D) ,QM’GLOWm odel by Dhariwal and Kingmd

E’*\ L\ﬂ

Previously on COMP547

 Motivation

* Simple generative models:
histograms

 Parameterized distributions and
maximum likelihood

» Autoregressive Models
— Recurrent Neural Nets

— Masking-based Models K L jg@# [L’
L “‘3{ ‘Be?
| T ». 4_"“,., N S
ey

N
B o O K
=
/ 'l
A
| |

B
OO

- T

o 3

Our Goal Today

« How to fit a density model pg(z) with continuous = € R"

* \What do we want from this model?
— Good fit to the training data (really, the underlying distribution!)
— For new x, ability to evaluate pg(z)
— Ability to sample from pg(x)
— And, 1deally, a latent representation that's meaningful

Our Goal Today

* How to fit a density model pg(x) with continuous z € R"

* \What do we want from this model?
— Good fit to the training data (really, the underlying distribution!)
— For new x, ability to evaluate pg(x)
— Ability to sample from pg(x)
— And, 1deally, a latent representation that's meaningful

Differences from Autoregressive Models from last lecture

Lecture overview

* Foundations of Flows (1-D)
e 2-D Flows
* N-D Flows

* Dequantization

Disclaimer: Much of the material and slides for this lecture were borrowed from
—Pieter Abbeel, Peter Chen, Jonathan Ho, Aravind Srinivas’ Berkeley CS5294-158 class
—Chin-Wei Huang slides on Normalizing Flows

Lecture overview

 Foundations of Flows (1-D)
e 2-D Flows
* N-D Flows

* Dequantization

Quick Refresher: Probability Density Models

p(x) .,

2:9 1

b
P(x € |a, b)) :/ p(x)dx

How to fit a density model?

Continuous data Maximum Likelihood:

6.22159854, ©.84525919, 6.09121633, 0.364252 , ©.30738086,
0.32240615, ©.24371194, 0.22400792, 0.39181847, 0.16407012, 1 ((’L))
0.84685229, ©.15944969, 8.79142357, ©.6505366 , ©.33123603, max Og pe X
0.81409325, ©.74042126, ©.67950372, ©.74073271, ©.37091554, 0 .

0.83476616, ©.38346571, 8.33561352, 0.74100048, ©.32061713, L
6.09172335, ©.39037131, 6.80496586, 0.80301971, ©.32048452,
0.79428266, 0.6961708 , ©.20183965, 0.82621227, ©.367292 E ival Iv:
8.76095756, ©.10125199, ©.41495427, ©.85999877, ©.23004346, quiva ent Y-
0.28881973, ©.41211802, 0.24764836, 0.72743029, ©.20749136,

. ~
0.29877091, ©.75781455, ©.29219608, 0.79681589, ©.86823823, 11111 4,433 [— log p@ (CE)]

0.29936483, ©.02948181, 0.78528968, 0.84015573, 0.40391632, 0

0.77816356, ©.75039186, 0.84709016, 0.76950307, 0.29772759,

0.41163966, ©.24862007, ©.34249207, 0.74363912, 0.38303383, ..

Example Density Model: Mixtures of Gaussians

4.0 1
k
po(x) =3 N (z; i, 0?) N
=1 -
2.0 1

1.5+

Parameters: means and variances of
components, mixture weights

1.0

0.5 1

0.0 1
9: (Trl??ﬂ-k?/’Ll?)/’Lk?Ul??O-k) OTO Of2 Oi4 0t6 Of8 ltO

Aside on Mixtures of Gaussians

Do mixtures of Gaussians work for high-dimensional = %=
data?

Not really. The sampling process Is:

1. Pick a cluster center
2. Add Gaussian noise

Imagine this for modeling natural images! The only
way a realistic image can be generatedisifitis a
cluster center, i.e. if it is already stored directly in
the parameters.

How to fit a general density model?

S g : = - = - po ()

* How to ensure proper distribution?

+00
/ po(x)de =1 po(z) >0 Vr

— OO

* How to sample? Easily achieved for discrete data, using softmax
 Latent representation? What about continuous data?

11

Flows: Main Idea

z = fo(x)

Generally: 2z~ pz(z)

Normalizing Flow: 2z~ N(0,1)
How to train? How to evaluate pg(x)? How to sample?

12

Flows: Training

Change of Variables

0 fo(x)
ox

Note: requires fg invertible & differentiable

Change of Variable Density Needs to Be
Normalized

X ~ px Y =2X
@ = {1 OIS) =px/2) py(y) = px(v/2)2

py(y)

px(x)
py(y)

0.5 1 n
0.0
0 1 2 3

Flows: Training

(4) (i) — ¢ (2.(0)
mQaXZI()gpg(:c) - fo(z).
0 po(z) = pz(2) |52 (aD)]
= p2(fo(a®)) | % (@)
0 0 dfe , (i
m@aleogpg(:c() = meaxZI()ng(fg(x() + log %(ZE()

— assuming we have an expression for pz,
this can be optimized with Stochastic Gradient Descent

16

Flows: Sampling

X

Step 1: sample z ~ pz(2)

Step 2: L = fe_l(z)

17

What do we need to keep in mind for f?

€T = = o : - 2 = fo(x)

z ~pz(2)

Recall, change of variable formula requires
. fo Invertible & differentiable

18

Example: Flow to Uniform z

Before
training

After
training

125 <
100

259

125 -
100 A
75 -

25

True Distribution of x

-1 0 1 2
True Distribution of x

-1 0) | 2
True distribution of x

10 1
0.8 1
0.6 -
0.4 -
0.2 1
0.0 1

10 1
0.8 1
0.6 -
0.4 1
0.2 1
0.0 1

Flow x -> z
=2 0 2
Flow x -> z
=2 0 2
Flow X — z

Empirical Distribution of z

100

3

20 1

0.2 0.4 0.6 0.8 10
Empirical Distribution of z

00 02 04 06 08 10

Empirical distribution of z
19

Example: Flow to Beta(5,5) z

True Distribution of x Flow x -> z
125 1 ol
. 0.8 -
Before ' .
. 75 - .6 1
fraining
50 - 04
% 0.2 1
. 0.0 - : ' '
-1 0 1 2 -2 0 2
True Distribution of x Flow x -> z
16 | 10 1
After 100 - ol
.. | 0.6 -
training
50 4 0.4 1
9% 0.2 1
0 - 0.0 - . ’ :
-1 0 1 2 -2 0 2
True distribution of x Flow x — z

Empirical Distribution of z

125
100 A

S

02 04 06 08 10
Empirical Distribution of z

&

20 1

0.2 0.4 0.6 0.8

Empirical distribution of z
20

Example: Flow to Gaussian z

1.0 1 15
0.8 - (\ 10 1 3000 -
5 ..
06° 2000 -
Before 0-
.. 0.4 1
training =51 —
0.2 1 ~101
0.0 - =15 .
=) 0 2 = 0 2
4 i 7.5
A 5.0 4 2500 -
0.8 1
2000 -
2.5
After -
I 0.0 - 1500 A
training 0.4 -
‘ —2.5 1000 |
0.2 1 50 500 -
0'0 1 T T T _7.5 T T T 0 =
=3 0 2 =3 0 2 w 0 2

True distribution of x Flow x — z Empirical distribution of z

Practical Parameterizations of Flows
Requirement: Invertible and Differentiable

* Cumulative Density Functions
— E.g. Gaussian mixture density, mixture of logistics

* Neural Net
— |f each layer flow, then sequencing of layers = flow
— Each layer:
« RelLU?
* Sigmoid?
* Tanh?

22

How general are flows?

» Can every (smooth) distribution be represented by a
(normalizing) flow? [considering 1-D for now]

23

Refresher: Cumulative Density Function (CDF)

4.0 1.0 1
454

0.8 -
3.0
2.3 0.6
2.0
: 0.4 1
1.0

0.2 -
0.5 4
001 | 0.0 -

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

po(2) folw) = [" po(t) dt

Sampling via inverse CDF

1.0 A

Sampling from the model:

0.8 1

z ~ Uniform(]0, 1])
z = fy ()

0.2 1

The CDF Is an invertible,

differentiable map from T
data to [0, 1] ’
/_ pe(t) dt

How general are flows?

« CDF turns any density into uniform
* Inverse flow Is flow

X - U

& - U

— can turn any (smooth) p(x) into any (smooth) p(z)

Lecture overview

* Foundations of Flows (1-D)
 2-D Flows
* N-D Flows

* Dequantization

27

2-D Autoregressive Flow

r1 — 21 = fo(x1)

Lo —7 22 = fgb(iﬁ,fli’z)
S log pay (fo(z1)) + 1og | 22| + 1og pay (i (21, 72)) + log | 222
HGI,%in O Pz, \Jo(L1 0g dz - 08 P \Jp\ L1, L2 g dzs

le df@(ﬁlﬁ‘l) dZQ _ df¢(£€1,£€2)

dry dry dxo dxo

2-D Autoregressive Flow: Two

Architecture:

e Base distribution: Uniform[0, 1]2

°X1:
.XZ:

Epoch 0 Latent Space

02 04 06

08

-15

-10

Epoch 0 Densities

08

06

04

02

0o

mixture of 5 Gaussians
mixture of b Gaussians, conditioned on x;

Epoch 3 Latent Space

02 04 06 08

10

-15

-10

-05

Epoch 3 Densities

00

05

20

25

08

06

04

02

0o

10 1

05 1
L2
00 1

-0.5 1

T T T

10 -05 00 05 10
L1

Epoch 99 Latent Space

05

00

T T T T T T -10
00 0.2 04 06 08 10 -15 -10 -05 00 05

15

Epoch 99 Densities

20

29

08

06

02

2-D Autoregressive Flow: Face

Architecture:

« Base distribution: Uniform[0,1]2
* X1 Mixture of b Gaussians
* X,: mixture of b Gaussians, conditioned on x;

Epoch 0 Latent Space Epoch 0 Densities Epoch 6 Latent Space Epoch 6 Densities

face

Epoch 99 Latent Space

00

02 04 06 08

Epoch 99 Densities

30

Lecture overview

* Foundations of Flows (1-D)
e 2-D Flows
* N-D Flows

* Dequantization

31

Recap: Normalizing Flows

X

* fp invertible & differentiable
Training objective:

DS Z log py (")) = max Z log pz(fo(z'")) + log

32

Lecture overview

* Foundations of Flows (1-D)
e 2-D Flows
* N-D Flows

—Autoregressive Flows and Inverse Autoregressive Flows
—RealNVP (like) architectures
—Glow, Flow++, FFJORD

* Dequantization

34

Autoregressive flows

* The sampling process of a Bayes net is a flow
— |f autoregressive, this flow is called an autoregressive flow

T1 ~ po(x1) L1 = fe—l(zl) z1 = fo(1)
L2 NP@(fBz 331) L2 = fg_l(zz;iﬁ) L2 = f9($1,$2)

x3 ~ po(z3|T1,22) w3 = fy ' (23501, 2) 23 = fo(x1, 72, 73)

« Sampling is an invertible mapping from z to x

35

Autoregressive flows

* How to fit autoregressive flows? 8 fo(x)
~ Map x to z po(x) = p(fo(x)) |det 5
— Fully parallelizable X

* Notice
— X — z has the same structure as the log likelihood computation of an
autoregressive model
—z — X has the same structure as the sampling procedure of an
autoregressive model

21 = fo(x1) r1 = fg ' (21)
<2 :f9(532§$1) 5U2:f9_1(22;~’131)

<3 :f9(37353317332) 333=f9_1(23;$1,332)

36

Inverse autoregressive flows

* The inverse of an autoregressive flow is also a flow, called the inverse
autoregressive flow (IAF)

— X — z has the same structure as the sampling in an autoregressive model

—z — X has the same structure as log likelihood computation of an
autoregressive model. So, IAF sampling is fast

21 = fy (z1) 1 = fo(21)
20 = f5 ' (z2;21) T2 = fo(22;21)

23 = fg (23521, 22) r3 = fo(23; 21, 22)

37

AF vs |AF -
s
» Autoregressive flow i,‘é I"lqﬂ_.:'it_j':l._

— Fast evaluation of p(x) for arbitrary x (Lower triangular)
— Slow sampling

* |nverse autoregressive flow

— Slow evaluation of p(x) for arbitrary x, so training directly by maximum likelihood
IS slow.

— Fast sampling
— Fast evaluation of p(x) if x is a sample

* There are models (Parallel WaveNet, |AF-VAE) that exploit IAF's fast
sampling

38

AF and IAF

Naively, both end up being as deep as the number of variables!
 £.g. TMP image — 1M layers/sampling steps...

Can do parameter sharing as in Autoregressive Models from previous
lecture [e.g. RNN, masking]

39

Lecture overview

* Foundations of Flows (1-D)
e 2-D Flows

* N-D Flows
— Autoregressive Flows and Inverse Autoregressive Flows
—RealNVP (like) architectures
- Glow, Flow++, FFJORD

* Dequantization

40

Refresher: Change of MANY variables

For a multivariable invertible mapping f : R™ - R™ X ~px Y := f(X)

v () = px(f (9)) |det 220

1-D 2-D
p(y) dy O dy
_ > Y
dx dx <0
y y+dy y y+dy
x+dx X X+dx +dx,

Figures from blog post: Normalizing Flows Tutorial, Part 1: Distributions and Determinants by Eric Jang 41

Change of MANY variables

For z ~ p(z), sampling process ! linearly transforms a small cube dz to a
small parallelepiped dx. Probability i1s conserved:

plx) = piz) "ij; ~ p(z) |det &

Intuition: x is likely if it maps to a “large” region in z space

42

Flow models: training

Change-of-variables formula lets us compute the density over x:

po(x) = pl(o(x)) |det 20)

Train with maximum likelihood:

arg min K |—log pg(x)] = Ex | —logp(fo(x)) — log det 8];;)(;()

New key requirement: the Jacobian determinant must be easy to
calculate and differentiate!

43

Chaining Invertible Mappings

f=fgo---0fr0fy flz) = fs(--- f2(f1(2)))

f1(2o) i-1) fit1(z
. 2@ - O @+

2o ~ po(2o) Zi ~ P (Z ZK ~ PK(ZK)

Of(x) _ fs(esa) — fl@) filee) x5 = fs(@s-1)

or Oxg_1 0xq 0z Ty =T : Chain rule
of(xz) \ fs(zs-1) fa(z1) f1(zo) Determinant of
det (Ox) = det (0rs_1) -+ det (oz) det (dxg) : matrix product

Figure from blog post: Flow-based Deep Generative Models by Lilian Weng, 2018 a4

Constructing flows: composition

* Flows can be composed

X—>f -1 —>. .. f >z

2= fyo-wo fila)

z=frlo-ofil(2)

k
log po(z) = logpe(2) + » _log
=1

* Easy way to Increase expressiveness

det

0fi

0fi—1

45

Affine flows

« Another name for affine flow: multivariate Gaussian.
— Parameters: an invertible matrix A and a vector b
- f(z) = A7 (z — b)

« Sampling: = Az + b, where z ~ N (0, 1)

* Log likelihood Is expensive when dimension is large.

— The Jacobian of fis A™!
— Log likelihood involves calculating det(A)

x ~ N (b, AAT)

46

Elementwise flows

fo((z1, ..., xa)) = (fo(z1),. .., fo(za))

e | ots of freedom in elementwise flow
— Can use elementwise affine functions or CDF flows.

* The Jacobian is diagonal, so the determinant is easy to evaluate.

0z
o = diag(fo(21), -, f5(wa))

47

NICE/RealNVP

Affine coupling layer
» Split variables in half: Xy.4/2, Xg241:9
Z1:d/2 = X1:d/2

2qd/2:d — Xd/2:d " eXp(SH(Xl:d/Q)) T tG(Xlzd/Q)

* Invertible! Note that sq and ty can be arbitrary neural nets with no
restrictions.

— Think of them as data-parameterized elementwise flows.

{ Zi:.q/2 — X1:d/2 o { X1:d/2 — 41:d/2
Z4/2:d — Xd/2:d " eXP(Se(X1:d/2)) + te(X1:d/2) Xd/2:d — (Zd/Z:d — g (Zl:d/2)) - €XP (—89 (led/Q))

48

NICE/RealNVP

* |t also has a tractable Jacobian determinant

S,
Z1:d/2 = X1:d/2 § g _|.|-'|-
Z4/2:d = Xd/2:d 89(X1:d/2) + o (X1:d/2) S =,
o [1 LI I ey
8_)(- g)zcj/;/z diag(se(xl:dﬂ))

* The Jacobian is triangular, so its determinant is the product of diagonal
entries.

RealNVP

e Takeaway: coupling layers allow unrestricted neural nets to be
used in flows, while preserving invertibility and tractability

50

RealNVP Architecture

Input x: 32x32xc Image

» Layer 1: (Checkerboard x3, channel squeeze, channel x3)
— Split result to get x4: 16x16x2¢c and z;: 16x16x2c (fine-grained latents)

» Layer 2: (Checkerboard x3, channel squeeze, channel x3)
— Split result to get x,: 8x8x4c and z,: 8x8x4c (coarser latents)

» Layer 3: (Checkerboard x3, channel squeeze, channel x3)
— Get z53: 4x4x16c¢ (latents for highest-level details)

51

RealNVP: How to partition variables?

Partitioning can be implemented using a binary mask b, and using the
functional form for vy

flx) =002+ (1-b)O (zOexp(s(bOz)) +m(bOx))

52

RealNVP: How to partition variables?

Partitioning can be implemented using a binary mask b, and using the

functional form for vy

flx) =002+ (1-b)O (zOexp(s(bOz)) +m(bOx))

The spatial
checkerboard pattern
mask has value 1
where the sum of
spatial coordinates Is
odd, and 0 otherwise.

Figures from Density Estimation Using Real NVP by Dinh et al., 2017

The squeezing operation reduces the
4 x4 x1tensorintoa?2 x 2 x 4 tensor

The channel-wise mask
b is 1 for the first half of
the channel dimensions
and O for the second half.

53

Good vs Bad Partitioning

Checkerboard x4; channel squeeze; (Mask top half; mask bottom
channel x3; channel unsqueeze; half; mask left half; mask right

checkerboard x3 half) x2

Sl gl ”‘&Jf &u&l &5
RlEET ﬁm} fﬁd' 3%\}'3;
Lﬁlﬁ" }Q[* p; gfgq T 3.:
,ésiné»»f 8 ;g?ﬁ: £ mmi

M,

.
-
o W Y Ak
1.\&* = QA
- g
]] T 8
a -

§ Tl

-."I“;gv :«&uﬁ? ‘
{

1"“““?;./ :
il ".

S
R

&
3

& .
5,

“_..“.,..
———F
e <

LJ ‘ ‘-‘
‘f‘:! g :
-

54

Lecture overview

* Foundations of Flows (1-D)
e 2-D Flows

* N-D Flows

— Autoregressive Flows and Inverse Autoregressive Flows
—RealNVP (like) architectures
- Glow, Flow++, FFJORD

* Dequantization

55

Choice of coupling transformation

» A Bayes net defines coupling dependency, but what invertible
transformation f to use is a design question

X; = fo(2;; parent(x;))

» Affine transformation is the most commonly used one (NICE, RealNVP,
|AF-VAE, ...)

X; = Z; - ag(parent(x;)) + bg(parent(x;))

* More complex, nonlinear transformations -> better performance
— CDFs and inverse CDFs for Mixture of Gaussians or Logistics (Flow++)
— Piecewise linear/quadratic functions (Neural Importance Sampling)

56

NN architecture also matters

* Flow++ = Mol transformation + self-attention in NN
— Bayes net (coupling dependency), transformation function class,
NN architecture all play a role in a flow's performance.

Table 2. CIFAR10 ablation results after 400 epochs of training.
Models not converged for the purposes of ablation study.

Ablation bits/dim parameters
uniform dequantization 3.292 32.3M
affine coupling 3.200 32.0M
no self-attention 3.193 31.4M

Flow++ (not converged for ablation) 3.165 31.4M

trained on 64x64 CelebA

I_I
I_I
=
O
L
-
2
Y—
p
Q
Q.
-
qv
N

e ..

58

Other classes of flows

* Glow (link)
— Replacing permutation with
1x1 convolution
(soft permutation)

— Large-scale training

e Continuous time flows
(FFJORD)

— Allows for unrestricted
architectures. Invertibility and
fast log probability
computation guaranteed.

https://blog.openai.com/glow/

Architectural Taxonomy

Sparse connection Residual Connection
f(®)e = g(x1:t) f(x) =+ g(x)
1. Autoregressive 2. Block coupling 3. Det identity 4. Stochastic estimation
IAF/MAF/NAF NICE/RealNVP/Glow Planar/Sylvester Residual
SOS polynomial Cubic Spline Flow flows Flow

UMNN Neural Spline Flow Radial flow FFJORD
C L | | N | N
m n | | N |
o) II.#-: ...-.-'\I_ LSRR]
S Lo B e
- &-n'-. . ™ S L L

(Lower triangular) (Lower triangular + (Low rank) (Arbitrary)

structu red) Figures from Ricky Chen 60

Lecture overview

* Foundations of Flows (1-D)
e 2-D Flows
* N-D Flows

* Dequantization

61

Flow on Discrete Data Without Dequantization...

300 1

250 1

200 1

150 A1

100 1

Train Data

Epoch 250

0 2 - 6 8

12 1

10 A1

0.8 1

0.6 1

04 4

0.2 1

0.0 1

Loss

Training Curve

— ftrain_loss
test_loss

]

50

100

150 200 250
Epoch

300 350 400

62

Continuous flows for discrete data

* A problem arises when fitting continuous density models to discrete
data: degeneracy
— When the data are 3-bit pixel values, X € {0,1,2,...,255}
— What density does a model assign to values between bins like 0.4, 0.42...7

» Correct semantics: we want the integral of probability density within a
discrete interval to approximate discrete probability mass

Pmodel (X) — / pmode](x + U) du
[0,1)P

63

Continuous flows for discrete data

« Solution: Dequantization. Add noise to data.
x€{0,1,2,...,255}

— We draw noise u uniformly from [0, 1)%

Eypenss 108 Pmoc(9)] = 3 Paata(x) /[108 Pragax 4w du

< Paata(x) lo model(X + 1) du
Z dat g/[o,1)Dp del ()

— ExNPdata []‘Og PmOdel(x)]

[Theis, Oord, Bethge, 2016]

64

Flow on Discrete Data With Dequantization

Train Data

0.16 1
0.14 4
0.12 1
0.10 1
0.08 1
0.06 1
0.04 1
0.02 1
0.00 1

Epoch 475

Loss

Training Curve

— ftrain_loss
— test_loss

.

100

200

Epoch

300

65

Applications: Super-Resolution
£

¢ S R F | OW LR Input

— A normalizing flow based super-resolution
method, allowing diversity

— Outperforms state-of-the-art GAN-based
approaches

Low-Resolut =,
w-Resolution Encoder Je Tralmng

v
Q0
v
)
v ()
q
— — — — — L — —)
-— -~ -— -— -— -—
)
| H ‘ ‘
<
| i 1} H
FGETEEAS AR
B o o ST e N
R o8

iz %4—1

Output: SR Image Distribution

' Inference Output:
= Super-Resolution

L
Transition Step
Scale Level

: o Training Input:
Invertibe NormalizingFlow fo ;. Recolution

1l
1x1
Convolution

66

Application: Text Synthesis

ziigl r(;‘) z,(;ll) zfﬁl z&':)
Squeeze l—l—l 4 4 4
| Affine Coupling | . Ath ® : —{ Ac-Cell M AC-Cell M AC-Cell |-+
* Language Flow] | Flowsten [k Tt
l(BldtrectlonaD Permulallonl ow Step 5(-1) (1) L (t+1)
. Normalization / rlt ”S}r | ’&Ii-direcﬁon];:ll’emutat’;c:nl |
Spli o
— non-autoregressive and pit Y, o oo
: s N R
autoregressive flow-based | |
Figure 2: Non-autoregressive Language Flow model Figure 3: Autoregressive Language Generative Flow
M Od e | S with Multi-Scale architecture. model. The whole autoregressive flow model contains

multiple K steps. This figure illustrates one flow step
from 2y t0 24 1.

Non-Autoregressive Samples Autoregressive Samples

what does house way when when that little he when the even? | what does wilson probably do after drawing?

what did richard know when he she else there the what did jamie want after charlie forget her immediately
what does nelson going when he she when he what that to? what is brian aware

what did richard know when he she else there the what did caleb say after he went out?

what does nelson going when he she when he what that to? what does phoebe think?

Table 1: Data samples generated by our flow models. We sample from a Gaussian distribution and generate
questions by our non-autoregressive or autoregressive flow decoders. Models are trained on TVQA questions.

67

Applications: Audio Synthesis

* FloWaveNet
— A flow-based generative model for raw audio synthesis
— Efficiently samples raw audio in real-time

. Yodd» Codd
Context Flow ’ Yevens Ceven I
block ox |
p(s)
AU e » Change Order ﬁ -
Flow = f odd» Codd |
o o : .
g Ll CT°”'°"”9 Mmootz Cona) . Fi
1.8
Squeeze " Non-causal
Acho] WaveNet §<
I g
Xodd» Codd
X, C X, C

Xevens Ceven

Figure 1. Schematic diagram of FloWaveNet. Left: an entire forward pass of the FloWaveNet consisting of N context blocks. Middle: an
abstract diagram of the flow operation. Right: a detailed version of the affine coupling operation.

68

Applications: Point Cloud Generation

* Mixture of Normalizing Flows for modeling 3D point clouds

* Each mixture component learns to specialize in a distinct subregion in
an unsupervised fashion.

> | |
> | - —
+. - . MLP

PointNet Encoder

69

Future directions

* The ultimate goal: a likelihood-based model with
— fast sampling
— fast inference
— fast training
— good samples
— good compression

e Flows seem to let us achieve some of these criteria.

* But how exactly do we design and compose flows for great
performance? That's an open question.

70

Next lecture:
Variational Autoencoders

