ENCODING

. B

Thinking

" .

Machines

DECODER #1

Softmax )
)
Linear )
7y
whll 2 DECODER #2
§ 4
,*( Add & Normalize )

i e Ve i 7
,*( Add & Normalize )
, ) )

"':'"( Encoder-Decoder Attention )
o Ry B-----cccmrmmcmmmmn- 3
,»( Add & Normalize )
: T )
E ( Self-Attention )
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The Decoder

e The self-attention can Decoding time step: 1@}3 4 5 6

only attend to earlier
positions in the output
sequence.

* Done by masking the
future positions (setting
them to -inf before the
softmax in calculation)

EMBEDDING
WITH TIME
SIGNAL

EMBEDDINGS

INPUT

OUTPUT
?
e &
Kencdec  Vencdec ( Linear + Softmax )
[ S (R &, . e
[ ~ -
ENCODERS DECODERS
LL J & )
r t 1 1
[HEEE LI T[] CTTT] [(TTT]
ZEEE [ = EETEE
Je Suis étudiant PREVIOUS

OUTPUTS

97



Final Layer

e The self-attention can Which word in our vocabulary
only attend to earlier is associated with this index?
positions in the output

seguence. Get the index of the cell

with the highest value

« Done by masking the (argmax)
future positions (setting

them to -Inf before the log_probs

softmax in calculation)

logits

Decoder stack output

dm

© 12345

. Vocab_size

. Vocab_size

‘. N Il H B
012345 *
( Linear
*
LT T
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Results

 Machine Translation: WIMT-2014 BLEU

EN-DE EN-FR
GNMT (orig) 24.6 39.9
ConvSeq2Seq 25.2 40.5
Transformer® 28.4 41.8

 Transformer models trained >3x faster than the others

Attention Is All You Need, Vaswani et al, NIPS 2017
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What Matters

o : ' train | PPL BLEU params
row B_. reducmg N dnoaa  dr b de dy Paop s g el der)  x10°
attention key Siz€ “pase | 6 512 2048 8 64 64 01 0.1 100K | 492 258 65
hurts the model 1 512 512 529 249

A) 4 128 128 500 255
. 16 32 32 491 258

« row C: bigger 2 16 16 501 254

model is better (B) 16 516 251 358
32 501 254 60
_ . 2 6.11 237 36

e row D: drOpOUt 1S 4 519 253 50

helpful 8 488 255 80
(®) 256 2 32 575 245 28
. . . 1024 128 128 466 260 168

e sinusoidal with 1024 512 254 53

learned positional 4070 4Jy 62 2D
0.0 577 246
emb have same ©) 0.2 495 255
0.0 467 253
results 0.2 547 257
(E) positional embedding instead of sinusoids 492  25.7

big | 6 1024 4096 16 0.3 300K | 433 264 213
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Transformers
for Vision

Vision Transformer (ViT)

MLP
Head

Transformer Encoder

il - aé dDe e) e @15

* Extra learnable

[class] embedding Llnear Prolectlon of Flattened Patches

mmn—»%ilm

An Image is Worth 16x16 Words: Transformers for Image Recognition
at Scale, Dosovitskiy et al,

ICLR 2021

|
-

Transformer Encoder

Multi-Head
Attention

T4

Norm

Embedded
Patches

|
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Deep Nets are Data Transformers

» Deep nets transform datapoints,
layer by layer

_ _ Layer L
* Each layer is a different

representation of the data

* \We call these representations
embeddings

Input
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A New Data Structure: Tokens

» A token is just transformer lingo for a vector of neurons (a.k.a. an embedding)

« But the connotation is that a token is an encapsulated bundle of information;
with transformers we will operate over tokens rather than over neurons

linear comb of neurons linear comb of tokens

[COGO]
<

N
[O000] [0000] [C000]

y:ZwiCEi Y:Zwixi
7
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Tokenizing The Input Data

* \When operating over neurons, we represent the input as an array of scalar-

Va

ued measurements (e.g., pixels)

* \When operating over tokens, we represent the input as an array of vector-

Va

tokens ... >

ued measurements

(@oereé)

Three guineafowl walking on ice plants.

104



Convolution over Tokens

9) O O O ® '
o o - " B i Local MLP
@ & O O ) O
A '

space/time



conv w/o overlap

conv w overlap

conv pyramid

fc layer

06



Attention Layer

Wo W9 W9 Wo

107

N

.

.

Wi Wi W W1

N




Attention Layer

Wo W9 W9 Wao

108

w1 w1 W1

W1




Attention Layer




Attention Layer

------------------------

10 - I
sim query
M N
—
M _
N = N
I
|
Q
—
S
attention

A = softmax(

dr

...........................................................

V=wjoZ

linear

conv

attention

[“Attention Is All You Need”, Vaswani et al. 2017]

[“Vision Transformer”, Dosovitskiy et al. 2020]
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T
Transformer mm - i

(simplified) 1 1 « 1
1

© / attention

',,"7 -~ - =

[“Attention is All You Need”, Vaswani et al. 2017/]
[“Vision Transformer”, Dosovitskiy et al. 2020] |






Summary

o attention is used to focus on parts of inputs/outputs

o It can be content/location based and hard/soft

e It's three main distinct uses are

©)

©)

©)

connecting encoder and decoder In seguence-to-sequence task
achieving scale-invariance and focus in Image processing

self-attention can be a basic building block for neural nets, often
replacing RNNs and CNNs [recent research, take it with a grain of salt]
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Next lecture:
Autoregressive Models



