

Good news, everyone!

- Paper presentations start next week, on Wednesday (March 9)
- Each student should write a review on OpenReview

Good news, everyone!

••• • • •	9.0	iii operreview.net	¢		0 (
OpenReview.net	Search OpenFieview	Q.	Α.	tivity Tasks	Aykut Erdem +
← Go to KU Spring2022 ha	mepage				
Currently showing group in de	fault mode Edit Group				
KU 2022 CC	MP547 Deep l	Unsupervised Le	arning Cou	rse	
COMP547			j		
Ø TBD	022 🕑 https://aykuterdem.	github.io/classes/comp547/ 🔯	aerdem@ku.edu.tr		
Please see the venue websit Submission Start: Feb 23 202	e for more information. 2 11:59PM UTC-0, End: TBD UTC-0				
Add: KU Spring2022 CC	MP547 Submission				
Your Consoles					
Program Chair Con	sole				
	About OpenPeriors	Contract	Free weth taked Ouestions		
	Hosting a Venue	Feedback	Terms of Service		
	All Venues	Sponsors	Privacy Policy		
Openflerrew r	s a long-term project to advance science the	nugh improved peer rankew, with legal nonprofilt of		in Gery. We grateful	
			-		
For pa	aber re	eviews			
	illuca	tho		N	
	m use				
		N.			
Onen	Revie	M net		N	1
					~
				~	~

Paper Reviews

Think deeply about the papers we read and try to learn from them as much as possible (and then even more). If you do not understand something, we should discuss it and dissect it together. Whatever you think others understand, they understand less (the instructor included), but together we will get it.

- Identify the key questions the paper studies, and the answers it provides to these questions.
- Consider the challenges of the problem or scenario studied, and how the paper's approach addresses them.
- Deconstruct the formal and technical parts to understand their fine details. Note to yourself aspects that are not clear to you

Paper Reviewing Guidelines

- When reviewing the paper, start with 1–2 sentences summarizing what the paper is about.
- Continue with the strength of the paper. Outline its contribution, and your main takeaways. What did you learn?
- Highlight shortcomings and limitations. Please focus on weaknesses that fundamental to the method. Unlike conference or journal reviewing, this part is intended for your understanding and discussion.
- Try to suggest ways to address the paper's limitations. Any idea is welcome and will contribute to the discussion.
- Suggest questions for discussion in class. As part of the discussion in class, you are asked to raise these questions during the class.

Previously on COMP547

- content-based attention
- location-based attention
- soft vs. hard attention
- case study: Show, Attend and Tell
- self-attention
- case study: Transformer networks

- Motivation
- Simple generative models: histograms
- Parameterized distributions and maximum likelihood
- Autoregressive Models
 - -Recurrent Neural Nets
 - -Masking-based Models

Disclaimer: Much of the material and slides for this lecture were borrowed from —Pieter Abbeel, Peter Chen, Jonathan Ho, Aravind Srinivas' Berkeley CS294-158 class

Motivation

- Simple generative models: histograms
- Parameterized distributions and maximum likelihood
- Autoregressive Models
 - -Recurrent Neural Nets
 - -Masking-based Models

Likelihood-based models

• Problems we'd like to solve:

- Generating data: synthesizing images, videos, speech, text
- Compressing data: constructing efficient codes
- Anomaly detection
- Likelihood-based models
 - -Estimate p_{data} from samples $x^{(1)}$, ..., $x^{(n)} \sim p_{data}(x)$
- Learns a distribution p that allows:
 - Computing p(x) for arbitrary x
 - Sampling $x \sim p(x)$
- Today: discrete data

Desiderata

- We want to estimate distributions of **complex, high-dimensional data** – A 128×128×3 image lies in a ~50,000-dimensional space
- We also want computational and statistical efficiency
 - Efficient training and model representation
 - Expressiveness and generalization
 - Sampling quality and speed
 - Compression rate and speed

- Motivation
- Simple generative models: histograms
- Parameterized distributions and maximum likelihood
- Autoregressive Models
 - Recurrent Neural Nets
 - Masking-based Models

Learning: Estimate frequencies by counting

- Recall: the goal is to estimate p_{data} from samples x⁽¹⁾, ..., x⁽ⁿ⁾ ~ p_{data}(x)
- **Suppose** the samples take on values in a finite set {1, ..., k}
- The model: a histogram
 - (Redundantly) described by k nonnegative numbers: p₁, ..., p_k
 - To train this model: count frequencies
 p_i = (# times i appears in the dataset) /
 (# points in the dataset)
- How can we compute likelihoods and sample from this model?

Inference and Sampling

- Inference (querying p_i for arbitrary i): simply a lookup into the array p_1, \ldots, p_k
- **Sampling** (lookup into the inverse cumulative distribution function)
 - 1. From the model probabilities p_1, \ldots, p_k , compute the cumulative distribution

$${}^{=}_{i} = p_{1} + \dots + p_{i}$$
 for all $i \in \{1, \dots, k\}$

- 2. Draw a uniform random number u ~ [0, 1]
- 3. Return the smallest i such that $u \leq F_i$

• Are we done?

Failure in high dimensions

- No, because of the **curse of dimensionality**. Counting fails when there are too many bins.
 - (Binary) MNIST: 28x28 images, each pixel in {0, 1}
 - There are $2^{784} \approx 10^{236}$ probabilities to estimate
 - Any reasonable training set covers only a tiny fraction of this
 - No generalization whatsoever! There is shared structure among images but this kind of model would not be able to capture that.

Problematic even for single variable

learned histogram = training data distribution

 \rightarrow often poor generalization

Parameterized Distributions

Fitting a parameterized distribution often generalizes better

- Motivation
- Simple generative models: histograms
- Parameterized distributions and maximum likelihood
- Autoregressive Models
 - Recurrent Neural Nets
 - Masking-based Models

Likelihood-based generative models

- Recall: the goal is to **estimate** p_{data} from $x^{(1)}$, ..., $x^{(n)} \sim p_{data}(x)$
- Now we introduce **function approximation**: learn θ so that $p_{\theta}(x) \approx p_{data}(x)$.
 - How do we design function approximators to effectively represent complex joint distributions over x, yet remain easy to train?
 - There will be many choices for model design, each with different tradeoffs and different compatibility criteria.
- Designing the model and the training procedure go hand-in-hand.

Fitting distributions

- Given data x⁽¹⁾, ..., x⁽ⁿ⁾ sampled from a "true" distribution p_{data}
- Set up a model class: a set of parameterized distributions $p_{\boldsymbol{\theta}}$
- Pose a search problem over parameters

$$\arg\min_{\theta} \ \log(\theta, \mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)})$$

- Want the loss function + search procedure to:
 - Work with large datasets (n is large, say millions of training examples)
 - Yield θ such that p_{θ} matches p_{data} i.e. the training algorithm works. Think of the loss as a distance between distributions.
 - Note that the training procedure can only see the empirical data distribution, not the true data distribution: we want the model to generalize.

Maximum likelihood

• Maximum likelihood: given a dataset $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}$, find θ by solving the optimization problem

$$\arg\min_{\theta} \operatorname{loss}(\theta, \mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}) = \frac{1}{n} \sum_{i=1}^{n-1} -\log p_{\theta}(\mathbf{x}^{(i)})$$

- Statistics tells us that if the model family is expressive enough and if enough data is given, then solving the maximum likelihood problem will yield parameters that generate the data
- Equivalent to minimizing KL divergence between the empirical data distribution and the model

$$\hat{p}_{\text{data}}(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1} [\mathbf{x} = \mathbf{x}^{(i)}]$$
$$\text{KL}(\hat{p}_{\text{data}} \parallel p_{\theta}) = \mathbb{E}_{\mathbf{x} \sim \hat{p}_{\text{data}}} [-\log p_{\theta}(\mathbf{x})] - H(\hat{p}_{\text{data}})$$

Stochastic gradient descent

- Maximum likelihood is an optimization problem. How do we solve it?
- Stochastic gradient descent (SGD).
 - SGD minimizes expectations: for f a differentiable function of θ , it solves $\arg\min_{\theta} \mathbb{E}[f(\theta)]$
 - -With maximum likelihood, the optimization problem is

$$\arg\min_{\theta} \mathbb{E}_{\mathbf{x} \sim \hat{p}_{\text{data}}} \left[-\log p_{\theta}(\mathbf{x}) \right]$$

 - Why maximum likelihood + SGD? It works with large datasets and is compatible with neural networks.

Designing the model

- Key requirement for maximum likelihood + SGD: efficiently compute log p(x) and its gradient
- We will choose models p_{θ} to be deep neural networks, which work in the regime of high expressiveness and efficient computation (assuming specialized hardware)
- How exactly do we design these networks?
 - Any setting of θ must define a valid probability distribution over x:

for all
$$\theta$$
, $\sum_{\mathbf{x}} p_{\theta}(\mathbf{x}) = 1$ and $p_{\theta}(\mathbf{x}) \ge 0$ for all \mathbf{x}

- log $p_{\theta}(x)$ should be easy to evaluate and differentiate with respect to θ
- This can be tricky to set up!

Bayes nets and neural nets

- Main idea: place a Bayes net structure (a directed acyclic graph) over the variables in the data, and model the conditional distributions with neural networks.
- Reduces the problem to designing conditional likelihood-based models for single variables. We know how to do this: the neural net takes variables being conditioned on as input, and outputs the distribution for the variable being predicted.

$$\begin{split} P(B,E,A,J,M) = P(B) P(E|B) P(A|E,B) P(J|A,E,B) P(M|J,A,E,B) & \text{chain rule} \\ \hline P(E) & P(J|A) & P(M|A) \end{split}$$

- Motivation
- Simple generative models: histograms
- Parameterized distributions and maximum likelihood
- Autoregressive Models
 - Recurrent Neural Nets
 - Masking-based Models

Autoregressive models

 First, given a Bayes net structure, setting the conditional distributions to neural networks will yield a tractable log likelihood and gradient. Great for maximum likelihood training!

$$\log p_{\theta}(\mathbf{x}) = \sum_{i=1}^{a} \log p_{\theta}(x_i \mid \text{parents}(x_i))$$

• But is it expressive enough? Yes, assuming a fully expressive Bayes net structure: any joint distribution can be written as a product of conditionals

$$\log p(\mathbf{x}) = \sum_{i=1}^{d} \log p(x_i | \mathbf{x}_{1:i-1})$$

• This is called an **autoregressive model**. So, an expressive Bayes net structure with neural network conditional distributions yields an expressive model for p(x) with tractable maximum likelihood training.

A toy autoregressive model

- Two variables: x₁, x₂
- Model: $p(x_1, x_2) = p(x_1) p(x_2|x_1)$
 - $-p(x_1)$ is a histogram
 - $-p(x_2|x_1)$ is a multilayer perceptron
 - Input is x₁
 - Output is a distribution over x₂ (logits, followed by softmax)

One function approximator per conditional

- Does this extend to high dimensions?
 - Somewhat. For d-dimensional data, O(d) parameters
 - Much better than O(exp(d)) in tabular case
 - What about text generation where d can be arbitrarily large?
 - Limited generalization
 - No information sharing among different conditionals
- Solution: share parameters among conditional distributions. Two approaches:
 - Recurrent neural networks
 - Masking

- Motivation
- Simple generative models: histograms
- Parameterized distributions and maximum likelihood
- Autoregressive Models
 - -Recurrent Neural Nets
 - -Masking-based Models

RNN autoregressive models - char-rnn

$$\log p(\mathbf{x}) = \sum_{i=1}^{d} \log p(x_i | \mathbf{x}_{1:i-1})$$

Sequence of Character at ith position

[Karpathy, 2015]

MNIST

- Handwritten digits
- 28x28
- 60,000 train
- 10,000 test

- Original: greyscale
- "Binarized MNIST" 0/1 (black/white)

ð

30

5 0

RNN on MNIST

Epoch 1

Epoch 2

Epoch 19 3 .

6

S

7

6

RNN with Pixel Location Appended on MNIST

• Append (x,y) coordinates of pixel in the image as input to RNN

Intialization	Epoch 0	Epoch 1	Epoch 2	Epoch 8	Epoch 19
		66444710	52202132	29559372	66641633
	28104911	16155551	20112501	28770352	66443819
	きょうアイオ やず	54941566	24109294	07679495	39319241
	与亲近之子 人名希	8 . 4 - + 1 9 9	55870041	84380517	73436386
	*******	19125425	81357045	09837502	33662133
	5355448	57333423	00565712	02968848	+2297234
	072834:3	6440 4010	11919186	82449935	52356631
	19480393	19286538	19716347	21628399	15645860

- Motivation
- Simple generative models: histograms
- Parameterized distributions and maximum likelihood
- Autoregressive Models
 - -Recurrent Neural Nets
 - -Masking-based Models
 - MADE
 - Masked Convolutions
 - WaveNet
 - PixelCNN (+ variations)

Masking-based autoregressive models

- Second major branch of neural AR models
 - -Key property: parallelized computation of all conditionals
 - -Masked MLP (MADE)
 - -Masked convolutions & self-attention
 - Also share parameters across time

Masked Autoencoder for Distribution Estimation (MADE)

Masked Autoencoder for Distribution Estimation (MADE)

 $p(x_2)$ $p(x_3|x_2)$ $p(x_1|x_2, x_3)$
Masked Autoencoder for Distribution Estimation (MADE) $p(x) = p(x_1) \cdot p(x_2|x_1) \cdots p(x_6|x_{1:5})$

MADE on I	MNIST
-----------	-------

Intialization	Epoch 0	Epoch 1	Epoch 2	Epoch 8	Epoch 19
	62233348833	*****	4209023	81284436	29436125
	****	99262339	64008223	91003022	12503282
	*******	34480039	28406804	12740223	33811848
		56026888	95616365	5 # # 5 % # 6 Z	38488014
	*****	*0280320	89329804	05296892	012121448
	<u><u>a</u> <u>a</u> <u>a</u> <u>a</u> <u>a</u> <u>a</u> <u>a</u> <u>a</u> <u>a</u> <u>a</u></u>	0000000000	8851498B	P 1 5 4 8 4 2 0	86343899
	*******	76903699	48808739	4662068*	98289862
	* 2 2 4 5 5 6 5 5	8000227	3 5 9 3 0 9 9 3	21221086	21956891

MADE results

Table 6. Negative log-likelihood test results of different models on the binarized MNIST dataset.

Model	$-\log p$	
RBM (500 h, 25 CD steps)	≈ 86.34	()
DBM 2hl	≈ 84.62	pla
DBN 2hl	≈ 84.55	lcta
DARN $n_h=500$	≈ 84.71	itra
DARN n_h =500, adaNoise	≈ 84.13	Ц
MoBernoullis K=10	168.95	
MoBernoullis K=500	137.64	
NADE 1hl (fixed order)	88.33	
EoNADE 1hl (128 orderings)	87.71	ble
EoNADE 2hl (128 orderings)	85.10	icta
MADE 1hl (1 mask)	88.40	Tra
MADE 2hl (1 mask)	89.59	
MADE 1hl (32 masks)	88.04	
MADE 2hl (32 masks)	86.64	

MADE results

Figure 3. Left: Samples from a 2 hidden layer MADE. Right: Nearest neighbour in binarized MNIST.

MADE -- Different Orderings

• All orderings achieve roughly the same bits per dim but samples are different

$$\left(\frac{\log_2 p(x)}{\dim(x)}\right),\,$$

Random Permutation	Even then Odd Indices	Rows (Raster Scan)	Columns	Top to Middle, Bottom to Middle
Samples	Samples	Samples	Samples	Samples
58888337	28288049	30464325	60910020	81963488
\$5485048	55588525	34344848	85029020	26262062
43438721	59528540	\$388886F	60739520	99534962
32463155	83688136	62898363	64202854	61263832
12893628	62826395	34428595	33992204	04062686
20381039	10 + 4 5 6 8 4 P	0364639	04590059	02690885
23327983	44434336	12488804	65951392	\$4173301
78807459	76464482	23434637	24132592	48964861

MADE: Multiple Orderings

Lecture overview

- Motivation
- Simple generative models: histograms
- Parameterized distributions and maximum likelihood
- Autoregressive Models
 - -Recurrent Neural Nets
 - -Masking-based Models
 - MADE
 - Masked Convolutions
 - WaveNet
 - PixelCNN (+ variations)

Masked Temporal (1D) Convolution

Xi

- Easy to implement, masking part of the conv kernel
- Constant parameter count for variable-length distribution!
- Efficient to compute, convolution has hyper-optimized implementations on all hardware

Hidden Layer

However

 Limited receptive field, linear in number of layers

WaveNet – Multiple Stacks

- Improved receptive field with dilated convolutions
- Gated Residual block with skip connections

WaveNet

.

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

000000000000

- Improved receptive field: dilated convolution, with exponential dilation
- Better expressivity: Gated Residual blocks, Skip connections

WaveNet on MNIST

WaveNet with Pixel Location Appended on MNIST

• Append (x,y) coordinates of pixel in the image as input to WaveNet

Intialization	Epoch 0	Epoch 1	Epoch 2	Epoch 8	Epoch 19
	68361009	64442080	87 4 4 5778	34690172	89568200
	73341748	25619672	80094531	28789386	1104045
	51776900	56871720	74444560	48479546	10729048
	09823033	98199484	96668719	24174147	39994782
	20111952	4926240P	39632255	24070814	47552633
	08143667	31373013	10177465	97013943	18098984
	67977442	89896083	47218759	13278221	12573626
	1199 81 45	78634623	175811115	73748398	12167530

Lecture overview

- Motivation
- Simple generative models: histograms
- Parameterized distributions and maximum likelihood
- Autoregressive Models
 - -Recurrent Neural Nets
 - -Masking-based Models
 - MADE
 - Masked Convolutions
 - WaveNet
 - PixelCNN (+ variations)

Masked Spatial (2D) Convolution - PixelCNN

- Images can be flatten into 1D vectors, but they are fundamentally 2D
- We can use a masked variant of ConvNet to exploit this knowledge
- First, we impose an autoregressive ordering on 2D images:

This is called raster scan ordering. (Different orderings are possible, more on this later)

PixelCNN

- Design question: how to design a masking method to obey that ordering?
- One possibility: PixelCNN (2016)

0

255

255

PixelCNN

• PixelCNN-style masking has one problem: blind spot in receptive field

 Gated PixelCNN (2016) introduced a fix by combining two streams of convolutions

This is easy, we know how to do 1D masked conv

• Vertical stack: through padding, activations at ith row only depend on input before ith row

• Improved ConvNet architecture: Gated ResNet Block

$$\mathbf{y} = \tanh(W_{k,f} * \mathbf{x}) \odot \sigma(W_{k,g} * \mathbf{x})$$

• Better receptive field + more expressive architecture = better performance

Model	NLL Test (Train)
Uniform Distribution: [30]	8.00
Multivariate Gaussian: [30]	4.70
NICE: [4]	4.48
Deep Diffusion: [24]	4.20
DRAW: [9]	4.13
Deep GMMs: [31, 29]	4.00
Conv DRAW: [8]	3.58 (3.57)
RIDE: [26, 30]	3.47
PixelCNN: [30]	3.14 (3.08)
PixelRNN: [30]	3.00 (2.93)
Gated PixelCNN:	3.03 (2.90)

Table 1: Test set performance of different models on CIFAR-10 in *bits/dim* (lower is better), training performance in brackets.

PixelCNN++

 Moving away from softmax: we know nearby pixel values are likely to co-occur!

$$u \sim \sum_{i=1}^{K} \pi_i \text{logistic}(\mu_i, s_i)$$
 $P(x|\pi, \mu, s) = \sum_{i=1}^{K} \pi_i \left[\sigma((x+0.5-\mu_i)/s_i) - \sigma((x-0.5-\mu_i)/s_i) \right],$

Recap: Logistic distribution

Ex. Training Mixture of Logistics

PixelCNN++

• Capture long dependencies efficiently by downsampling

PixelCNN++

Model	Bits per sub-pixel
Deep Diffusion (Sohl-Dickstein et al., 2015)	5.40
NICE (Dinh et al., 2014)	4.48
DRAW (Gregor et al., 2015)	4.13
Deep GMMs (van den Oord & Dambre, 2015)	4.00
Conv DRAW (Gregor et al., 2016)	3.58
Real NVP (Dinh et al., 2016)	3.49
PixelCNN (van den Oord et al., 2016b)	3.14
VAE with IAF (Kingma et al., 2016)	3.11
Gated PixelCNN (van den Oord et al., 2016c)	3.03
PixelRNN (van den Oord et al., 2016b)	3.00
PixelCNN++	2.92

Table 1: Negative log-likelihood for generative models on CIFAR-10 expressed as bits per sub-pixel.

Masked Attention

- A recurring problem for convolution: limited receptive field \rightarrow hard to capture long-range dependencies
- (Self-)Attention: an alternative that has
 - unlimited receptive field!!
 - also O(1) parameter scaling w.r.t. data dimension
 - parallelized computation (versus RNN)

Attention

Self-attention when q_i also generated from x

Self-Attention

Convolution

Self-attention

Masked Attention

• Dot-Product Attention

$$A(q, K, V) = \sum_{i} \frac{e^{q \cdot k_i} \cdot \mathsf{masked}(\mathsf{k}_i, q) * 10^{10}}{\sum_{j} e^{q \cdot k_j} \cdot \mathsf{masked}(\mathsf{k}_i, q) * 10^{10}}$$

Masked Attention

- Much more flexible than masked convolution. We can design any autoregressive ordering we want
- An example:

Zigzag ordering

- How to implement with masked conv?
- Trivial to do with masked attention!

Masked Attention + Convolution

Masked Attention + Convolution

Gated PixelCNN

PixelCNN++

PixelSNAIL

Multi-Head Self-Attention on MNIST

Intialization	Epoch 0	Epoch 1	Epoch 2	Epoch 8	Epoch 19
	* \$ * 5 6 6 6 6 7	91955999	192111+¥	40093642	69834365
	9 6 6 7 7 9 6 9	6-423696	18912921	10412338	48868282
	69968529	金属等单节警察的	18983731	96870442	80501972
	· · · · · · · · · · · · · · · · · · ·	生产生物学生常常	1112111	99441309	16019990
	79265E	64 66428	98889890	18222839	10866298
	医白豆白豆白豆	医牙疟疾的变色症	KEIFS417	53492866	12892659
	¥ \$ 1 \$ 3 \$ 6 §	会母亲真常了总是	68111230	08460337	\$5716960
	48268681	14966288	4122222	ロションション	18363321

Masked Attention + Convolution

Method	CIFAR-10
Conv DRAW (Gregor et al., 2016)	3.5
Real NVP (Dinh et al., 2016)	3.49
VAE with IAF (Kingma et al., 2016)	3.11
PixelRNN (Oord et al., 2016b)	3.00
Gated PixelCNN (van den Oord et al., 2016b)	3.03
Image Transformer (Anonymous, 2018)	2.98
PixelCNN++ (Salimans et al., 2017)	2.92
Block Sparse PixelCNN++ (OpenAI, 2017)	2.90
PixelSNAIL (ours)	2.85

Class-Conditional PixelCNN

How to condition?

IN: One-hot encoding of the labels

THEN: multiplying by different learned weight matrices in each convolutional layer, and added as a bias channel-wise and broadcasted spatially

$$\mathbf{y} = \tanh(W_{k,f} * \mathbf{x} + V_{k,f}^T \mathbf{h}) \odot \sigma(W_{k,g} * \mathbf{x} + V_{k,g}^T \mathbf{h})$$

Hierarchical Autoregressive Models with Auxiliary Decoders

De Fauw, Jeffrey, Sander Dieleman, and Karen Simonyan. "Hierarchical autoregressive image models with auxiliary decoders." arXiv preprint arXiv:1903.04933 (2019).

Image Super-Resolution with PixelCNN

 A PixelCNN is conditioned on 7 × 7 subsampled MNIST images to generated the corresponding 28 × 28 image

Pixel Recursive Super Resolution

Hierarchy: Grayscale PixelCNN

- Design an autoregressive model architecture that takes advantage of the structure of data
- Learn a PixelCNN on binary images, and a PixelCNN conditioned on binary images to generate colored images

PixelCNN Models with Auxiliary Variables for Natural Image Modeling

Colorization Transformer

Colorization Transformer

PixelTransformer: Sample Conditioned Signal Generation

PixelTransformer: Sample Conditioned Signal Generation

Top: Ground-truth Image. Bottom: Three random samples generated by our approach given 32 observed pixels (visualized in initial frame of animation).

Neural autoregressive models: The good

Best in class modelling performance:

- expressivity autoregressive factorization is general
- generalization meaningful parameter sharing has good inductive bias

 \rightarrow State of the art models on multiple datasets, modalities

Masked autoregressive models: The bad

- Sampling each pixel = 1 forward pass!
- 11 minutes to generate 16 32-by-32 images on a Tesla K40 GPU

Speedup by caching activations

Speedup by caching activations

Speedup by breaking autoregressive pattern

- $O(d) \rightarrow O(\log(d))$ by parallelizing within groups {2, 3, 4}
- Cannot capture dependencies within each group: this is a fine assumption if all pixels in one group are conditionally independent
 - Most often they are not, then you trade expressivity for sampling speed

Multiscale PixelCNN

Model	scale	time	speedup
O(N) PixelCNN	32	120.0	1.0×
O(log N) PixelCNN	32	1.17	102×
O(log N) PixelCNN, in-graph	32	1.14	105×

Improved sampling speed

Model	32	64	128
PixelRNN	3.86 (3.83)	3.64(3.57)	-
PixelCNN	3.83 (3.77)	3.57(3.48)	-
Real NVP	4.28(4.26)	3.98(3.75)	-
Conv. DRAW	4.40(4.35)	4.10(4.04)	-
Ours	3.95(3.92)	3.70(3.67)	3.55(3.42)

Table 3. ImageNet negative log-likelihood in bits per sub-pixel at 32×32 , 64×64 and 128×128 resolution.

More limited modelling capacity

Scaling Autoregressive Video Models

Scaling Autoregressive Video Models BAIR Robot Pushing

Large Spatiotemporal Subscaling

Small Spatiotemporal Subscaling

[Dirk Weissenborn, Oscar Tackstrom, Jakob Uszkoreit. "Scaling Autoregressive Video Models." arXiv 1906.02634 (2019)]

Scaling Autoregressive Video Models Kinetics

Cooking (left-to-right by likelihood)

oulag: roulag: rou

Full Kinetics (left-to-right by likelihood)

[Dirk Weissenborn, Oscar Tackstrom, Jakob Uszkoreit. "Scaling Autoregressive Video Models." arXiv 1906.02634 (2019)]

Natural Image Manipulation for Autoregressive Models using Fisher Scores

- Main challenge:
 - How to get a latent representation from PixelCNN?
 - Why hard? The random input happens on a per-pixel sample basis
- Proposed solution
 - Use Fisher score

$$\dot{\ell}(x;\theta) = \nabla_{\theta} \log p_{\theta}(x)$$

Note: applicable to any likelihood model

[Wilson Yan, Jonatha Ho, Pieter Abbeel. "Natural Image Manipulation for Autoregressive Models using Fisher Scores." arXiv 1912.05015

121

Natural Image Manipulation for Autoregressive Models using Fisher Scores

(c) Activations (Interpolation)

(d) Fisher score (Interpolation)

[Wilson Yan, Jonatha Ho, Pieter Abbeel. "Natural Image Manipulation for Autoregressive Models using Fisher Scores." arXiv 1912.05015

Natural Image Manipulation for Autoregressive Models using Fisher Scores

[Wilson Yan, Jonatha Ho, Pieter Abbeel. "Natural Image Manipulation for Autoregressive Models using Fisher Scores." arXiv 1912.05015

Next lecture: Flow-Based Models