


Good news, everyone!
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» Assignment 2 will be out today!
(due April 3)

» Let us know If you
want to contribute
to COMP547
lecture notes!
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Lecture overview

* Motivation & Definition of Implicit Models

* Original GAN (Goodfellow et al, 2014)

» Evaluation: Parzen, Inception, Frechet

 Theory of GANs

 GAN Progression

« (Conditional GANs, Cycle-Consistent Adversarial Networks

 GANSs and Representations
* Applications

Disclaimer: Much of the material and slides for this lecture were borrowed from
— Pieter Abbeel, Peter Chen, Jonathan Ho, Aravind Srinivas’ Berkeley CS5294-158 class

— Aaron Courville's IFT6135 class

—Bill Freeman, Antonio Torralba and Phillip Isola’s MIT 6.869 class
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Motivation: Evolution of GANs

* b years of GAN progress

2016

 GAN is most prominent of 2019 2020
Implicit Models

|.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio. Generative Adversarial Networks. NIPS 2014.
A. Radford, L. Metz, S. Chintala. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. ICLR 2016.
M.-Y. Liu, O. Tuzel. Coupled Generative Adversarial Networks. NIPS 2016.

T. Karras, T. Alla, S. Laine, J. Lehtinen. Progressive Growing of GANs for Improved Quality, Stability, and Variation. ICLR 2018.

T. Karras, S. Laine, T. Aila. A style-based generator architecture for generative adversarial networks. In CVPR 2018.

T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, T. Aila. Analyzing and Improving the Image Quality of StyleGAN. CVPR 2020.

T. Karras, M. Aittala, S. Laine, E. Harkonen, J. Hellsten, J. Lehtinen, T. Aila. Alias-Free Generative Adversarial Networks. NeurlPS 2021. Slide adapted from lan Goodfellow 6



Motivation: BigGAN

Andrew Brock, Jeff Donahue, Karen Simonyan, Large Scale GAN Training for High Fidelity Natural Image Synthesis, ICLR 2019



So far...

« Autoregressive models
— MADE, PixelRNN/CNN, Gated PixelCNN, PixelSNAIL

* Flow models
— Autoregressive Flows, NICE, RealNVP, Glow, Flow++

e | atent Variable Models
- VAE, IWAE, VO-VAE, VLAE, PixelVAE

« Common aspect: Likelihood-based models
— exact (autoregressive and flows)
— approximate (VAE)



Generative Models

« Sample
* Evaluate likelihood
e Train

» Representation

— What if all we care about is sampling?



Building a sampler

* How about this sampler?

import glob, cv2, numpy as np
files = glob.glob(‘*.jpg’)
def sample():
idx = np.random.randint(len(files))
return cv2.imread(files[idx])
def sample(*, n_samples):
samples = np.array([_sample() for _ in range(n_samples)])

return samples
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Building a sampler

* You don't just want to sample the exact data points you have.

* You want to build a generative model that can understand the
underlying distribution of data points and
— smoothly interpolate across the training samples
— output samples similar but not the same as training data samples

— output samples representative of the underlying factors of variation in the
training distribution.

— Example: digits with unseen strokes, faces with unseen poses, etc.
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Implicit Models

« Sample z from a fixed noise source distribution
(uniform or gaussian).

» Pass the noise through a deep neural network
to obtain a sample x.

« Sounds familiar? Right:
— Flow Models

- VAE

* \\What's going to be different here?

— Learning the deep neural network without explicit
density estimation
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Implicit Models

Given samples from data distribution Pgata : 1,22, ...,Tn
Given a sampler q4(2) = DNN(z; ¢) where z ~ p(z)
T = qy(2) induces a density function P oder

* Do not have an explicit form for Pdata OF Pmodel; Can only draw
samples

* Make Dyoder @S Close 10 pgqta @S POSSible by learning an appropriate ¢

13



Departure from maximum likelihood

* We need some measure of how far apart pqqtqe and iINduces P odel are

« With density models, we used K L(pgatal||Pmoder) Which gave us the
objective Ezp,.,. [log pg(x)| (discarding the term independent of )
where we explicitly modeled py,oder @S pg(x)

* Not having an explicit pe(CC) requires us to come up distance measures
that potentially behave differently from maximum likelihood.

* Example: Maximum Mean Discrepancy (MMD), Jensen Shannon
Divergence (JSD), Earth Mover’s Distance, etc.
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Cartoon of the Image manifold
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What makes GANSs special?
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Generative Adversarial Networks

Generative Adversarial Nets

Ian J. Goodfellow; Jean Pouget-Abadie] Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair; Aaron Courville, Yoshua Bengio®
Département d’informatique et de recherche opérationnelle

Université de Montréal
Montréal, QC H3C 3J7

Abstract

We propose a new framework for estimating generative models via an adversar-
ial process, in which we simultaneously train two models: a generative model G
that captures the data distribution, and a discriminative model D that estimates
the probability that a sample came from the training data rather than GG. The train-
ing procedure for G is to maximize the probability of D making a mistake. This
framework corresponds to a minimax two-player game. In the space of arbitrary
functions G and D, a unique solution exists, with G recovering the training data
distribution and D equal to % everywhere. In the case where G and D are defined
by multilayer perceptrons, the entire system can be trained with backpropagation.
There is no need for any Markov chains or unrolled approximate inference net-
works during either training or generation of samples. Experiments demonstrate
the potential of the framework through qualitative and quantitative evaluation of
the generated samples.

[Goodfellow et al 2014] 1g



Generative Adversarial Networks

min max Egp,,,, [10g D(x)] + E.pz) log(1 — D(G(2)))]

* Two player minimax game between generator (G) and discriminator (D)

(D) tries to maximize the log-likelihood for the binary classification
problem
- data: real (1)
- generated: fake (0)

* () tries to minimize the log-probability of its samples being classified
as “fake” by the discriminator (D)
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Intuition behind GANs

min max

G

D

{‘mdiata [lOg D(:B)] +

Lreal L fake {

‘f,ZNp(z) [log(l — D(G(Z)>)]
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Generative Adversarial Networks

D tries to make
D(G(z)) near 0,
D(x) tries to be G tries to make
near 1 D(G(z)) near 1
leferentlable
function D
& sampled from
data

Input noise z

x sampled from
model
leferentlable
function G

Figure from NeurlPS 2016
GAN Tutorial (Goodfellow)
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GANSs - Pseudocode

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used £ = 1, the least expensive option, in our
experiments.

for number of training iterations do
for £ steps do

e Sample minibatch of m noise samples {z(1), ..., (™)} from noise prior p,(z).
e Sample minibatch of m examples {z(),...,2(™)} from data generating distribution
Pdata(T).

e Update the discriminator by ascending its stochastic gradient:

Vo2 3" [togD (+9) + 108 (1 - D (G ()]

end for

e Sample minibatch of m noise samples {z(1), ..., (™)} from noise prior p,(2).
e Update the generator by descending its stochastic gradient:

Vo, 3108 (10 (6 (=),

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

[Goodfellow et al 2014]
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Training Procedure
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GAN in Action

https://poloclub.github.io/ganlab/
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https://poloclub.github.io/ganlab/

GAN samples from 2014
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Figure from [Goodfellow et al. 2014]
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How to evaluate?

» Evaluation for GANSs is still an open problem

* Unlike density models, you cannot report explicit likelihood
estimates on test sets.
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Parzen-Window density estimator

* Also known as Kernel Density Estimator (KDE)
* An estimator with kernel K and bandwidth h:

b (1 nhZK<x—$z>

* |n generative model evaluation, K is usually density function of standard
Normal distribution

[Bishop 2006] 4



Parzen-Window density estimator

« Bandwidth h matters

« Bandwidth h chosen according to validation set

Density
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[Bishop 2006]

29



Evaluation

Model MNIST TFD
DBN [3] 138 £+ 2 1909 £ 66
Stacked CAE [3] | 121 +1.6 | 2110 = 50
Deep GSN [5] 214 1.1 1890 £ 29
Adversarial nets 225 +2 | 2057 £+ 26

Parzen Window density estimates (Goodfellow et al, 2014)



Parzen-Window density estimator

e Parzen Window estimator can be unreliable

= | 0g-likelihood =@= Estimate

540 Model Parzen est. [nat]

= 200 Stacked CAE 121

£ DBN 138
©

S GMMN 147

= 12 Deep GSN 214

= 80 Diffusion 220

S 4 //.’.—'—.-4 GAN 225

. \ True distribution 243

10" 102 10° 10% 105 106 107 GMMN + AE 282

k-means 313

Number of samples

[A note on the evaluation of generative models (Theis, Van den Oord, Bethge 2015)]
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Inception Score

» Can we side-step high-dim density estimation?

* One idea: good generators generate samples that are semantically
diverse

« Semantics predictor: trained Inception Network v3
—ply[x), y is one of the 1000 ImageNet classes

 Considerations:

— each image x should have distinctly recognizable object -> p(y|x) should have
low entropy

— there should be as many classes generated as possible -> p(y) should have
high entropy

32



Inception Score

* Inception model:  p(y|x)

« Marginal label distribution: p(y) = /p(y|:z;)pg(:z:)

X

* [nception Score:

IS(x) =exp(Ez~p, [Dkr [p(y]2) || p(y)]])
=exP(Egnp, y~p(yle) 10gP(Y|2) —logp(y)])
=exp(H (y) — H(y|z))

[Improved GAN: Salimans et al 2016] 3



Inception Score

Samples : .
Model Real data Our methods -VBN+BN -L+HA
Score + std. 11.24. 4 .12 8.09 + .07 T84+ 0T 6.86 + .06
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Fréchet Inception Distance

* Inception Score doesn’t sufficiently measure diversity: a list of 1000
Images (one of each class) can obtain perfect Inception Score
* FID was proposed to capture more nuances

 Embed image x into some feature space (2048-dimensional activations
of the Inception-v3 pool3 layer), then compare mean (m) & covariance
(C) of those random features

d*((m, C), (M, Cy)) = | m — my|% + Tx(C + Cy, — 2(CC,,) ")

[Heusel et al, 2017] 35



FID

FID
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[Heusel et al, 2017]
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Fréchet Inception Distance

FID

FID
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[Heusel et al, 2017]
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Fréchet Inception Distance

FID = 7929

Figure 1. Does the Fréchet Inception Distance (FID) accurately measure the distances between image distributions? We generate
datasets that demonstrate the unreliability of FID in judging perceptual (dis)similarities between image distributions. The top left box
shows a sample of a dataset constructed by introducing imperceptible noise to each ImageNet image. Despite the remarkable visual
similarity between this dataset and ImageNet (bottom box), an extremely large FID (almost 8000) between these two datasets showcases
FID’s failure to capture perceptual similarities. On the other hand, a remarkably low FID (almost 1.0) between a dataset of random noise
images (samples shown in the top right box) and ImageNet illustrates FID’s failure to capture perceptual dissimilarities.

One solution: Replace the Inception component of FID with a robustly trained counterpart!



Generative Adversarial Networks

» Key pieces of GAN
— Fast sampling
— No inference
— Notion of optimizing directly for what you care about — perceptual samples

39
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GAN: Bayes-Optimal Discriminator

V' N

Real Fake

* \What's the optimal discriminator given generated and true distributions?
V<G7 D) — ]El'diata [10gD(CI3)] T ]Ezmp(z) [log(l o D(G(z)))]
~ | Pasal@)log D)z + [ p(2)log(1 ~ D(G(2)))iz

= /pdata(w) logD(az)da:—l—/pg(a:) log(1 — D(z))dx

T T

= / [Pdata(x) log D(x) + pg(z)log(l — D(x))] dx

€X

a
a-+b

Pdata ()
(pddtd IL) +p9(x)>

Vylalogy +blog(l —y)| =0 = y* = V  [a,b] € R*\[0,0]

== DF(g) =

VA
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GAN: Bayes-Optimal Discriminator

Discriminator “/Data distribution

[Figure Source: Goodfellow
NeurlPS 2016 Tutorial on GANSs]
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GAN: Generator Objective under Bayes-
Optimal Discriminator D*?

V(G,D%) = Exnpgara 108 D¥(2)] + Eqop, [log(l — D*(z))]

pdata<$) ] I: pg(ilf) }
= ExN data 10 + ]E:BN 10
Paars [ = pdata(w) -+ pg(i) Po = pdata(x) T DPg (:U)

e ata + P
— —log(4) + KL (pdataH (pd t 9 pg)) il (ng (pd t 2 q))

-~

Jensen-Shannon Divergence (JSD) of pgata and p >0
g) Z
L (6*7 E*) — log(‘i) when Pg — Pdata

Compare this with ML objective: K L(pgatal|pg)
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Behaviors across divergence measures

Data KLD MMD JSD

Figure 1: An isotropic Gaussian distribution was fit to data drawn from a mixture of Gaussians
by either minimizing Kullback-Leibler divergence (KLD), maximum mean discrepancy (MMD), or
Jensen-Shannon divergence (JSD). The different fits demonstrate different tradeoffs made by the
three measures of distance between distributions.

[“A note on the evaluation of generative models”™ - Theis, Van den Oord, Bethge 2016]
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Direction of KL divergence

Probability Density

q" = argmin, Dk (pl|q)

q* = argmin, Dxw(q||p)

)

(2) N [—=

T

(z)

Probability Density

Maximum likelihood Reverse KL

Deep Learning Textbook (Goodfellow 2016) - Chapter 3
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KL and JSD
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Mode covering vs Mode seeking: Tradeoffs

* For compression, one would prefer to ensure all points in the data
distribution are assigned probability mass.

* For generating good samples, blurring across modes spolls perceptual
quality because regions outside the data manifold are assigned non-zero
probability mass.

* Picking one mode without assigning probability mass on points outside
can produce “better-looking” samples.

» Caveat: More expressive density models can place probability mass
more accurately. For example, using mixture of Gaussians as opposed
to a single Isotropic gaussian.
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Mode Collapse

Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k Target

« Standard GAN training collapses when the true distribution is a
mixture of gaussians!

(Figure from Metz et al. 2016) 48



Back to GANs

Recall

min max By p,,, (0g D(#)] + E.vp(z) [log(l — D(G(2)))]

N —————————————————————————————————

Discriminator

Mini-Exercise
* |s it feasible to run the inner optimization to completion?

* For this specific objective, would i1t create problems if we were
able to do so?

49



Discriminator Saturation

* Generator samples confidently classified as fake by the discriminator

receive no gradient for the generator update.

y

o(x)

Va(z)log(l — D(G(2))) where
D(z) = sigmoid(x;0) = o(x;0)

y =log(1 - o(x))

Vaeo(z) = o(z)(1 - o(z))

10.0

7.5 4

5.0 A1

2.5 1

> 0.01

-2.5 1

-35.0

-7.5
T -10.0 +— T T T Y
0 -10 -5 0 5 10

2 log(1 — o(x))

1.00 1
0.75 -
0.50
0.25
g 0.00 -
-0.25
~0.50
~0.75
~1.00
0 -10 -5 0 5 10
X
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Avoiding Discriminator Saturation:
(1) Alternating Optimization

* Alternate gradient steps on discriminator and generator objectives
L) (6p,0c) = —Eaznpgan 108 D(250D)] — Eoop(z) [log(1 — D(G(z;60c),60p))]

L(G)(QD, HG) = ]Ezwp(z) [log(l — D(G(Z, 0G)7 HD))]

Op :=0p —a'P)Vy_ LP)0p, 0¢)
O = 0g — B9V L' (0p,0c)

» Balancing these two updates is hard for the zero-sum game
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Avoiding Discriminator Saturation:

(2) Non-Saturating Formulation
4 )

L) = — e~ Ddata [lOg D(z)] - ~4j‘vap(z) [lOg(l _ D(G(Z>))]
L(G) — —LD = min 4ﬂ*zfvp(z) log(l _ D(G(Z)))

\_ G Y,

l / Not zero-sum
-
L) = —Eprpyu, 108 D(@)] — Ezrp(z) [log(1 — D(G(2)))]

~

kL<G> = ~E.vp(z) 108(D(G(2)) = maxE.p(z) log(D(G(2))




Avoiding Discriminator Saturation:
(2) Non Saturating Formulation

 ORIGINAL ISSUE:
Generator samples
confidently classified as
fake by the discriminator
receive no gradient for
the generator update.

» F[X: non-saturating loss
for when discriminator
confident about fake

y = 0o(x)
10 0 10
X
2 g(x)
10 0 10
X
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GAN Zoo

AN — Generative Adversarial Networks

MAD-GAN — Multi-Agent Diverse Generative Adversarial Networks

3D-GAN — Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling acGAN MalGAN — Generating Adversarial Malware Examples for Black-Box Attacks Based on GAN

— Face Aging With Conditional Generative Adversarial Networks

AC-GAN — Conditional Image Synthesis With Auxiliary Classifier GANs

AdaGAN — AdaGAN: Boosting Generative Models

AEGAN — Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets

AffGAN — Amortised MAP Inference for Image Super-resolution

AL-CGAN — Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts

ALl — Adversarially Learned Inference

AMGAN — Generative Adversarial Nets with Labeled Data by Activation Maximization

AnoGAN — Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery
ArtGAN — ArtGAN: Artwork Synthesis with Conditional Categorial GANs

b-GAN — b-GAN: Unified Framework of Generative Adversarial Networks

Bayesian GAN — Deep and Hierarchical Implicit Models )

BEGAN — BEGAN: Boundary Equilibrium Generative Adversarial Networks

BiGAN — Adversarial Feature Learning

BS-GAN — Boundary-Seeking Generative Adversarial Networks

CGAN — Conditional Generative Adversarial Nets

CCGAN — Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks CatGAN —
UnsuPervised and Semi-supervised Learning with Categorical Generative Adversarial Networks CoGAN —
Coupled Generative Adversarial Networks

Context-RNN-GAN — Contextual RNN-GANSs for Abstract Reasoning Diagram Generation

C-RNN-GAN — C-RNN-GAN: Continuous recurrent neural networks with adversarial training

CS-GAN — Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets CVAE-
GAN — CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training

CycleGAN — Unpaired Image-to-Image Translation using 8ycle—%onsistent Adversarial Networks

DTN — Unsupervised Cross-Domain Image Generation

DCGAN — Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
DiscoGAN — Learning to Discover Cross-Domain Relations with Generative Adversarial Networks DR-GAN —
Disentangled Representation Learning GAN for Pose-Invariant Face Recognition

DualGAN — DualGAN: Unsupervised Dual Learning for Image-to-Image Translation

EBGAN — Energy-based Generative Adversarial Network

f-GAN — f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization

GAWWN — Learning What and Where to Draw

GoGAN — Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking

GP-GAN — GP-GAN: Towards Realistic High-Resolution Image Blending

IAN — Neural Photo Editing with Introspective Adversarial Networks

iGAN — Generative Visual Manipulation on the Natural Image Manifold

IcGAN — Invertible Conditional GANs for image editing

ID-CGAN- Image De-raining Using a Conditional Generative Adversarial Network

Improved GAN — Improved Techniques for Training GANs

INfoGAN — InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial
Nets LAGAN — Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for

MaliGAN — Maximum-Likelihood Augmented Discrete Generative Adversarial Networks

MARTA-GAN — Deep Unsupervised Representation Learning for Remote Sensing Images

McGAN — McGan: Mean and Covariance Feature Matching GAN

MDGAN — Mode Regularized Generative Adversarial Networks

MedGAN — Generating Multi-label Discrete Electronic Health Records using Generative Adversarial Networks
MIX+GAN — Generalization and Equilibrium in Generative Adversarial Nets (GANs)

MPM-GAN — Message Passing Multi-Agent GANs

MV-BiGAN — Multi-view Generative Adversarial Networks

pix2pix — Image-to-Image Translation with Conditional Adversarial Networks

PPGN — Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space
PrGAN — 3D Shape Induction from 2D Views of Multiple Objects

RenderGAN — RenderGAN: Generating Realistic Labeled Data .

RTT-GAN — Recurrent Topic-Transition GAN for Visual Paragraph Generation

SGAN — Stacked Generative Adversarial Networks

SGAN — Texture Synthesis with Spatial Generative Adversarial Networks ]

SAD-GAN — SAD—(XAN: Synthetic Autonomous Driving using Generative Adversarial Networks
SalGAN — SalGAN: Visual Saliency Prediction with Generative Adversarial Networks

SEGAN — SEGAN: Speech Enhancement Generative Adversarial Network

SeGAN — SeGAN: Segmenting and Generating the Invisible

SeqGAN — SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient

SIMGAN — Learning from Simulated and Unsuger\/_ised Images through Adversarial Training
SketchGAN — Adversarial Training For Sketch Retrieval

SL-GAN — Semi-Latent GAN: Learning to generate and modify facial images from attributes
Softmax-GAN — Softmax GAN

SRGAN — Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
S2GAN — Generative Image Modeling using Style and Structure Adversarial Networks

SSL-GAN — Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks
StackGAN — StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks
TGAN — Temporal Generative Adversarial Nets

TAC-GAN — TAC-GAN — Text Conditioned Auxiliary Classifier Generative Adversarial Network
TP-GAN — Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and Identity Preserving
Frontal View Synthesis Triple-GAN — Triple Generative Adversarial Nets

Unrolled GAN — Unrolled Generative Adversarial Networks

VGAN — Generating Videos with Scene Dynamics

VGAN — Generative Adversarial Networks as Variational Training of Energy Based Models

VAE-GAN — Autoencoding beyond pixels using a learned similarity metric

VariGAN — Multi-View Image Generation from a Single-View

ViGAN — Image Generation and Editing with Variational Info Generative AdversarialNetworks

WGAN — Wasserstein GAN

WGAN-GP — Improved Training of Wasserstein GANs )
WaterGAN — WaterGAN: Unsupervised Generative Network to Enable Real-time Color Correction of Monocular

Physics Synthesis LAPGAN — Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks Underwater Images

LR-GAN — LR-GAN: Layered Recursive Generative Adversarial Networks for Image Generation
LSGAN — Least Squares Generative Adversarial Networks

LS-GAN — Loss-Sensitive Generative Adversarial Networks on Lipschitz Densities

MGAN — Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks
MAGAN — MAGAN: Margin Adaptation for Generative Adversarial Networks

Deep Hunt, blog by Avinash Hindupur
https://deephunt.in/the-gan-zoo-79597dc8c347
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GAN Zoo

SDEDGAN - Shape Inpaining using 30 Generative Adversarial Network and Recurrent Convolutonal Networks
3D-GAN - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeiing (github)
SDNGAN - Improved Adversarl Sysem for 30 Objoct Gonraton and Reconsructon (gmhuby
30 PhysNet - 30-PhysNet: Learing th Iniie Physics f Nor-igd Obiect Deformatr
-3 Omect Reconsirution ffom 3 Singl Depth View with Adversarial Learning (gthub

AEC GAN ABCG Adaptive Bl nd Conirol for improved aining stablty of Generatve Amevsana\ Networks {githubl
ABC AN BANS o1 LFe Bt Ao NanEs fo efhoss Fe nirence
AC-GAN - Conditional Image Synthesis With Auxifary Classifier GANs
acGAN - Face Aging With Conditional Generative Adversarial N
A T o 3 Baseh on Gener st everonslnetworks
8cGAN - Ondine Adaptative Curriculum Learning for GANs
ACHUAL - ACtuAL: Actor-Critic Under Adversarial Learning
AdaGAN - AdaGAN: Boosting Generative Models
Adaptive GAN - Customizing an Adversarial Example Generator with Class-Conditional GANs
‘AdvEntuRe - AdvEntuRe: Adversarial Training for Textual Entailment with Knowledge-Guided Examples
AVGAN - Generating adersarial examples wih sersarl networks
AE'GAN - AEGAN Saversaria eirmnating with G
AE-OT - Latent Space Optimal Transport for Genevauve Mogels
AEGAN- Learning Iverse Magoing by Autoencorer based Generatve Adversaral Nets
AFDCGAN - AF-BCBAN. Ampitode Feature Deep Convolationar GAN for Fingerprnt Construction n ndoor Localzaton System
AFfGAN - Amomsed VAP Inference for I rresolution
AIN - Ganeratng informative and Diverse Converbational Responses via Adversarial Information Maximization
AL-CGAN - Learning to Generate \mages er Omdom Scenes from Attributes and Semantic Layouts.
ALl torseraly Losre bference (g
‘AlignGAN - Al 1P o g Crons- Domain Images with Condiional Generative Adversarial Networks
AphaGAN - AhaGAL Genevauve adversarial networks for natural image matt

- Activation Maximization Generative Adversaria
AmmemGAN AmbientGAN: Generative models from lossy measurements (githubl
AMC.GAN Video Predicton with Appearance and Motion Condi

JGAN - Unsupervised Anomaly Delaction with Genarative Adversarial Networks 1o Guide Marker Discovery
APD - Adversarial Distillation of Bayesian Neural Network Posteriors
APE.GAN - APE-GAN: Adversaril Perturbation Elrmination with GAN
ARAE Adversarially Regularized Autoencoders for Generating Discrete Structures (github)
DA Adverseria Representaton Learning for Domain Adapta
A R b D aS0 M vamg Gancramve haversarial Notwork
ATGAN - AMGAN: Attt Synihesis with Conditionsl Cateqoral GANs
L-GAN - Automatic Steganographic Distortion Learning Using a Generative Adversarial Network

ATA GAN - Attention-Aware Generative Adversarial Networks (ATA-( GANs]
Attention-GAN - Attention-GAN for Object Transfiguration in Wild I
AUGAN - Arbitrary Facial Attribute. Edmng o ¥ Changs What You Want (gtht
AUNGAN - AInGAN: Fine-Grained Text to Image Generation with Attentional Genevalwe Adversarial Networks (github)
D Aeercara o e ey Dessction
B-DCGAN - B-DCGAN:Evaluation of Binarized DCGAN for FPGA
BGAN. Generatie Adversaril Nots fom a Dersly Ratig Estimation Perspecive
BAGAN - EAGAN Data Augmentation with Balancing G
Bayesian GAN - Deep and Herarchcal Implct Models
Bayedon GAN  Bevstn SR
BCGAN - Bayesian Conditional Generative Adverserial Networks
BEGAN - Bidectionsl Condiinal Generative Adversarial networks
BEAM - Boltzmann Encoded Adversarial Machine:
BEGAN - BEGAN: Boundary Equilbrium Conereie Adersarl Networks
BEGAN-CS - Escaping from Collapsing Modes in a Constrained Space.
Bellman GAN - Distributional Multivariate Policy Evaluation and Exploration with the Bellman GAN
BGAN - Binary Generative Adversarial Networks for Image Retrieval (github)
BI-GAN - Autonomously and Simultaneously Refining Deep Neural Network Parameters by a Bi-Generative Adversarial Network Aided Genetic Algorithm
BleyieGAN. Towar Mt (g o-image Tisnsition gihit)
BIGAN - Adversaria Feature
BInGAN - BinGAN: Learning Cumpacl Binary Descriptors with & Hegu\anzed GAN
BourGAN  BouGAN: Gereratve Networks wih Melric Embectings
B CH AN Branehes Gamerbi Ao etwerss fo NhcSeale Image Manitoid Learing
BRE - Improving GAN Training via Binarized Representation Entropy (BRE) Regularization [github]
BridgeGAN - Generative Adversarial Frontal View 1o Bird View Synthesis
BS-GAN - Boundary-Seeking Generative Adversarial Networks

EUEGAN - BUBGAN: Bt Generative Adversarl Networks for Synthesizng Fesisic Bubby Fow Images
BINGAN - Banach Wasserstein
C-0aN e agn i ConteculGanecav A Nats
CANN-GAN - CHNGAN: Contincous recurrent neural networks with acversaria traiing githut)
CAGAN - Composiionaided Sketch-realstic Portrait Generation
CaloGAN CaloGAN: Simulatng 3D High Energ Parce Showers in MuliLayerElctromagnetc Colometers with Generative AdversariaNetworks (gt
- Ca Cea A&vra i, Cotring b Leaing Ao shis and ekt 17 S Horms
Capaian - Cas Jaing Dy R for Caroreav Ao Notweris
CabsuleGAN - CapsuleGAN: Generative Adversaral Capsule Newwork
AN Unsieniaed s SaspenvseLasrig th CtogorlGanaras Adrsar et
CorGAN. CaIBAN: Couple Adversri Transfor fr
s8N CoizalGAR Loty Cosal Ttk Gnarsuws Heagls with Ackersarial Trainng
CEOAN- S Supenised Loaming wih ContextCondiional Generatve Adversaria Networks (gt
TN o e e mage Y
CCOAN Sty ol Bepth S Rosluion with Conions! Genrat Adersrl Keork
CE-GAN - Deep Learning for Imbalance Dta Classificaton using Class Expert Generative Adversarial Network
CFG-GAN - Composite Functions! Gracient Lesmingf Gentthe Adversaral Models
CGAN - Condiional Generative Adversarial
AN - Eonitolabie Generate Adversatial Network
ko GAN.- B Ol Leaing Apcac 0 enartis sl Naucecs
SGAN - Conitons Infling GANs for Deta Au in Mammogram Classification
InCGAN - Unscpenvsed Image Super Resolugon usmg Cyc\e “P-Cycle Generatve Adversarial Networks
Conerdan unsunemsed Gipner Cracking Using O
CRSIarGAN - CeSterGAN : Lo Spece Custerng m Generatve Adversara Networks
CM-GAN - CM-GANs: Cross modz\ Genersive Adersarl Newarisfor Common Represniation Learing
GOASLAN - A You Taking o Me? Ressoned Visual Diog Generation traugh AcversaralLeaming
BN Ao Qonermins b e N
CombnAN - ComboGAN.Unesrie Sty for Image Do Trarston it
COncepiGAN - Learning Compositonal Visual Contepts with Mutual Consistenc
Coreiton oyoaGAN - Conclona CyeGaN for ATt G Fic g Ganecsicn
Gonstrast:GAN - Generative Semantic Manipuiaton vith Contrasting G
oot A Cototual N GAs o Aptc s Dwagvam Generation
CoGaN - Corsiated dscrete ce genraton using chersaral
Covlom GA - Coulomb GANs: Provabl Optima Nash Eauiions i otentil Fieds

c with Kerckhoffs' on Genevauve Adversarial Networks
conboy - Defending Against Adversarial Attacks by Leveraging an Entire G
R e g b et TS R e Snenation

Cramer GAN - The Cramer Distance as a Solution to Biased Wassevs\em Gradients
Cross-GAN - Crossing Generative Adversarial Networks for Cross View Person Re-identification
Variational odk
CS-GAN - Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets
CSG - Speech-Driven Expressive Talking Lips with Conditional Sequential Generative Adversarial Networks
CT-GAN - CT-GAN: Conditional Transformation Generative Adversarial Netwaork for Image Attribute Modification
CVAE-GAN - CVAE-GAN: Fine-Grained Image Generation thiough Asymmelric Training
CycleGAN - Unpaired Image-to-Image Translation g Cycle-Consistent Adversarial Networks (github)
RGAN . Difrentil Generative Adversaril Networks. Synthesizing Norvinea Facil Vartions i Limited Number of Tining Data
N i Temma e U Conionsl Coneratt Aeeraara Neworke o Short Uarince Speacer Vertemtan
DZGAN - Dual Discriminator Generative Adversarial Nets
D2IA-GAN - Tagging like Humans: Diverse and Distinct Image Annotation
DA-GAN - DA-GAN: Instance-level Image Translation by Deep Attention Generative Adversarial Networks (with Supplementary Materials)

DADA. DADA: Decp Adversarial Dot Augrentation for Extrmely Low Data Regime Classicaion
DAGAN - Data Augmen\ahon ‘Generative Adversarial Networks

DAN - Distributional Adversarial Netwarks.

DBLRGAN - Adversaril Spatio-Temporal Learning for Video Debluring

DCGAN - Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks (github)

DE-GAN - Generative Ad I Networks with D Output Noise
DeblurGAN - DeblurGAN: Biind Motion Deblurring Using Conditional Adversarial Networks (github)
DeepFD - Learning to Detect Fake Face Images in the Wid
Defense-GAN - Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models (github)
Defo-Net - Defo-Net. Lealmng Body Deformation using Generative Adversarial Networks
DeGAN - DELIGAN - Genaraiive Adversaral Networks for Diverse and Limited Data gt

et Disemanging and Eearg Nevworks for Pace Complatan Gnéer Sibcturad Occlusons
m\ang\s DialogWAE: Multimodal Response Generation with Condiional Wasserstein Auto-Encoder

DiscoGAN - Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
DistanceGAN - One-Sided Unsupervised Domain Mapping
DM-GAN - Dual Motion GAN for Future-Flow Embedded Video Prediction
BVIGAN. Disconnected Manifold Learning for Generaive Adversarial Netverk
DNA-GAN - DNA-G eammg Dwsen\ anglod Reprosomations from Mult-At bute Images
DOPING - DOPI NG G ratve Dats Augmentatin for Unsuporvised Anomaly Detecton with GAN
G GAN - Dierentaly Private Releasing v Deep Generate M
DP-GAN - DP-GAN: Diversity-Promoting Generative Adversarial Ne\wmk for Generating Informative and Diversified Text
DPGAN - Diferently Priate Generatie Adversaral Netviork
DR-GAN - Representation Learning by Rota \m ur Facs
DRAGAN - How to Train Your DRAGAN (gthu
Bepor GAN " Diopout AN, Loamming om & Bynarmic Ensembl of Discrminators
DRPAN - Dwscnmma\we Region Proposal Adversarial Networks for High-Quality Image-to-Image Translation
DSH-GAN - Deep Semantic Hashing with Generative Adversarial Networks
BEHEAN - Besh Simen e Mg S mage Canarston
DITLC-GAN - Generative Adversarial Image Synthesis with Decision Tree Latent Controller
DTN - Unsupervised Cross-Domain Image Generation
DTR-GAN - DTR-GAN: Dilated Temporal Relational Adversarial Network for Video Summarization
DuBGAN - DuslGAN: Unsupervsed Dul Learring for Image-(c-mage Transltion
Dualing GAN - Dualing G
juman Motion Modelmg using DVGANs
Bynamics Transter GAN - Dynames Transter GAN: Generating Video by Transferring Arsitrary Termporal Dynarics from  Source Video to a Single Target Image:
E-GAN - Evolutionary Generative Adversarial Networks

EAR Generate Model or Heterogeneous Inference
EBGAN w 56 Generatis Adversarial Netwerk
verative Adversarial Netwark for E-commerce
AR St Sraning of Borerane Aarari Newworss oogh Bequlrization
Editable GAN - Editable Generative Adversarial Networks: Generating and Editing Faces Simultaneously.
EGAN - Enhanced Experience Replay Generation for Eficient Reinforcement Learning
ELGAN - EL-GAN: Embedding Loss Driven Generative Adversarial Networks for Lane Detection
ELEGANT - ELEGANT: Exchanging Latent Encadings wih GAN for Transfrrng Multipl Face Atriutes
- Tol fore Stable and High Resolution Image Generation
ESRGAN ESRGAN: Enhanced Super-Resolution Generative Advevsana\ Networks
(GAN - Eve In-Paining vith Exerplr Gonsraive Adversarial Netuio

BN e A B Brata Bost Proceating Feamemerk (giub)

ExprGAN - ExprGAN: Facial Exmessm Editing with Controllable Expression Intensity
FCLSWGAN - Feature Generating Netwaorks for Zero-Shot Learning
F-GAN - F-GAN: Training Generative Neural Samplers using Variational Divergence Minimization

ESrGAN - FaiGAN: Famgsecamware Generative Adversarial Networks

Faitness GAN - Fainess GAN

FakeGAN - Detectin Decemwe Reviews using Generative Adversarial Networks

FBGAN - Feedback GAN (FBGAN) for DNA: a Novel Feedback-Loop Architecture for Optimizing Protein Functions
FBGAN - Featurized Bidirectional GAN: Adversarial Defense via Adversarialy Learned Semantic Inference

P GaN - Fastomerging Condiions Ganaatve Advrsaia Networks forImaga Synthess

FF.GAN - Towards cse Face Frontalization in the Wild

N - Adve evsana\ Loaringor Fe grained Image S

Ficttious GAN - Fctious GAN: Traning GANS it Historcal Models

FIGAN - Frame Interpolation with Multi-Scale Deep Loss Func\mns and Generative Adversarial Networks
Fla-GAN - Synthesizing Flamentary Sirucured Images wi

First Order GAN - Fis! Ovdev ol e At sl omrorcs tganut)

Fisher GAN - Fisher G/

o AN Flow-SAN: Bicing impliit and prescribed leaning in generative models

FrankenGAN - rankenGAN: Guided Detail Synthesis for Buiding Mass-Models Using Style-Synchonized GANs
FSEGAN - Exploring Speech Enhancement with Generative Adversarial Netwarks for Robust Speech Recognition
FTGAN - Hierarchical Video Generation from Orthogonal Information: Dphca\ Flow and Texture

FusedGAN - Semi-supervised FusedGAN for Conditional Image Generatior

FUSIonGAN - Loaming 10 Fuse Music Genres with Generatié Adversarial Dual Learring

FusionGAN - Generating a Fusion Image: One's Identity and Another's Shape
G2:GAN . Geometry Guided Adversaral Facial Expression Synthesis
GAAN - Generative Adversariai Autoencod
‘GAF - Generative Adversarial Forests for Eeuev Condmoned {dversarl Loarning
GAGAN - GAGAN: Geometry-Aware Generative Adverserial Networl
GAIA- o interpolat
GAIN- GAIN: Missing Data Imputation using Generative Adversarial Nets
GAMN - Generative Adversarial Mapping
GAN - Generative Adversarial Networks nglh )
‘GAN Lab - GAN Lab: Understanding Complex Deep Generative Models using Interactive Visual Experimentation
GAN Qlearning - GAN Q-iearning
GANAD - Anamaly Detection with Generative Adversaral Networks for Mulivariate Time Series
GAN-ATV - A Novel Approach to Artistic Textual Visualization

GAN-CLS - Generative Adversarial Text to Image Synthesis (githut
R o B R Bt S Unlarwater Miochne Vision with Generative Adversaril Networks
GAN-SD - Virtuak-Tacbao: Virtualizing Real-waorld Online Retail Environment for Reinforcement Learning
GAN-sep - GANS for Biological Image Synthesis (github)
GAN-VFS - Generative Adversarial Network-based Synthesis of Visible Faces from Polarimetric Thermal Faces
‘GAN-Word2Vec - Adversarial Training of Word2Vec for Basket Completi
GANAX  GANAX. A Unified MIVID-SIMID Accaleration for Generatee Adversarial Networks
GANCS - Deep Generative Adversarial Networks for Compressed Sensing Automates MR
GANDI- G the searh i continuous,state-acton spaces by learing an action samping dstrbution fom off-arge samples
GANG - GANGS: Generative Adversarial Network Game
GANG - Beyond Lol Nash Equibiafor Adversara Networks
GANosaic - GANosaic: Mosaic Creation with Generative Texture Manifolds
GANVO - GANVO. unsupemsed Deep Monocuir sl Odometry and Depth Estimation with Generative Adversarial Networks
AP - Contextaware Generatve Adversaral Privacy
GAP - Generativ Adversaril Prv
GATS - Sample-Eficent Dey i Generaiive Adversaral Tree Search
ring What and Where to Draw (github)
GC GAN Geumewcmuaswe Generative: Amevsana\ Network for Facial Expression Svn\he&ws
‘GCGAN - Geometry-Consistent Adversarial Networks for One-Sided Unsupervised Domain
R e et Fanshauraton and Ao oot Subkpace rom Unpated Bas githubl
¢0GAN. Generatig Instance Segmentation Annotaion by Geometry-guided GAN

Goometric GAN - Geor
O~ Genuate el Ne(wovks (GIN): Pathophysiology-Interpretable: Fealuve Mapping and Virtual Patient Generation
GLCA-GAN,. Globaland Local Consistent Age Generative Adversari Notvio

aoea i Ganermis Adversanel Nerwerke for st Smasets, and the Unsuperised Custerng ofImages
GMAN - Geneva\we Mult-Adversarial Netw
GMIM-GAN - Towards Understanding the Dynamics of Generative Adversarial Networks
GOGAN - Gang of GANs: Genevahve Advevsanal Networks with Maximum Margin Ranking
GONet - GONet: A Sem-Super sep Learning Approach For Traversablly Estimation
RN SO AN Smere e S Aot Trsse Sending o)
GP-GAN - GP-GAN: Gender Preserving GAN for Synthesizing Faces from Landmarks
GPU-A ftive ac I framework for

g on latent space interpolations encourage convex latent distributions

‘GRAN - Generating images with recurrent adversarial netwmks github)
GraphicslGAN. Gratica Generatve Adversarl Netws
e aas g on Eraphe whl Qanerative Adversaril Nets
GlaspGAN Using Smultion and Domain Adsptaion to Improve Effciency of Desp Roboic Grasaing
GT-GAN - Deep Graph Translation
HAN - Chinese Typeface Transformation with Hwelamhma\ Adversarial Network
HAN - Bidirectional Learning for Robust Neural Net
AR Eiong Iaces o vides Recoghaon wi erarchica Generative Adversarial Networks
HP-GAN - HP-GAN: Probabilistic 3D human motion prediction
Hi BCGAN - Figh Resolution Deep Comvolutional Generative Adversarial Networks
hredGAN - Multi-turn Dialogue Response Generation in an Adversarial Learning framework
AN - Newral oo Eciing with ntrospective Adversaral Networks github)
\ GAN \nvev ible Condtional GANS for image eciing (gthub)
mage Deaining Using a Condiional Generaive Adversarial Notvr

O AN T 2htlaton Sehwoch hages ana Hdes uom aemtiy-awars CycleGAN
IFSVAEGAN - Conditional Autoencoders with AdversarialInformation Factorization
IGAN - Generaive Visual Meripuation on the Natusl Image Manicld (gihut)

MNHE N ‘Coupled IGMM-GANs for deep mutimodal Ianoma\y detection in human mobility data

- Improved Techniques for Training GANS (github)

Tt Onsuponvasd Mok mage 16! mage Fanatos Using Generative Adversarial Networks
InfoGAN - InfoGAN: Interpretable Representation Learning by Information Maximizing Genevawe Adversaral Nets (github)
IntrGVAE - IntroVAE: Introspective Variational Autoencoders for Photographic Image Synti
B TR Rrnancod et Envhontmental Percamion oy Unsuporvieh Toamalimbgs Finslation
IRGAN - IRGAN: A Minimax Game for Unifying Generative and Discriminative Information Retrieval models.

BGAN - Genertive Adversarigl Nets fo Informalion Retrievl Fundamentals and Advances
ISGAN - Invisible Steganography via Generative Adversarial Network
1SP-GPM - Inner Space. Pvesevvmg Generative Pose Machine
Iterative-GAN - Two Birds with One Stone: lteratively Learn Facial Attributes with GANS (github)
HErOAN SHETGANS, Hesatie GANS o L sarn and Corior 3D Ouject Tmscmmm on
IVEGAN - IVE-GAN: Ivariant Encoding Generative Adversarial Networ
NGAN - Tomards an Undersanding o Dur Wk by GARmg Yicess i the Wi (gt
IWGAN - On Unifying Deep Generative Models
J20IGAN - JaniGAN: Muli-Doman Jon: Distiuton Learging with Gneratve Adversaria Nets
JR-GAN - JA-GAN: Jacobian Regulrization for Generative Adversarial Networl
KBGAN  KBGAN: Adversaril Learring for Knowledge Graph Embedcings
KGAN - KGAN: How 1o Break The Minmax Game in G
LGAN Remesemauon Learning and Adversarial Genevahon of 3D Point Clouds
ounded Language Understanding fo Maripulation Instrutions Using GAN Based Clssifcaton
A e B oy B e Comeratoe Aol Netmone o Frosst Synthesis
LAPGAN - Deep Generative Image Models using a Laplacian vaamnd ot Asara Networs github)
LB-GAN - Load Balanced GANS for Multi-view Face Image Synthesis
LBT - Learning Implicit Generative Models by Teaching Exphm\ Ones
LCC-GAN - Adversarial Learning with Local Coordinate Codin
LD-GAN - Linear Discriminant Generative Adversarial Networks
LDAN kel Dencising Adveraril Network (LOANY for veree Lihingof ace mages
LeakGAN - Via Adversarial Training with Information
LoGAN - Lkelod Estmtion o Generstue Ackersarl etk
LGAN - Gloa versus Locazed Genaratve Adveysaral Nets
Lipizzaner - Towards Distributed Coevolutionary G
LR-GAN - LR-GAN: Layered Recursive Generative Advevsanal Networks for Image Generation
LSGAN - Loss-Sensitive Generative Adversarial Networks on Lipschitz Densities
LSGAN - Least Squares Generative Adversarial Networks
NEAAE - Maskcaware Photorealstic Face Atijute Manguaton
MAD-GAN - Mult-Agent Diverse Generative Adversarial Networks
MAGAN - MAGAN: Margin Adaptation for Generative Adversarial Networks
MAGAN - MAGAN: Aligning Biological Manifolds:
Ma\GAN Generating Adversarial Malware Examples for Black-Box Attacks Based on GAN
IGAN - Maximum-Likefhood Augmented Discrete Generative Adversarial Network
o GAN MBS onaga Samesston wih aseeraicis Aeversril emworks
MARTA-GAN - Deep Unsupervised Representation Learning for Remote Sensing Images
MaskGAN - MaskGAN: Beiter Text Generation v Filing n the
MC-GAN - Multi-Content GAN for Few-Shot Font Style Transfer (github)
NICGAN - MC-GAN, Mutrconditional Generaiive Adversari Network fo Image Synthesis
tching G

MCGAN - McGan: Mean and Covanance Feature Malc
MD-GAN - Learning to Generate Time-Lapse Videos Using Mumsuge Dynamic Generative Adversarial Networks
MBGAN - Miode Rlgaarised Soneratn Adversera Neto
MedGAN - Generating Mult-label Discrete Electronic Hea\m Recmds using Generative Adversarial Networks
MedGAN - MedGAN: Medical Image Translation using Gy
R Ve o o o Sehenaive Aduarsariel Networks for Mulimoal Image Generaton
MelanoGAN - MelanoGANs: High Resolution Skin Lesion Synthesis with Gy
memoryGAN - Memorization Precedes Generaion: Learning Unsupervised GANS with Memory Networks
MeRGAN - Memory Replay GANS: learning to generate images from new categories without forgetting
MGAN - Precampuied ReakTime Textue Synthesis with Markovian Generaive Adversaria Networks (ghub)
MGGAN - Wit Bonerator Gensrative Adversaria
MGGAN - MGGAN: Solving Mode Colapse usmgM o e T ing
MIL-GAN - Muimodsi Stonieling via Generatve Adversarial Imitation Legming
MmLGAN Anomaly Detection via Minimunm Likelihood Generative Adversarial Networks
IX+GAN - Generalization and Equilirium in Generative Adversarial Nets (GANS)
NIRRT AR Leammg Connepls from Different Domains lm Mixture Generation
MLGAN - Metric Learning-based Generative Adversarial Net
AN A Aol Gt Coneratie Adveraana) Network for Carty and Place Tasks from Ambiguous Language Instructions
MMD GAN MMD GAN: Towards Deeper Understanding of Moment Matching Network (github)
 MMGAN: Manifold stching Generatve Adversal Network or Generaing ages
AN M VHGRbGAN, Betormpacing Mot anes Comtent Tor isss REnciaton ot
Vioified GANFCLS - Generate the corresponding mage fom Text Descrtion using Modified GAN-CLS Algrihm
(STGAN - Miocilar Gonerative Aduersarl
Mo\GAN Mo\GAN An impicit generative. mode\ or smaH molecular graphs
Message Passing Muli-Agert
MR cmpera Garesncy basea Bt o Predicting Video Frames using Deep Multtage Generative Adversaril Networks
MTGAN . MIGAN, Speafer Veriication iioush Multiasking Trlet Generative AdvefsarialNetw

wort
1SeGAN - Muse "With Mulirack Sequentil Generative Adversarial Networks

WV B0AN - meew Conerto Acusar etwnees
NEEPP NaRPP: An Acdrsarl Netnrk 9 Rebuld Planir Pressu or ACLD Patents
NAR Undersancing Homanen Cromde ted Adversaral Learning and A New Benchmark for Mult-Human Parsing
NCEGAN - D anglepeccion usmg genemwe -
ND-GAN - Novelty Detection with GAN
NetGAN - esSAN:Genertg e v ndom Waks
- One-Ciass Adversarial Nets for Fraud Dt
B on AR G aGAR: Leatning ot Fowarc Eoicy Options using Generative Adversaria Inverse Reinfrcement Leaming
‘ORGAN - Objective-Reinforced Generative Adversarial Networks (ORGAN) for Sequence Generation Models
‘ORGAN - 3D Reconstruction of Incomplete Archasological Objects Using a Generative Adversary Network
OTGAN- Impravng GANs Usig Opimal Tansor
PACGAN - PacGAT two samples in generative adversarial networks
R P Cepron Aol NS o o 1 age Transiomation
DaSSGAN - PassGAN: A ecp Learing Approach for Password Guessing
PDAWGAN - Primat Dual Wasserstein
Percetal GAN- ercptel GaneueAdvesal et for Sve bjctDeection
PGAN_.Probebiisic Genertve Adyersaril Nt
N Lnear s Fronems g AN Prirs: An Alorthm with Povable Guaranees
FGCan: Fag e Image Inpainting with Generative Adversarial Networks.
PIONEER - Pionser Networks: Progressively Growing Generative Autoern
P GAN - Fipeine Geere sl et o Facid Image Gerrsion with Mkl Attes
200 Imagetomage Transiton with Condionl Adversrial Networks (gt
B2 Healin rage Sylies and Semanie s v htiions Gas (i)
DelGAN - PeiGAN Autos
Discrminstve Representaton Learing for Acton Recogniton Using Pariabmodties
I can- Pose oz Image Generation for Person Re-dentifcation
POGAN Perceptualy Optimized Generaive Adversaril Network for Single mage Deazing
Pose-GAN - ws: Video Forecasiing by Generaling Pose Futures
PPN P P GAN o Face Dorserefieton
PPAN - Pivacy-Preserving Adversariel Networks
PPGN - Plug & Play Generative Networks: Conditional lterative Generation of Images in Latent Space
PAGAN - 3D Shape Induction from 2D Views of Multple Objects
ProGanSR - A Full Progressive Approach o Singie-Image Super-Resolution
Progreseive GAN - Progrssive Growing of GANS or Iproved Qualty, iy, and Variten (ghut)
~Pedestrian-Synthesis-GAN: Generating Pedestrian Data in Réal Scene and Bey.
rocan- Learning Texture onfads v v P Spuil G
PSGAN. PSGAN. A Generatue AdversarilNetwork for Remote Sensing Image Par Sharpening
PSZGAN - Pigh Quaity Facil Photo-Skeich Synthesis Using Mul- Adversarial Netw
RedaiGAN - RdlGAN: Leveraging mulfpe doasets o o trgetspecic po using Generative Adversarial Networks
AN - The relativistic discriminator a key element missing from standard GAN

AR - FARGIOA: et Mmoot o o Fifsoncs Image Qualty Assessment (github)
RankGAN - Adversarial Ranking for Language Generatior
REGAN - Rearvalied (MieclcalTme Seres Generation with Recurren Conditonal GANS
ReConNN - Reconstruction of Simulation-Based Physical Field with Limited Samples by Reconstruction Neural Network
Recycle- GAN - Recycle-GAN: Unsupervised Video Hetargeting
RefineGAN - Compressed Sensing MAI Reconstruction with Cycic Loss in Generative Adversarial Networks
ReGAN  ReGAN: REILAXIBARINFORCE] bosed Sequence Generation usitg GANs (gihub)
ReqCGAN - Unpaied Mut-Domain Image Generation v Fegilried Canatonal CARS
RenderGAN - RenderGAN: Generating Realistc Labeled Dat
Reserbled GAN - Resembled Generstve Adversaril Networks: Two Domains with Similar Atiributes
FiesGAN- Generetve AdvesailNetwork bse on sret o Cndionlimage Restcston
ANIAWGAN - Lanuage Generation with Recurrent Genertve Adversaril Netwrks without Pre-raining (gihubl
ROCGAN - Robust Conditional Generative Adversarial Netw
FPAN. Stabilng GAN Traing with Ll fandor Pvmechon& (githut)

ient Topic-Transition GAN for Visual Paragraph Generation
RGN - R Wossartan i Applcation 1 Gane
SAD.GAN- SADGAN, Srthtic Autoromos Diing ysing Goneraie Adversail Networks
SAGA - Generate Adversaril Learning for Spectrum Sen
'SAGAN - Self-Attention Generative Adversarial Networks

SaIGAN - SAGAN: Visual Saiency Preciction with Gensraie Adversatal Netiorks (github)
AM - Sample-Efficient Imitation Learning via Generative Adversarial Net

SAOG - Deep Structured Generative Models

SAR.GAN_ Generating High Qualty Visle Images from SAR Images Using CINs

SBADA-GAN - From source to target and back: symmetric bi-drectional adaptive GAN

SEUGAN - ScarGAN, Chained Generatve Adversarial Notworks to Simulate Pathological Tissue on Cardiovascular MR Scans

SCH-GAN - SCH-GAN: Semi-supervised Cross-modal Hashing by Generative Adversarial Net.

SD-GAN - Semanticaly Decomposing the Latent Spaces of Seneratvs Acversarial Networks

SEGAN - SUtGAN: Sem-supervised Depth Fuson with Mult-scale Adyersaral Networks

SEGAN - SEGAN: Speech Enhancement Generative Adversarial Netwt

SeGAN - SeGAN: Segmenting and Generating the Invisible

SSGAN - SegAN: Adursarial etwork wih Multscale L1 Loss for MedicalImage Segmentation

Sem-GAN - Sem-GAN: Semantically-Consistent Image-to-Image Translation

§90AN - SoqGAN: Sequence Genertive Adversaria Nets wih Poly Gradient (ginub)

SoUBA" Semimtic-awate Generative Adversarial Nets for Unsup ain Adama(mn in Chest X-ray Segmentation

SC.GAN - Serantiware GradGAN o Vitilto sl rban Scene Adapu (github)

AN S e e Eherie Rectraar ) Nevworke o Pl Mihute Manipution

SGAN - Texture Synthesis with Spatial Generative Adversarial Networks

SGAN - Stacked Generative Adversarial Netuorks (gl
GAN - Steganographic Generative Adversarial Network

SGAN - SGAN: An Alternative Training of Generative Amevsana\ Networks

SGAN - CT Image Enhancement Using Stacked Generative Adversarial Networks and Transfer Learning for Lesion Segmentation Improvement

SGAN - Generative Adversarial Training for MRA Image Synthesis usmg Mult-Contrast MRI
§ingGAN. SHNGGAN: Generatng an Sifing Labeled Sampes to Ipprove the
SIGAR SIGAN: Simese Generative Adversarl Network fo Gentity-Plesering Face Halluonatin

SESAN- Lasmingrom Simdeted and Unauperded images trgh Advetsrsl Tsning

SisGAN - Semantic Image Synthesis via Adversarial Learr

Sketcher-Refiner GAN - Learning Myelin Content in Mu\hp\e Sclerosis from Multimodal MR through Adversarial Training
SHeIChGAN  Adversaria Tining For Sketch Rt

oA 8y o arc Bt i Reatstc Sketehto Image Svnlhesws
StipThought GAN - Genelalmg Text iroush Adversaral Training using Skip-Thought Vectors
bt BAN Sareong 16 Snerste i oy s ages o Sibcres

SLSR - Sparse e Smoo\hmg o Semi-supervised Person Re-Identiication
SIYBCGAN - Generativ Adversaria Networks fof Unsupenised Object Colocalzation
SN-GAN - Spectral Normalization for Generative Adversarial Netwarks (github)
SN-PatchGAN - Free-Form Image Inpainting with Gated Convolution
Sobolev GAN - Sobolev GAI
Social GAN - Social GAN: Saua“v Acceptable Trajectories with Generative Adversarial Networks
Softmax GAN - Softm:
e SEPHie AN Aenivt GAN for Predicing Patns Complant to Social and Physical Constaints
‘speechdriven animation GAN - Enc-to-End SpeechDriven Facial Animation with Temporal GANs

i o

Soike-GAN - Synthesizing realistic neural patterns using I Networks
Splitting GAN - C\ass Spiiting Generative Adversarial Networks
SRCNNAVAEGAN - Sem:Recurtent CN-based VAE-GAN fo Sequental Data Generaicn (iub)

A b Reeae Sihgs Teaos Super esslution Dsig s Comeraive Abvercsral

SRPGAN - SRPGAN: Perceptual Generative Adversarial Network for Single Image Supev Reso\mmn
- Semi-supervised Conditional GANs

ss-InfoGAN - Guiding InfoGAN with Semi-Supervision

ss Bssed on Generative Adversarial Networks
SSLCAN-SomiSupeaad o i ConttCaraor anaiveAchsare Nk
T.CGAN  Stacked Condiona]Genergive Adversarl Network.for Jgtly Leaming Sadew Detctionand Shadow Remcl
SN SHe T ansier Gonerstne averoatal oS, Lostnng o Py Chess Biten
STOAN ST Sptl Tintormar Goeratve e oo fo Irage Compesing
StackGAN - StackGAN: Text o Photoealistc Image Synthesis with Stacked Generative Adversaril Networks (github)
SIEInGAN - SISnGAN: Stan Siyle Tansier for Digia Histologieal mages
SarGAN  StrGAN: Unfid Genratie Acersal Networs o Ml Deman mage-to e Trnsiation (g
SrGANAC S ralel
S1aviSan  Lamng Doa Eary Wi Comasie Dtrginon v Amoriosd WIE
SeBAN Improung Condiond Seauence Generaive Adursal Notworks by St Evalation
Super FAN - . a
SIS SUSOAN, Singing Vs Sepraton v Conerate Aceraral Novscr
SIWGAN - Solving Approxmate Wasserstein GANS to Stationariy
Sy« Syt Syrchcis e Laan St o Crose ol Cararaies A ot
$726AN Generatve Image Modelng using Stleand Stucture Adversaral Neta
Tt TN oo oo T SO g rags et Etanion Tasks
table-GAN - Data Synthesis based on Generative Adversarial Networks
FREGAN - TACGAR o5t Contionea Aumiary Clasaier Generste Adversarial Network (gt
TAN - Outine Colorization trough Tandem Adversarial Netwworks
{cGAN - Cross-modal Hallucination fo Fewsshot Fine-grained Recognito
TE-GAN - Task Driven Generatie Modeing for Unsupendsed Dormain Adsptaton: Appiication o Xcay Image Segmentation
temaCyciGAN - imoraing Surgsl T Pratoms by Hype sl Deep Ui image-omege Transstn fom Fes Sutgeres
all Conerent, Volumetric GAN for Super-esoluton Fud Flow
TequiaGAN - TequlaGAN: How to easiy dentify GAN sarmples
Text2Shape - Text2Shape: Generating Shapes from Natural Language by Learning Joint Embeddings
{OxGAN - Generating Text via Acversaral Training
TextureGAN- TeutureGAN: Contaling Deep Imge Synhess with Texture atches
TGN Temporal Generative Adversaial Net
AN Tonsoring Cencraie Aceratal Nets

TGAN- o ) Network with Sparse Coding: Application to Real-time Indoor Localization
TGANs-C - To Create What You Tel: Generalmg Videos from Captions.
tiny-GAN - Analysis of Nonautonomaus Adversarial Syster
"TRYGAN - Beyond Face Rotation: Global andLocal Pefception GAN for Photoreaisic and dentiy Presenving Frontl View Synthesis
TreeGAN - TreeGAN: Syntax-Aware Seauence Generation with Generative Adversarial Networks
Triple-GAN - Triple Generative Adversarial Ne
THHGHGAN - TGKGANE Triming Generatie Model with Tt Loss
TV-GAN: TV:GAN, Generaive Adversara Network Based Tnamal to Visle Face Recoguton
Toin GAN - Tein GAN ~ Unpaited C1oss-Doman Image Transiaton with Weight-Sharing GARS
UGACH - Unsupervised Goneraive Adverearl Crosemotel Hashing
UGAN - Enhancing Underwater Imagery using Generative Adversarial Networl
Unim2im - Unsupervised \mags e et i Caneraine Acweraanal Networks githubl
UNIT Unsupenysed Image-toimage Tranlation Netwarks (ginub)
Unvolled GAK - Unrolled Generatve Adversaril Networks (ahub)
Ut SCA GAN Spatial Image Steganography Based on Generative Adversarial Network
UY-GAN - UV-GAN: Adversarial Facil UV Map Compltion or Poseinvariant Face Recogniion
AN PR Rl g W Soel
VACHGAN versatle Auxllary Classfer it Genelalwe Advelsana\ Network (VAC+GAN), Muli Class Scenarios
/AE GAN - Autoencoding beyond pixels using a learned similarity metric
VanGAN Multi-View Image Generaton om s Single-View
VAW-GAN - Vioice Conversion from Unaligned Corpora using Variational Autoencoding Wasserstein Generative Adversarial Networks
VEEGAN - VEEGAN, Reducmg Mode Ca\apse in GANSs using Impicit Variational Learning (github)
VGAN - Generating Videos with Scene Dynamcs (github)
VAN et K saral Neroerka o Viratoral Taiing of Energy Based Models (gitub)
VGAN - Text Generation Based on Generative Adversarial Nets with Latent Variable
VIGAN - Image Generation and Editing wih Vargtional Ino Generatve Adversarial Networks
VIGAN - VIGAN: Missing View Imputation with Generative Adversarial Netwarks
VoiceGAN - Voice Impersonation using Generative Adversarial Networks
VOS-GAN - VOS-GAN: Adversarial Learning of Visual-Temporal Dynamics for Unsupervised Dense Prediction in Videos
VRAL - Variance Regularizing Adversarial Learning
VUaterGAN - WelerGAN: Unsupervised Generative Networ 1o Enable Reaktime Colr Correction of Monosular Underwater Images
WaveGAN - Synihesizing Ao wiih Generatie Adversarial Netw
WayeleiGLCAGAN - Global and Local Consstet Waveletdomain Age Synthesis
~ Generative Adversarial Nets for Multiple Text Corpora
VWGAN - Viasserstem AN github)
VWGAN-CLS - Text o Image Synthesis Using Generative Adersarial Networks
WGAN-GP - Improved Traing of Wasserstein GANs (g
WGANLI - Subsammed Turbulence Removal Net
Ay ey e Seme el Networks for 3D Reconstruction
x GANs X-GANs: Image Reconstruction Made Easy for Extreme Cases
XGAN; Unsupervised Image-to-Image Translation for many-to-many Mappings
e R o s e e Moble Tl Bahema v & C5bersive Adversaral Neual Notwork
aGAN - Vriationsl Approaches for Auto Encoding Generative Adversarial Networks (gl
BGAN - Annealed Generative Adversarial Netwt
A-GAN - Triangle Generative Adversarial Networks

Remote Sensing Image Scene Classification Baseline in vitro

ndmark localzatior of real-world low resolution faces in arbitrary poses with GANs
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An explo-GAN of papers

Total number of papers

Cumulative number of named GAN papers by month

2015

2016

2017

2018

Explosive growth — All the named
GAN variants cumulatively since
2014.

Credit: Bruno Gavranovic

Deep Hunt, blog by Avinash Hindupur
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Lecture overview

* Motivation and Definition of Implicit Models
Original GAN (Goodfellow et al, 2014)

» Evaluation: Parzen, Inception, Frechet
Theory of GANSs

 GAN Progression
— DC GAN (Radford et al, 2016)
— Improved Training of GANs (Salimans et al'16), Projected GAN (Sauer et al'21)
— WGAN, WGAN-GP, Progressive GAN, SN-GAN, SAGAN
— BigGAN, BigGAN-Deep, StyleGAN, StyleGAN2, StyleGANS3, StyleGAN-XL,
Self-Distilled StyleGAN, VIB-GAN, VO-GAN

« (Conditional GANs, Cycle-Consistent Adversarial Networks
GANs and Representations
Applications

58



Deep Convolutional GAN (DCGAN)

UNSUPERVISED REPRESENTATION LEARNING
WITH DEEP CONVOLUTIONAL
GENERATIVE ADVERSARIAL NETWORKS

Alec Radford & Luke Metz
indico Research

Boston, MA

{alec, luke}@indico.io

Soumith Chintala
Facebook Al Research
New York, NY
soumith@fb.com

ABSTRACT

In recent years, supervised learning with convolutional networks (CNNs) has
seen huge adoption in computer vision applications. Comparatively, unsupervised
learning with CNNs has received less attention. In this work we hope to help
bridge the gap between the success of CNNs for supervised learning and unsuper-
vised learning. We introduce a class of CNNs called deep convolutional generative
adversarial networks (DCGANSs), that have certain architectural constraints, and
demonstrate that they are a strong candidate for unsupervised learning. Training
on various image datasets, we show convincing evidence that our deep convolu-
tional adversarial pair learns a hierarchy of representations from object parts to
scenes in both the generator and discriminator. Additionally, we use the learned
features for novel tasks - demonstrating their applicability as general image repre-
sentations.



Deep Convolutional GAN (DCGAN)

100 z

Project and reshape

* Most “deconv” layers are batch normalized

[Radford et al 2016]
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DCGAN - Architecture Design

» Supervised Learning CNNs not directly usable
— Remove max-pooling and mean-pooling
— Upsample using transposed convolutions in the generator
— Downsample with strided convolutions and average pooling
— Non-Linearity: ReLU for generator, Leaky-RelLLU (0.2) for discriminator
— Output Non-Linearity: tanh for Generator, sigmoid for discriminator
— Batch Normalization used to prevent mode collapse
— Batch Normalization is not applied at the output of G and input of D

* Optimization details
— Adam: small LR - 2e-4: small momentum: 0.5, batch-size: 128

[Radford et al 2016]
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DCGAN Batch Norm

Discriminator

[Chintala 2016]



DCGAN - Key Results

» Good samples on datasets with 3M images (Faces, Bedrooms) for the
first time
I : "1 - gﬂ"'g L’fg‘;{‘ H'MI .\* . z:__d’ ‘ i;!f ‘ _h -
e B MUSL

[Radford et al 2016]

63



DCGAN - Key Results

’,

[Radford et al 2016]
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DCGAN - Key Results

Smooth mterpolatlons in hlgh d|men5|ons

[Radford et al 2016]
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DCGAN - Key Results

* Imagenet samples

[Radford et al 2016]
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DCGAN - Key Results

e Vector Arithmetic

smiling
woman

[Radford et al 2016]

neutral
woman

neutral
man

smiling man
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DCGAN - Key Results

~ man
with glasses

[Radford et al 2016]

man woman

without glasses  without glasses woman with glasses

Results of doing the same
arithmetic in pixel space

-
-I- o
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DCGAN - Key Results

[Radford et al 2016]
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DCGAN - Key Results

» Representation Learning

Model Accuracy | Accuracy (400 per class) | max # of features units
1 Layer K-means 80.6% 63.7% (£0.7%) 4800
3 Layer K-means Learned RF 82.0% 70.7% (10.7%) 3200
View Invariant K-means 81.9% 72.6% (10.7%) 6400
Exemplar CNN 84.3% 77.4% (£0.2%) 1024
DCGAN (ours) + L2-SVM 82.8% 73.8% (£0.4%) 512

[Radford et al 2016]
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DCGAN - Conclusions

* Incredible samples for any generative model

* GANs could be made to work well with architecture details
* Perceptually good samples and interpolations

» Representation Learning

* Problems to address:

— Unstable training
— Brittle architecture / hyperparameters
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Lecture overview

* Motivation and Definition of Implicit Models
Original GAN (Goodfellow et al, 2014)

» Evaluation: Parzen, Inception, Frechet
Theory of GANSs

 GAN Progression
— DC GAN (Radford et al, 2016)
— Improved Training of GANs (Salimans et al’16), Projected GAN (Sauer et al'21)
— WGAN, WGAN-GP, Progressive GAN, SN-GAN, SAGAN
— BigGAN, BigGAN-Deep, StyleGAN, StyleGAN2, StyleGANS3, StyleGAN-XL,
Self-Distilled StyleGAN, VIB-GAN, VO-GAN

« (Conditional GANs, Cycle-Consistent Adversarial Networks
GANs and Representations
Applications 7



Improved training of GANSs

* Feature Matching

. . . . . . . o
Minibatch discrimination Improved Techniques for Training GANs
" " " Tim Salimans Ian Goodfellow Wojciech Zaremba Vicki Cheung
° H IStorlcal Averaglng tim@openai.com ian@openai.com woj@openai.com vicki@openai.com
Alec Radford Xi Chen
alec.radford@gmail.com peter@openai.com

e \Virtual batch normalization
[Salimans 20106]

* One-sided label smoothing
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Improved training of GANSs

* Feature Matching

HEiIJ’\"pdata -f(:“v) o ]E’ZNP(Z).f(G(Z))HQ

Generator objective

[Salimans 2016]
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Improved training of GANSs

 Minibatch discrimination

f(il?z) c RA T c RAXBXC M, € RBxC
co(xi, i) = exp(—||Mip — Mjp|lL,) € R

O(wi)b = Zcb(wi,wj) cR

j=1
o(@i) = [o(@s)1, o(w:)s, o o
o(X) € R™*¥ [Salimans 2016]

Allows to incorporate side information from other samples and is superior to feature matching in the unconditional setting.
Helps addressing mode collapse by allowing discriminator to detect if the generated samples are too close to each other.

M » — o,

M —=> b




Improved training of GANSs

* Historical Averaging

10— 1>, 01|
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Improved training of GANSs

- One-sided label smoothing

e
Default discriminator cost:

cross_entropy(1l., discriminator(data,))
+ cross_entropy (0., discriminator(samples))

\_

A 4

" One-sided label smoothed cost (Salimans et al
2016):

cross_entropy(.9, discriminator(data))
Figure source: + cross_entropy (0., discriminator(samples))

NeurlPS tutorial

Goodfellow 2016



Improved training of GANSs
- \Why one-sided?

Reinforces current generator behavior

D(x) = (1 — @)paata(®) + BPmodel (X)

Pdata (ZB) = Pmodel (CE)

Figure source:
NeurlPS tutorial



Improved training of GANSs

- Virtual Batch Normalization
— Use a reference batch (fixed) to compute normalization statistics

— Construct a batch containing the sample and reference batch

Figure source:
NeurlPS tutorial
Goodfellow 2016
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Improved training of GANSs

« Semi-Supervised Learning
— Predict labels in addition to fake/real in the discriminator
— Approximate way of modeling p(x,y)
— Generator doesn’'t have to be made conditional p(x|y)
— Use a deeper architecture for the discriminator compared to generator

L = _Em,ywpdata(w,y) [10gpm0del(y|w)] — ]Ea:NG[logpmodel(y = K T 1|:B)]
= Lgupervised + Lunsupervised, Where
Lsupervised = —Eq yrpiaa (2,y) 108 Pmodet (¥|®, y < K + 1)
Lynsupervised = —{Earopaga(e) 108[1 — Pmodet(y = K + 1|2)] + Epo 108[Pmoda(y = K + 1|2)]}
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Improved training of GANs
lﬂmﬁ!ﬁﬁﬂ-- y
< ES s X

Salimans 2016



Lecture overview

* Motivation and Definition of Implicit Models
Original GAN (Goodfellow et al, 2014)

» Evaluation: Parzen, Inception, Frechet
Theory of GANSs

 GAN Progression
— DC GAN (Radford et al, 2016)
— Improved Training of GANs (Salimans et al'16), Projected GAN (Sauer et al’21)
— WGAN, WGAN-GP, Progressive GAN, SN-GAN, SAGAN
— BigGAN, BigGAN-Deep, StyleGAN, StyleGAN2, StyleGANS3, StyleGAN-XL,
Self-Distilled StyleGAN, VIB-GAN, VO-GAN

« (Conditional GANs, Cycle-Consistent Adversarial Networks
GANs and Representations
Applications
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Projected GAN

* Training GANSs In pretrained feature spaces improves image quality,
training speed, and sample efficiency.

111111 111 aX
G {D;}
40071
1001

2

= StyleGAN2-ADA
= DProjected StyleGAN2-ADA
= FastGAN

* Projected FastGAN

4
Training Progress [# million real images]

6

8 10 12

14

FID (log scale)

80
50

20

10

(Ex [log Dy (P(x))] + Ey [log (1 — Dy (P(G(2)))))])

—o— StyleGAN2-ADA
== FastGAN
- Projected FastGAN

1 ' 10 ' (1
Dataset Size [k Images]

Figure 4: Training Properties. Left: Projected FastGAN surpasses the best FID of StyleGAN2
(at 88 M 1mages) after just 1.1 M images on LSUN-Church. Right: Projected FastGAN yields
significantly improved FID scores, even when using subsets of CLEVR with 1k and 10k samples. 83



Projected GAN

 Training GANSs In pretrained feature spaces improves image quality,
training speed, and sample efficiency.

minmax » (Ex[logD; (P(x))] + E,|log(1 — D; (P(G(z)))))])
leL

G {D:}

Y ¢ . . ; A\ A
€ A j ] t | N ; v
RO e Nl i 1 2 13 , ‘l " 4 4 &y L YL "FI
, ) . 3 ’ 1 _A < o | I “ :.‘. -
} e 4
L, g .
Fs ﬁ "
b ) ‘
1 Ty .
L™ il
p ‘ E
~
rd

100k 200k 300k 700k 800k

Figure 5: Training progress on LSUN church at 2562 pixels. Shown are samples for a fixed noise
vector z over k images. From top to bottom: FastGAN, StyleGAN2-ADA, Projected GAN. 84



Projected GAN

* The choice of pretrained network is important!

EfficientNet ResNet Transformer
liteQ litel lite2 lite3 lite4 R18 R50 R50-CLIP DeiT ViT

Params M) | 296 372 436 642 11.15 11.18 2351 23.53 9236 317.52
IN top-1 1 7548 76.64 7747 79.82 81.54 69.75 79.04 N/A 8542 85.16

FID | 253 165 169 1.79 235 416 440 3.80 246  12.38

Table 2: Pretrained Feature Networks Study. We train the projected GAN with different pretrained
feature networks. We find that compact EfficientNets outperform both ResNets and Transformers.

- N D L W | g

* More detalls: g Lolom A ek o
. ) ) ) é" Tr’ : '25 ” V1

— Multi-Scale Discriminators T I V- oo~ Wt

— Random Projections | i 4V b

— Cross-Channel Mixing (CCM) Sy S

Figure 2: CCM (dashed blue  gioyre 3. CSM (dashed red ar-
arrows) employs 1x1 convo- rows) adds random 3x3 con-

- C ros S_S (075 | e M IXI n g (C S I\/l ) lutions with random weights. .}, viong and bilinear upsam-

pling, yielding a U-Network. 85



Lecture overview

* Motivation and Definition of Implicit Models
Original GAN (Goodfellow et al, 2014)

» Evaluation: Parzen, Inception, Frechet
Theory of GANSs

 GAN Progression
— DC GAN (Radford et al, 2016)
— Improved Training of GANs (Salimans et al'16), Projected GAN (Sauer et al'21)
— WGAN, WGAN-GP, Progressive GAN, SN-GAN, SAGAN, Projected GAN
— BigGAN, BigGAN-Deep, StyleGAN, StyleGAN2, StyleGANS3, StyleGAN-XL,
Self-Distilled StyleGAN, VIB-GAN, VO-GAN

« (Conditional GANs, Cycle-Consistent Adversarial Networks
GANs and Representations
Applications
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Training a GAN: Distances between Manifolds

_*2 Data manifold

L) T GAN manifold
~ (Generative model)
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Training a GAN: Distances between Manifolds

X2

GAN manifold

""""
,,,,,

-

b ..
""""

»xl

Data manifold
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Jensen-Shannon Divergence

P, + P P, + P
JS(IP’T\\IP’g):KL<IP’T\\ ; 9)+KL(1P>QH : 9)

* \What is the JS divergence in
this simple case? A

log2 1t 6 +#0
JS (]P)T H]P)g) — { O g lf 9 i O ..............

Example from (Arjovsky et al. 2017)



Jensen-Shannon Divergence

log2 16 +#0 S :
JS(IPTHIP’g):{ Og imio

0.7

0.6

0.5

0.4

JS(Pr || Pg)
D

0.3

RS T, I TR~

0.2

01 .............. _ ............................................

0.0 -
-1.0 -0.5 0.0 0.5 1.0

(2] Example from (Arjovsky et al. 2017)



Wasserstein Distance

« JS divergence is not a useful learning signal to train GANS.

» Another distance measure inspired from Optimal Transport is the Earth
Mover (EM) (also called Wassertein-1 Distance) distance

W (P,.,P,) = inf () —
( g) Weﬂl(%r,]?g) (z,y) *y[”a? yH]

 The EM distance is continuous everywhere and differentiable almost
everywhere (under mild assumptions).
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Wasserstein Distance

P, IPy) = inf E(zy)~ _
W( g) veﬂl(l?Pf,ﬂ,IP’g) (z,y) 'y[Hx yH]

* \What is the EM (or Wassertein)
distance In this simple case?

............................................

Example from (Arjovsky et al. 2017) 4



Wasserstein Distance

W (P, |[Pg) = |6

1.0 ‘ : : e _ .............. PR TR ..............
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6 Example from (Arjovsky et al. 2017) o,



Wasserstein Distance

W (P, |[Pg) = |6
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6 Example from (Arjovsky et al. 2017) 4



(A real-valued function f: X—Y is called K-Lipschitz continuous

i If there exists a real constant K > 0 such that, for all x{,x,.
Wasserstein GAN constant K2 0 such

L Here K is known as a Lipschitz constant for function f(:)

* W (P,||P,) might have nice properties compared to JS (P, ||Py)
* However, the infimum is intractable in:

W (P, Py) = inf E(e,y)~ _
( g) WEHI(%T,IPQ) (z,y) ’y[HCB y”]

« Can exploit Kantorovich-Rubinstein duality:

W (P, Py) = ||fS||llp< 1 Eenp, [f(z)] — Eznp, [ f(2)]

where the supremum is over all the 1-Lipschitz functions f: X — R
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Wasserstein GAN

 The WGAN Objective function:

i i [D(z)]— E [D(a
B o DO B, D)

where D is the set of 1-Lipschitz functions.

* Open guestion: how to effectively enforce the Lipschitz constraint on
the critic D?

— Arjovsky et al. (2017) propose to clip the weights of the critic to lie within a
compact space [-c, c].

— Results in a subset of the k-Lipschitz functions (k is a function of ¢).
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Wasserstein GAN - Pseudocode

Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used
the default values a = 0.00005, ¢ = 0.01, m = 64, Neritic = O-

Require: : «a, the learning rate. ¢, the clipping parameter. m, the batch size.
Neritic, the number of iterations of the critic per generator iteration.
Require: : wg, initial critic parameters. 0g, initial generator’s parameters.
1: while 6 has not converged do

2: for t =0, ..., neritic do

3: Sample {z(V)}™, ~ P, a batch from the real data.
4: Sample {z("}™  ~ p(z) a batch of prior samples.
o: Guw vw [# Z:'il fw(x(i)) - % 1711 fw(gﬂ(z(i)))]
6: w < w + o - RMSProp(w, g.,)

7 w « clip(w, —¢, ¢)

8: end for

9: Sample {z(V}™ | ~ p(z) a batch of prior samples.

10: go < —VO# Z:':] fw(gO(z(i)))
11: 0 < 0 — a - RMSProp(8, gg)
12: end while

[Arjovsky et al 2017] 98



Wasserstein GAN - Training critic to converge

1.0 , l ' | | | |
— Density of real
08} —— Density of fake |
—— GAN Discriminator
WGAN Critic
0.6 |

o ey

-0.2 Vanishing gradients
In regular GAN
-0.4 l ] ] ] J l 1
-8 -6 -4 -2 0 2 4 6 8

[Arjovsky et al 2017] 99



Wasserstein estimate

Wasserstein distance correlates with sample
quality
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[Arjovsky et al 2017]
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WGAN Samples on par with DCGAN

‘-c’:-'lﬂ.ﬁﬁ

'!:n

\,
c- v ‘.‘

-.v. ; N

Top: WGAN with the same DCGAN architecture. Bottom: DCGAN

[Arjovsky et al 2017]
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WGAN robust to architecture choices

Top: WGAN with DCGAN architecture, no batch norm. Bottom: DCGAN, no batch norm

[Arjovsky et al 2017] 1,



WGAN robust to architecture choices

5”1

Top: WGAN with MLP architecture. Bottom: Standard GAN, same architecture

’ ".

[Arjovsky et al 2017] 103



WGAN Summary

e )
Standard GAN

mci¥n mgx Lx~ P, [log D(ZL‘)] + Kz p, [log(l — D(CE))]
9 J

l

r . )
\Wasserstein GAN

g e
min max E;.p, [D(@)] - Es~p, [D(@)

[Arjovsky et al 2017] 4



WGAN Summary

* New divergence measure for optimizing the generator

Addresses instabilities with JSD version (sigmoid cross entropy)

Negative:

Robust to architectural choices
Progress on mode collapse and stability of derivative wrt input
ntroduces the idea of using lipschitzness to stabilize GAN training

Weight clipping is a clearly terrible way to enforce a Lipschitz constraint. If the
clipping parameter is large, then it can take a long time for any weights to reach
their limit, thereby making it harder to train the critic till optimality. If the clipping
is small, this can easily lead to vanishing gradients when the number of layers is
big, or batch normalization is not used (such as in RNNs). We experimented with
simple variants (such as projecting the weights to a sphere) with little difference, and
we stuck with weight clipping due to its simplicity and already good performance.
However, we do leave the topic of enforcing Lipschitz constraints in a neural network
setting for further investigation, and we actively encourage interested researchers
to improve on this method. [Arjovsky et al 2017] 105



Lecture overview

Motivation and Definition of Implicit Models
Original GAN (Goodfellow et al, 2014)
Evaluation: Parzen, Inception, Frechet
Theory of GANSs

GAN Progression
DC GAN (Radford et al, 2016)
Improved Training of GANs (Salimans et al'16), Projected GAN (Sauer et al'21)
WGAN, WGAN-GP, Progressive GAN, SN-GAN, SAGAN
BigGAN, BigGAN-Deep, StyleGAN, StyleGAN2, StyleGAN3, StyleGAN-XL, Self-
Distilled StyleGAN, VIB-GAN, VQO-GAN

Conditional GANs, Cycle-Consistent Adversarial Networks
GANs and Representations
Applications
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Issues with Weight Clipping

1. Underuse capacity
2. Exploding and vanishing gradients

% [—— Weight elipping (c = 0.001) | Weight clipping Gradient penalty
S 107 — Weight clipping (¢ = 0.01)
%D ——  Weight clipping (c = 0.1)
= Y Gradient penalty
g =
-
o]
=
) —101
=
QQ
g
 —201
13 10 7 4 1 —-0.02 —-0.01  0.00 0.01 0.02 —-0.50 —-0.25 0.00 0.25 0.50
Discriminator layer Weights Weights
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WGAN-GP: Gradient Penalty Approach

Improved Training of Wasserstein GANs

Ishaan Gulrajani'; Faruk Ahmed', Martin Arjovsky?, Vincent Dumoulin', Aaron Courville!3
1 Montreal Institute for Learning Algorithms
2 Courant Institute of Mathematical Sciences
3 CIFAR Fellow
igul222@gmail . com
{faruk .ahmed,vincent.dumoulin,aaron. courville}@umontreal .ca
ma4371@nyu.edu

Abstract

Generative Adversarial Networks (GANs) are powerful generative models, but
suffer from training instability. The recently proposed Wasserstein GAN (WGAN)
makes progress toward stable training of GANSs, but sometimes can still generate
only poor samples or fail to converge. We find that these problems are often due
to the use of weight clipping in WGAN to enforce a Lipschitz constraint on the
critic, which can lead to undesired behavior. We propose an alternative to clipping
weights: penalize the norm of gradient of the critic with respect to its input. Our
proposed method performs better than standard WGAN and enables stable train-
ing of a wide variety of GAN architectures with almost no hyperparameter tuning,
including 101-layer ResNets and language models with continuous generators.
We also achieve high quality generations on CIFAR-10 and LSUN bedrooms.

[Gulrajani et al 2017]
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WGAN-GP: Gradient Penalty Approach

» A property of the optimal WGAN critic: If £ ~ [P, then there is a
point & ~ IP,., such that for all points @; = tx + (1 — ¢)& (on a
straight line between x and &) then:

VD* (Q?t) —

L — Lt

|l — .|

* This implies the optimal WGAN critic has gradient norm 1 at @y
» Gradient Penalty version of WGAN (i.e. WGAN-GP) objective

L= E [D(&)]— E [D(®)]+\ E {(HV@D(@)Hz_l)Q]

z~P, x~P, ~P.
—_———  —,—————

Original critic loss Our gradient penalty
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WGAN-GP: Gradient Penalty Approach

X2

| * Gradient penalty:
D [(HV@D(CB)HQ — 1) }

r~Ps

Sample along straight lines:

—x e~ U0,1], 2 ~ P& ~ P,
r=ex+(1l—¢ex

FXSESR ST IR FINETSESIECERY A Do SR T AT ARITAAE (WAL R IR DS SECERartsl W FERFEer: sES TR TRt ate, CEFCERICERs ot S I S DR R Er A I ey




WGAN-GP: Gradient Penalty for Lipschitzness

8 Gaussian 25 (Gaussian Swiss Roll

=l = =
e ol ‘\ = ‘.
] ‘ | ; I | ‘) ‘\ ‘}
| ¢
‘ || | [ \ “‘
— ‘ ' ’ ) 1\ N
————— — Lk = ;y

NN

——— 4 L ————

s [ " 2
max E;p, [D(z)] = Eznp, [D(@)] +A Bznp, |([VaD(2)]]2 — 1) ]
Wasserstein critic objective Gradient Penalt;rfor Lipschitzness

e+ (l—e)k
( ) [Gulrajani et al 2017] 11



WGAN-GP: Pseudocode

Algorithm 1 WGAN with gradient penalty. We use default values of A = 10, ngiiec = 9, @ =
0.0001, 51 =0, B2 = 0.9.

Require: The gradient penalty coefficient A, the number of critic iterations per generator iteration
Neritic» the batch size m, Adam hyperparameters «, 31, S3s.
Require: initial critic parameters wyg, initial generator parameters 6.
1: while 6 has not converged do
2: fort =1, ..., Neritic do

3: for: =1,...,mdo
4: Sample real data  ~ P,., latent variable z ~ p(z), a random number ¢ ~ U |0, 1].
5: x <+ Gy (z)
6: T—ex+(1—¢€x
7: L® « Dy(&) — Dy(x) + M| Ve Do (2)]]2 — 1)2
8: end for
0: W <— Adam(Vw% Z:il L(i)7w7a7617182)
10: end for
11: Sample a batch of latent variables {z(V}™ | ~ p(2).

12: 0 Adam(V(;% 2111 _Dw(GO(z))aeaaaﬂlaBQ)
13: end while

[Gulrajani et al 2017] 110



WGAN-GP: BatchNorm

No critic batch normalization Most prior GAN implementations [22, 23, 2] use batch normaliza-
tion in both the generator and the discriminator to help stabilize training, but batch normalization
changes the form of the discriminator’s problem from mapping a single input to a single output to
mapping from an entire batch of inputs to a batch of outputs [23]. Our penalized training objective
is no longer valid in this setting, since we penalize the norm of the critic’s gradient with respect
to each input independently, and not the entire batch. To resolve this, we simply omit batch nor-
malization in the critic in our models, finding that they perform well without it. Our method works
with normalization schemes which don’t introduce correlations between examples. In particular, we
recommend layer normalization [3] as a drop-in replacement for batch normalization.

[Gulrajani et al 2017]
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WGAN-GP: Robustness to architectures

Nonlinearity (G) [ReLU, LeakyReLU, SfRlos(Zzt2) _ ¢ 45nh)
Nonlinearity (D) [ReLU, LeakyReLU, S"f“’l“?w“) — 1, tanh]
Depth (G) (4, 8, 12, 20]
Depth (D) (4, 8, 12, 20]
Batch norm (G) [True, False]
Batch norm (D; layer norm for WGAN-GP) [True, False]
Base filter count (G) [32, 64, 128]
Base filter count (D) [32, 64, 128]

Min. score Only GAN Only WGAN-GP Both succeeded Both failed

1.0 0 8 192 0
3.0 1 88 110 1
5.0 0 147 42 11
7.0 1 104 5 90
9.0 0 0 0 200

[Gulrajani et al 2017] 14



WGAN-GP: Robustness to architectures

DCGAN LSGAN WGAN (clipping) WGAN-GP (ours)

Basellne (G- DCGAN D DCGAN)

No normahzatlon in either GG or D

P a

Gated multlphca’uve nonhnearltles everywhere in G and D

tanh nonhneamles everywhere in G and D

R4
'fl"'&

[Gulrajani et al 2017]



[Gulrajani et al 2017]
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WGAN-GP: High quality samples

Table 3: Inception scores on CIFAR-10. Our unsupervised model achieves state-of-the-art perfor-
mance, and our conditional model outperforms all others except SGAN.

Unsupervised Supervised

Method Score Method Score

ALI [8] (in [27]) 5.34 4 .05 SteinGAN [26] 6.35
BEGAN [4] 5.62 DCGAN (with labels, in [26]) 6.58
DCGAN [22] (in [11]) 6.16 &= .07 Improved GAN [23] 8.09 &+ .07
Improved GAN (-L+HA) [23] 6.86 + .06 AC-GAN [20] 8.29 + .07
EGAN-Ent-VI [7] .07 £+ .10 SGAN-no-joint [11] 8.37 £+ .08
DFM [27] (.22 .13 WGAN-GP ResNet (ours) 8.42 + .10
WGAN-GP ResNet (ours) 7.86 + .07 SGAN [11] 8.59 £+ .12

[Gulrajani et al 2017]



WGAN-GP: Summary

* Robustness to architectural choices

 Became a very popular GAN model - 2000+ citations, has been used In
NVIDIA's Progressive GANs, StyleGAN, etc - biggest GAN successes

» Residual architecture widely adopted.

* Possible negative- slow wall clock time due to gradient penalty.

» Gradient penalty applied on a heuristic distribution of samples from
current generator. Could be unstable when learning rates are high.
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Progressive growing of GANs

PROGRESSIVE GROWING OF GANS FOR IMPROVED
QUALITY, STABILITY, AND VARIATION

Tero Karras Timo Aila Samuli Laine Jaakko Lehtinen
NVIDIA NVIDIA NVIDIA NVIDIA and Aalto University

{tkarras, taila,slaine, jlehtinen}@nvidia .com

ABSTRACT

We describe a new training methodology for generative adversarial networks. The
key idea is to grow both the generator and discriminator progressively: starting
from a low resolution, we add new layers that model increasingly fine details as
training progresses. This both speeds the training up and greatly stabilizes it, al-
lowing us to produce images of unprecedented quality, e.g., CELEBA images at
10242. We also propose a simple way to increase the variation in generated im-
ages, and achieve a record inception score of 8.80 in unsupervised CIFAR10.
Additionally, we describe several implementation details that are important for
discouraging unhealthy competition between the generator and discriminator. Fi-
nally, we suggest a new metric for evaluating GAN results, both in terms of image
quality and variation. As an additional contribution, we construct a higher-quality
version of the CELEBA dataset.

[Karras et al. 2017] 120



Progressive growing of GANs

Latent Latent
v v v
L 4x4 | | 4x4 | [ axa ]
: I 8)'(8 | [| |l
: | ]
l |
l ]
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: |
: ]
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Training progresses

[Karras et al. 2017]
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Progressive growing of GANs

POTTEDPLANT HORSE SOFA BUS CHURCHOUTDOOR BICYCLE TVMONITOR

[Karras et al. 2017] 122




Progressive growing of GANs

=E
Mao et al. (2016b) (128 x 128)  Gulrajani et al. (2017) (128 x 128) Our (256 x 256)

[Karras et al. 2017] 123



Progressive growing of GANs

\ 4

[Karras et al. 2017] 124



Progressive growing of GANs

[Karras et al. 2017] 125



Progressive growing of GANs

CelebA-HQ

random interpolations

[Karras et al. 2017]
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Spectral Normalization GAN (SNGAN)

SPECTRAL NORMALIZATION
FOR GENERATIVE ADVERSARIAL NETWORKS

Takeru Miyato!, Toshiki Kataoka!, Masanori Koyama?, Yuichi Yoshida®
{miyato, kataoka}@preferred. jp
koyama.masanori@gmail.com

yyoshida@nii.ac. jp

'Preferred Networks, Inc. 2Ritsumeikan University *National Institute of Informatics

ABSTRACT

One of the challenges in the study of generative adversarial networks is the insta-
bility of its training. In this paper, we propose a novel weight normalization tech-
nique called spectral normalization to stabilize the training of the discriminator.
Our new normalization technique is computationally light and easy to incorporate
into existing implementations. We tested the efficacy of spectral normalization on
CIFARI10, STL-10, and ILSVRC2012 dataset, and we experimentally confirmed
that spectrally normalized GANs (SN-GANSs) is capable of generating images of
better or equal quality relative to the previous training stabilization techniques.
The code with Chainer (Tokui et al., 2015), generated images and pretrained mod-
els are available at https://github.com/pfnet-research/sngan_

projection. :
[Miyato et al. 2017] 18



Spectral Normalization GAN (SNGAN)

(original) GAN formulation: minmax V (G, D)
G D

where V(G, D) = Ewwqdata [IOg D(m)] Py Ew’NPG [lOg(]. o D(iB,))]

WGAN formulation: min | arg max V(G, D)
G | IIflluip<K

where || fllLip<K = ||f(z) — f(@)|/||lz —2'|| < K

 |dea: Use spectral normalization to enforce the Lipschitz constraint
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Spectral Normalization GAN (SNGAN)

 Spectral Normalization strategy: enforce the Lipschitz contraint by
constraining the spectral norm of each layer of the neural network.

AR

spectral norm of the matrix A: o(A) := ’fl;ba;zio IR = ”}Itfﬁaﬁ1||f4h”2
. 2 2>

e |let g be alayer of anetwork: g : h;, — Byt

for a linear layer g(h) = Wh: ||9||Lip = supy 0(Vg(h)) = supy, c(W) = o(W)

 For the network f, we assume the Lipschitz norm of the activation
function (a) equals 1 (typically ok) and use the inequality:

191 092lLip < [l91|Lip - [lg2]lLip
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Spectral Normalization GAN (SNGAN)

* The Lipschitz norm for the network is:

activation function for layer L

1flluip <l(he = WE R L) |lLip - llaclluip - |(ho—1 = WP hL_1)||Lip
L+1 L+1

[larfluip - I(Ro = W ho)|lLip = [ ] I1(Ri—2 = W'hi_1)|Lip = H a(W')
=1

« Spectral Normalize the weights at each layer: Wan (W) 1= W/o (W)

where O'(W) is efficiently approximated using the power method.

(as described on the next slide) -—/
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Spectral Normalization GAN (SNGAN)

Algorithm 1 SGD with spectral normalization

e Initialize u; € R% for | = 1,..., L with a random vector (sampled from isotropic distri-
bution).
e For each update and each layer [; -

1. Apply power iteration method to a unnormalized weight W': (single iteration seems to work)

o (WH /(W) a2 (20)
a; — W' /|[W'a| (21)

» (warm start «; and v; from previous iteration)

2. Calculate Wgyn with the spectral norm:
Wen(WH = W /o(W?), where o(W') = aff W'e, (22)
3. Update W' with SGD on mini-batch dataset Dj; with a learning rate o
W« W — aVy  b(Wiy(WY), Das) (23)
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Spectral Normalization GAN (SNGAN)

Vb(G, D) = qud]ia(w) imin (0, -1+ D(x))] + ZNE(Z) [min (O, —1-D (G(z)))}

A

Ve(G,D)=- E_[D(G(2)],

z~p(z)

Geometric GAN

Jae Hyun Lim', Jong Chul Ye??
1 ETRI, South Korea
jaehyun.lim@etri.re.kr
2 Dept. of Bio and Brain engineering, KAIST, South Korea
3 Dept. of Mathematical Sciences, KAIST, South Korea
jong.ye@kaist.ac.kr

[Miyato et al. 2017]
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Spectral Normalization GAN (SNGAN)

RGB image = € R128%128x3

z € R128 ~ N(0,1)

dense, 4 x 4 x 1024

ResBlock up 1024

ResBlock up 512

ResBlock up 256

ResBlock down 64

RGB image x € R128%128%3 ResBlock down 128
ResBlock down 64 ResBlock down 256
ResBlock down 128 Concat(Embed(y), h)
ResBlock down 256 ResBlock down 512
ResBlock down 512 ResBlock down 1024

ResBlock up 128

ResBlock down 1024

ResBlock 1024

ResBlock up 64

ResBlock 1024

RelLU

BN, ReLLU, 3x3 conv 3

Tanh

RelLLU

Global sum pooling

dense — 1

(a) Generator

(b) Discriminator for uncondi-
tional GANSs.

Global sum pooling

dense — 1

(¢) Discriminator for conditional
GANSs. For computational ease,
we embedded the integer label
y € {0,...,1000} into 128
dimension before concatenating
the vector to the output of the in-
termediate layer.

[Miyato et al. 2017]
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Spectral Normalization GAN (SNGAN)

Welsh springer spaniel

[Miyato et al. 2017]
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SNGAN: Summary

* High quality class conditional samples at Imagenet scale
* First GAN to work on full Imagenet (million image dataset)

« Computational benefits over WGAN-GP (single power iteration and no
need of a backward pass)
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SNGAN: Computational Benefits

| | 20 -
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Seconds for 100 generator updates

(a) CIFAR-10 (image size:32 X (b) STL-10 (images size:48 X
32 %3) 48 X 3)
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Projection Discriminator

a) cGANs b) cGANs
irg )ut concr:lt hif:lcien conc’at (c) AC-GANSs (d) (ours) Projection
. P ) (Odena et al., 2017)
(Mirza & Osindero, 2014) (Reed et al., 2016)
Adversarial Adversarial Adversarial Classificaition Adversarial
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Self Attention GAN (SAGAN)

Self-Attention Generative Adversarial Networks

Han Zhang™ Ian Goodfellow Dimitris Metaxas Augustus Odena
Rutgers University Google Brain Rutgers University Google Brain
Abstract

In this paper, we propose the Self-Attention Generative Adversarial Network
(SAGAN) which allows attention-driven, long-range dependency modeling for
image generation tasks. Traditional convolutional GANs generate high-resolution
details as a function of only spatially local points in lower-resolution feature
maps. In SAGAN, details can be generated using cues from all feature locations.
Moreover, the discriminator can check that highly detailed features in distant
portions of the image are consistent with each other. Furthermore, recent work
has shown that generator conditioning affects GAN performance. Leveraging
this insight, we apply spectral normalization to the GAN generator and find that
this improves training dynamics. The proposed SAGAN achieves the state-of-
the-art results, boosting the best published Inception score from 36.8 to 52.52
and reducing Fréchet Inception distance from 27.62 to 18.65 on the challenging
ImageNet dataset. Visualization of the attention layers shows that the generator
leverages neighborhoods that correspond to object shapes rather than local regions
of fixed shape.
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Self Attention GAN (SAGAN)

convolution
feature maps (x)

——

L

—

m—

1

Ixlconv

1

IxIconv

1

Ix1conv

f(x)

g(x)

h(x)

transpose

v softmax
L e o

attention
map

self-attention

feature maps (o)

[Zhang et al. 2018]
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Self Attention GAN (SAGAN)

flx) =W;sz, g(x) = Wy

8., = exp(sij)
7Y exp(sig)
sij = f(®:)" g(x;)
Yi = Y0; + Tj

[Zhang et al. 2018]



Self Attention GAN (SAGAN)

* Applies spectral normalization to both the generator and discriminator
welght matrices

— This Is counter-intuitive to popular belief that you only have to mathematically
condition the discriminator

» Uses self-attention in both the generator and discriminator

* Hinge Loss

* First GAN to produce “good” unconditional full ImageNet samples

» Conditional models
— Conditional BN for G, Projection Discriminator for D
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Self Attention GAN (SAGAN)

[Zhang et al. 2018]
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Self Attention GAN (SAGAN)

goldfish

indigo
bunting

rapeseed

[Zhang et al. 2018]
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Self Attention GAN (SAGAN)

Table 2: Comparison of the proposed SAGAN with state-of-the-art GAN models [19, 17] for class
conditional image generation on ImageNet. FID of SNGAN-projection is calculated from officially

released weights.

Model Inception Score | FID
AC-GAN [31] 28.5 /
SNGAN-projection [17] 36.8 27.62"
SAGAN 52.52 18.65

[Zhang et al. 2018]
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DC GAN (Radford et al, 2016)
Improved Training of GANs (Salimans et al’16), Projected GAN (Sauer et al'21)
WGAN, WGAN-GP, Progressive GAN, SN-GAN, SAGAN
BigGAN, BigGAN-Deep, StyleGAN, StyleGAN2, StyleGANS, StyleGAN-XL,
Self-Distilled StyleGAN, VIB-GAN, VO-GAN

Conditional GANs, Cycle-Consistent Adversarial Networks
GANs and Representations
Applications
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BigGAN

Re(W) = B|W W —I||&

Re(W) = B|W ' W © (1 - )|z,

Orthogonal Regularization



BigGAN and BigGAN-deep
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BigGAN-deep
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BigGAN

Table 6: BigGAN architecture for 512 x 512 images. Relative to the 256 x 256 architecture, we
add an additional ResBlock at the 512 X 512 resolution. Memory constraints force us to move the
non-local block in both networks back to 64 x 64 resolution as in the 128 x 128 pixel setting.

z € R'%° ~ N(0, 1)
Embed(y) € R'?®

RGB image x € R®!12*512%3

Linear (20 + 128) — 4 x 4 x 16¢h

ResBlock down ch — ch

ResBlock up 16ch — 16¢ch

ResBlock down ch — 2ch

ResBlock up 16ch — 8ch

ResBlock down 2ch — 4ch

ResBlock up 8ch — 8ch

Non-Local Block (64 x 64)

ResBlock up 8h — 4ch

ResBlock down 4ch — 8ch

Non-Local Block (64 x 64)

ResBlock down 8ch — 8ch

ResBlock up 4ch — 2ch

ResBlock down 8ch — 16¢h

ResBlock up 2ch — ch

ResBlock down 16¢ch — 16¢ch

ResBlock up ch — ch

ResBlock 16ch — 16¢h

BN, RelLU, 3 x 3Convch — 3

ReLU, Global sum pooling

Tanh

Embed(y)-h + (linear — 1)

(a) Generator

(b) Discriminator
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BigGAN

* Increase your batch size (as much as you can)
» Use Cross-Replica (Sync) Batch Norm

* [ncrease your model size

* \Wider helps as much as deeper

* Fuse class information at all levels

* Hinge Loss
* Orthonormal regularization & Truncation Trick
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BigGAN

Batch | Ch. | Param (M) | Shared | Skip-z | Ortho. Itr x10° FID IS

256 64 81.5 SA-GAN Baseline 1000 18.65 92.02
32 64 81.5 X X X 1000 15.30 58.77(£1.18)
1024 | 64 81.5 X X X 1000 14.88 63.03(£1.42)
2048 64 81.5 X X X (o2 12.39 76.85(+3.83)
2048 | 96 173.5 X X X 295(418) | 9.54(£0.62) | 92.98(44.27)
2048 | 96 160.6 v X X 185(4+11) | 9.18(+0.13) | 94.94(41.32)
2048 | 96 158.3 v v X 152(17) 8.73(+0.45) | 98.76(42.84)
2048 | 96 158.3 v v v 165(+13) | 8.51(£0.32) | 99.31(£2.10)
2048 64 713 v v v 371(£7) | 10.48(%£0.10) | 86.90(+£0.61)

156



BigGAN

Model Res. FID/IS (min FID) / IS FID / (valid IS) FID / (max IS)
SN-GAN 128 27.62/36.80 N/A N/A N/A
SA-GAN 128 18.65/52.52 N/A N/A N/A
BigGAN 128 8.7+ .6/988+3 | 7.7+.2/126.561+0 | 9.6+ .4/166.3+1 | 2561+ 2/2061 2
BigGAN 256 | BT 1/1423+2 | 7.7+ 1/1780+5 | 953+.3/2831+1 | 26E5/291 +4
BigGAN 512 8.1/144.2 7.6/170.3 11.8/241.4 27.0/275

BigGAN-deep | 128 | 5.7+.3/1245+2 | 6.3+ .3/148.1+4 | 74+ .6/166.5+1 | 25 £2/253 £ 11
BigGAN-deep | 256 | 6.9+.2/171.4+2 | 7.0+.1/202.6+2 | 8.1+.1/232.5+2 | 27+8/317+6
BigGAN-deep | 512 7.5/152.8 7.7/181.4 11.5/241.5 39.7/298
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BigGAN - Truncation Trick

Remarkably, our best results come from using a different latent distribution for sampling than was
used in training. Taking a model trained with z ~ N(0, I) and sampling z from a truncated nor-
mal (where values which fall outside a range are resampled to fall inside that range) immediately
provides a boost to IS and FID. We call this the Truncation Trick: truncating a z vector by re-
sampling the values with magnitude above a chosen threshold leads to improvement in individual
sample quality at the cost of reduction in overall sample variety. Figure 2(a) demonstrates this: as
the threshold is reduced, and elements of z are truncated towards zero (the mode of the latent dis-
tribution), individual samples approach the mode of G’s output distribution. Related observations
about this trade-off were made in (Marchesi, 2016; Pieters & Wiering, 2014).
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BigGAN - Sampling

The default behavior with batch normalized classifier networks is to use a running average of the
activation moments at test time. Previous works (Radford et al., 2016) have instead used batch
statistics when sampling images. While this i1s not technically an invalid way to sample, it means
that results are dependent on the test batch size (and how many devices it is split across), and further
complicates reproducibility.

We find that this detail is extremely important, with changes in test batch size producing drastic
changes in performance. This is further exacerbated when one uses exponential moving averages
of G’s weights for sampling, as the BatchNorm running averages are computed with non-averaged
weights and are poor estimates of the activation statistics for the averaged weights.

To counteract both these issues, we employ “standing statistics,” where we compute activation statis-
tics at sampling time by running the G through multiple forward passes (typically 100) each with
different batches of random noise, and storing means and variances aggregated across all forward
passes. Analogous to using running statistics, this results in G’s outputs becoming invariant to batch
size and the number of devices, even when producing a single sample.

159



BigGAN

(a) 128x 128 (b) 256 %256
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BigGAN
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