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Good news, everyone!
• Project proposals are due April 8!
• The projects should be done 

in groups of 2 to 3 students.
• The course project may involve

– Application of deep generative models 
on a novel task/dataset.

– Design of a novel method and its 
experimental analysis, 

– An extension to a recent study of non-
trivial complexity and its experimental 
analysis.

– Reproduction of a work 
published in recent years

If you chose this particular 
path, participation to ML 
Reproducibility Challenge is 
strongly encouraged!
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Good news, everyone!
• Project proposals are due April 11!
• The projects should be done 

in groups of 2 to 3 students.
• The course project may involve

– Application of deep generative models 
on a novel task/dataset.

– Design of a novel method and its 
experimental analysis, 

– An extension to a recent study of non-
trivial complexity and its experimental 
analysis.

– Reproduction of a work 
published in recent years

If you chose this particular 
path, participation to ML 
Reproducibility Challenge is 
strongly encouraged!

33



Lecture overview
• Motivation and Definition of Implicit Models
• Original GAN (Goodfellow et al, 2014)
• Evaluation: Parzen, Inception, Frechet
• Theory of GANs
• GAN Progression
– DC GAN (Radford et al, 2016)
– Improved Training of GANs (Salimans et al’16), Projected GAN (Sauer et al’21) 

WGAN, WGAN-GP, Progressive GAN, SN-GAN, SAGAN
– BigGAN, BigGAN-Deep, StyleGAN, StyleGAN2, StyleGAN3, StyleGAN-XL, 

Self-Distilled StyleGAN, VIB-GAN, VQ-GAN
• Conditional GANs, Cycle-Consistent Adversarial Networks
• GANs and Representations
• Applications 4



StyleGAN
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StyleGAN - Adaptive Instance Norm

6

AdaIN (xi,y) = ys,i
xi � µ (xi)

� (xi)
+ yb,i

<latexit sha1_base64="JKuvZ2AX2uAwKKrt/pyodtw8uwA="></latexit>



StyleGAN - Style Transfer
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StyleGAN - Effect of adding noise
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StyleGAN - Effect of noise
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https://www.whichfaceisreal.com/learn.html

https://www.whichfaceisreal.com/learn.html


StyleGAN Water Droplet-like Artifacts
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StyleGAN2
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Fig. 2. We redesign the architecture of the StyleGAN synthesis network. (a) The original StyleGAN, where A denotes a learned affine transform from W that produces a style and B 
is a noise broadcast operation. (b) The same diagram with full detail. Here we have broken the AdaIN to explicit normalization followed by modulation, both operating on the mean 
and standard deviation per feature map. We have also annotated the learned weights (w), biases (b), and constant input (c), and redrawn the gray boxes so that one style is active per 
box. The activation function (leaky ReLU) is always applied right after adding the bias. (c) We make several changes to the original architecture that are justified in the main text. 
We remove some redundant operations at the beginning, move the addition of b and B to be outside active area of a style, and adjust only the standard deviation per feature map. (d) 
The revised architecture enables us to replace instance normalization with a “demodulation” operation, which we apply to the weights associated with each conv layer. 



StyleGAN2 Phase Artifacts
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StyleGAN2 Phase Artifacts
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StyleGAN-v2

16



StyleGAN3 to resolve “texture sticking”

17



StyleGAN3

18

• Internal activations encode phase information
• Fully equivariant to translation and rotation even at subpixel scale

Implementation requires 
custom CUDA kernel



Lecture overview
• Motivation and Definition of Implicit Models
• Original GAN (Goodfellow et al, 2014)
• Evaluation: Parzen, Inception, Frechet
• Theory of GANs
• GAN Progression
– DC GAN (Radford et al, 2016)
– Improved Training of GANs (Salimans et al’16), Projected GAN (Sauer et al’21) 

WGAN, WGAN-GP, Progressive GAN, SN-GAN, SAGAN
– BigGAN, BigGAN-Deep, StyleGAN, StyleGAN2, StyleGAN3, StyleGAN-XL, 
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• Conditional GANs, Cycle-Consistent Adversarial Networks
• GANs and Representations
• Applications 19



StyleGAN-XL
• StyleGAN was designed for controllability 

• Its performance degrades on unstructured datasets such as ImageNet. 

• StyleGAN-XL shows that it is possible with a carefully designed 
architecture and traning schemes
– StyleGAN3 framework 
– Projected GAN objective
– Progressive growing
– 1024⨉1024 images

20



StyleGAN-XL
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StyleGAN-XL
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Self-Distilled StyleGAN

• How to train StyleGAN on noisy Internet images?

• GAN inversion quality to automatically filter out outlier images (LPIPS)

• Multi-modal based truncation trick to cluster 
23



Self-Distilled StyleGAN – Self-filtering
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Self-Distilled StyleGAN – Multi-modal Truncation

25

ci: the “nearest” cluster center
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Information Bottleneck
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Variational Information Bottleneck [Alemi et al., 2016]
Variational Information Bottleneck GAN [Peng et al, 2019]

Data

Generator

Encoder Discriminator



Information Bottleneck
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Variational Information Bottleneck [Alemi et al., 2016]
Variational Information Bottleneck GAN [Peng et al, 2019]
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Generator

Encoder Discriminator



Information Bottleneck
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Variational Information Bottleneck [Alemi et al., 2016]
Variational Information Bottleneck GAN [Peng et al, 2019]

Data

Generator

Encoder Discriminator



Mutual Information

• Mutual information between two random variables X, Y: I(X; Y) is 
defined as 

30



Mutual Information

• Mutual Information is a general way to measure dependency between 
two random variables
– Unlike the more commonly used covariance

31



Estimating Mutual Information

• We can try to estimate the mutual information between z and x in a 
latent variable model

• Has intractable posterior p(z|x) but we can estimate by introducing a 
variational distribution q(z|x)

32



Information Bottleneck

33

Variational Information Bottleneck (VIB)
[Alemi et al., 2016]



Variational Information Bottleneck
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Real Fake



Variational Information Bottleneck
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Real Fake

Instance Noise
[Salimans et al. 2016; Sønderby et al. 

2016; Arjovsky and Bottou 2017]



Variational Information Bottleneck
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Real Fake

Instance Noise
[Salimans et al. 2016; Sønderby et al. 

2016; Arjovsky and Bottou 2017]



Variational Information Bottleneck
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Real Fake

Variational Information Bottleneck
[Alemi et al., 2016]



Variational Information Bottleneck
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Real Fake

Variational Information Bottleneck
[Alemi et al., 2016]



Variational Information Bottleneck
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Real Fake

Variational Information Bottleneck
[Alemi et al., 2016]



Variational Information Bottleneck
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Real Fake

Variational Information Bottleneck
[Alemi et al., 2016]



Variational Information Bottleneck GAN

41

J(D,E) = minD,E Ex⇠p⇤(x)

⇥
Ez⇠E(z|x)[� log(D(z))]

⇤
+ Ex⇠G(x)

⇥
Ez⇠E(z|x)[� log(1�D(z))]

⇤

s.t. Ex⇠p̃(x)[KL[E(z | x)kr(z)]]  Ic

<latexit sha1_base64="UkLfY5Izzx7psgpeEhplfTAoOdE="></latexit>
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VQGAN

• A convolutional VQGAN to learn a codebook of context-rich visual parts

• An autoregressive Transformer to generate novel samples

43



S-FLCKR Samples from Semantic Layouts
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ImageNet Samples
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Quantitative Evaluation
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Lecture overview
• Motivation and Definition of Implicit Models

• Original GAN (Goodfellow et al, 2014)

• Evaluation: Parzen, Inception, Frechet

• Theory of GANs

• GAN Progression
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• GANs and Representations

• Applications
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Conditional GANs / pix2pix
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Generator



Conditional GANs / pix2pix

49

real or fake 
pair?

DiscriminatorGenerator



Conditional GANs / pix2pix
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real or fake 
pair?

DiscriminatorGenerator

G tries to synthesize fake images that fool D

D tries to identify the fakes



Conditional GANs / pix2pix

51



Conditional GANs / pix2pix
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G’s perspective: D is a loss function. 

Rather than being hand-designed, it is learned.



Conditional GANs / pix2pix
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real or fake?



Conditional GANs / pix2pix
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(“Aquarius”)



Conditional GANs / pix2pix
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real or fake pair?



Conditional GANs / pix2pix
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real or fake pair?



Conditional GANs / pix2pix
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fake pair



Conditional GANs / pix2pix

58

real pair



Conditional GANs / pix2pix

59

real pair



Conditional GANs / pix2pix
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real or fake pair ?



Conditional GANs / pix2pix
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Conditional GANs / pix2pix
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1/0

N
 p

ix
el

s

N pixels

Rather than penalizing if output image 
looks fake, penalize if each overlapping 
patch in output looks fake 

[Li & Wand 2016]
[Shrivastava et al. 2017]

[Isola et al. 2017]

Shrinking the capacity: 
Patch Discriminator



Conditional GANs / pix2pix

63

Input 1x1 Discriminator



Conditional GANs / pix2pix
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Input 16x16 Discriminator



Conditional GANs / pix2pix
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Input 70x70 Discriminator



Conditional GANs / pix2pix
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Input 16x16 Discriminator



Conditional GANs / pix2pix
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1/0

N
 p

ix
el

s

N pixels

Rather than penalizing if output image 
looks fake, penalize if each overlapping 
patch in output looks fake 

[Li & Wand 2016]
[Shrivastava et al. 2017]

[Isola et al. 2017]

• Faster, fewer parameters
• More supervised observations
• Applies to arbitrarily large images

Shrinking the capacity: 
Patch Discriminator



Conditional GANs / pix2pix
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Input Output Input Output Input Output

Data from [Russakovsky et al. 2015]

Conditional GANs / pix2pix     BW → Color



Conditional GANs / pix2pix #edges2cats [Chris Hesse]



Conditional GANs / pix2pix
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Ivy Tasi @ivymyt

Vitaly Vidmirov @vvid



Conditional GANs / pix2pix
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Conditional GANs / pix2pix
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Lecture overview
• Motivation and Definition of Implicit Models

• Original GAN (Goodfellow et al, 2014)

• Evaluation: Parzen, Inception, Frechet

• Theory of GANs

• GAN Progression

• Conditional GANs, Cycle-Consistent Adversarial Networks

• GANs and Representations

• Applications
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Unpaired dataPaired data

Cycle-Consistent Adversarial Networks



real or fake pair?

Cycle-Consistent Adversarial Networks



real or fake pair ?

No input-output pairs!

Cycle-Consistent Adversarial Networks



real or fake?

• Usually loss functions check if output matches a target instance

• GAN loss checks if output is part of an admissible set

Cycle-Consistent Adversarial Networks



Gaussian Target distribution

Cycle-Consistent Adversarial Networks



Horses Zebras

Cycle-Consistent Adversarial Networks



Real!

Cycle-Consistent Adversarial Networks



Real too!

Nothing to force output to correspond to input

Cycle-Consistent Adversarial Networks



[Zhu et al. 2017], [Yi et al. 2017], [Kim et al. 2017]

Cycle-Consistent Adversarial Networks



Cycle-Consistent Adversarial Networks



Cycle Consistency Loss



Cycle Consistency Loss



Cycle-Consistent Adversarial Networks



Cycle-Consistent Adversarial Networks



Cycle-Consistent Adversarial Networks

Photograph
@ Alexei Efros

Monet Van Gogh

Cezanne Ukiyo-e



Cezanne Ukiyo-eMonetInput Van Gogh



Cycle-Consistent Adversarial Networks



Cycle-Consistent Adversarial Networks



Cycle-Consistent Adversarial Networks



Cycle-Consistent Adversarial Networks



Lecture overview
• Motivation and Definition of Implicit Models

• Original GAN (Goodfellow et al, 2014)

• Evaluation: Parzen, Inception, Frechet

• Theory of GANs

• GAN Progression

• Conditional GANs, Cycle-Consistent Adversarial Networks

• GANs and Representations

• Applications
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DCGAN Revisited: Vector Arithmetic

97
[Radford et al 2016]

smiling 
woman

neutral 
woman

neutral 
man

smiling man



GANs for unsupervised feature learning

• InfoGAN (Information Maximizing GAN)

• BiGAN (Bidirectional Generative Adversarial Networks)
ALI (Adversarially Learned Inference)
– BigBiGAN (Big Bidirectional Generative Adversarial Networks)

98



InfoGAN
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InfoGAN
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Data: x Latent code: c

Simple factors interact to create
complex observations.



InfoGAN

101

Which source?

c (code)z (noise)

x (data)

D

G



InfoGAN
• Simple idea: Independent factors in latent code should maximally 

explain variations in generated images

• Formally: We want to maximize the mutual information between latent 
code and generated images:

102

where



InfoGAN
• Mutual information can be maximized easily with a variational 

lower bound:

103

Simply MLE for a classifier/regressor



InfoGAN

104

D

G

Which source?

GAN

z (noise)

x (data)

Which source?

c (code)z (noise)

x (data) G

What code?

InfoGAN

D Q



InfoGAN
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Which source?

c (code)z (noise)

x (data)

D

G

Which source?

G Cheap to compute!

Shared ConvNet

What code?

InfoGANGAN

z (noise)

x (data)



InfoGAN
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Rotation

vary c1



InfoGAN
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Size

vary z

vary c1’



InfoGAN

108
Emotion

vary z

vary c1



InfoGAN
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Presence/absence of glasses
vary c3

vary z



Unsupervised Category Discovery - BigGAN
• Trained with no labels!

z = concat([
(a) [N(0,I)]120,
(b) UniformCateg(1024)

])

• Each row is one value 
of the categorical (b); 
columns are Gaussian 
samples (a)

110Slide credit: Jeff Donahue



Unsupervised Category Discovery - BigGAN

111Slide credit: Jeff Donahue

• Trained with no labels!
z = concat([

(a) [N(0,I)]120,
(b) UniformCateg(1024)

])

• Each row is one value 
of the categorical (b); 
columns are Gaussian 
samples (a)



But what about inference... 
• How can we use generative models?

– GANs can generate content, but somethings you want to make inference about 
observed data.

• Can we incorporate an inference mechanism into GANs?

• Can we learn an inference mechanisms using an adversarial training 
paradigm?

112



Two papers, one model
• ALI: Vincent Dumoulin, Ishmael Belghazi, Olivier Mastropietro

ADVERSARIALLY LEARNED INFERENCE, ICLR 2017
Ben Poole, Alex Lamb, Martin Arjovsky

• BiGAN: Donahue, Krähenbühl and Darrell (2016), ADVERSARIAL 
FEATURE LEARNING, ICLR 2017

113



Adversarially Learned Inference (ALI)

• Idea: Cast the learning of both an inference model (encoder) and a generative 
model (decoder) in a GAN-like adversarial framework 
• Discriminator is trained to discriminate between joint samples (x, z) from:

– Encoder distribution q(x, z) = q(x)  q(z | x), or
– Decoder distribution p(x, z) = p(z)  p(x | z).

• Generator learns conditionals q(z | x) and p(x | z) to fool the discriminator.
114



Adversarially Learned Inference (ALI)
• In the global optimum, 

E and G are inverses; 
for all x and z we have
– x = G(E(x))
– z = E(G(z))

• In practice, this 
inversion property does 
not hold perfectly
– Reconstructions 

still often capture 
interesting 
semantics

115Slide credit: Jeff Donahue



Big Bidirectional GAN (BigBiGAN)

116Slide credit: Jeff Donahue



BigBiGAN
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BigGAN generator convnet

latent sample

generated image

Slide credit: Jeff Donahue



BigBiGAN

118

image recognition model (ResNet)

predicted latent

real image sample

Slide credit: Jeff Donahue



BigBiGAN
Discriminates 
between input 
pairs: 

Encoder pair 
(x, z' = E(x)) 

vs.

Generator pair 
(x' = G(z), z)

119

sees images x and latents z (not just images x)

unary score terms
for x & z only



BigBiGAN

120Slide credit: Jeff Donahue



BigBiGAN: Unconditional Image Generation

121Slide credit: Jeff Donahue



BigBiGAN: Unconditional Image Generation

122Slide credit: Jeff Donahue



BigBiGAN: Representation Learning

123Slide credit: Jeff Donahue



BigBiGAN: Latent Space NNs

124Slide credit: Jeff Donahue



BigBiGAN Reconstructions

125Slide credit: Jeff Donahue

reconstructions x’ = G(E(x))

(Big)BiGAN is not directly trained for reconstruction! =
Arises out of the objective: approx. reconstruction x’ ≅ G(E(x))
Optimally confuses the joint data-latent discriminator.

Reconstructions give insight into the semantics modeled.

Computing a reconstruction x’ = G(E(x)):
(1) Sample a real image x ∼ Px

(2) Encoder predicts latents z’ = E(x)
(3) Generator predicts reconstruction x’ = G(z’)

real images x



BigBiGAN Reconstructions

126Slide credit: Jeff Donahue



Lecture overview
• Motivation and Definition of Implicit Models

• Original GAN (Goodfellow et al, 2014)

• Evaluation: Parzen, Inception, Frechet

• Theory of GANs

• GAN Progression

• Conditional GANs, Cycle-Consistent Adversarial Networks

• GANs and Representations

• Applications

127



Semi-supervised Classification

128

(Salimans et al., 2016;
Dumoulin et al., 2016)

Published as a conference paper at ICLR 2017

Figure 6: Latent space interpolations on the CelebA validation set. Left and right columns corre-
spond to the original pairs x1 and x2, and the columns in between correspond to the decoding of
latent representations interpolated linearly from z1 to z2. Unlike other adversarial approaches like
DCGAN (Radford et al., 2015), ALI allows one to interpolate between actual data points.

Using ALI’s inference network as opposed to the discriminator to extract features, we achieve a
misclassification rate that is roughly 3.00 ± 0.50% lower than reported in Radford et al. (2015)
(Table 1), which suggests that ALI’s inference mechanism is beneficial to the semi-supervised
learning task.

We then investigate ALI’s performance when label information is taken into account during training.
We adapt the discriminative model proposed in Salimans et al. (2016). The discriminator takes x and
z as input and outputs a distribution over K + 1 classes, where K is the number of categories. When
label information is available for q(x, z) samples, the discriminator is expected to predict the label.
When no label information is available, the discriminator is expected to predict K + 1 for p(x, z)
samples and k 2 {1, . . . ,K} for q(x, z) samples.

Interestingly, Salimans et al. (2016) found that they required an alternative training strategy for the
generator where it tries to match first-order statistics in the discriminator’s intermediate activations
with respect to the data distribution (they refer to this as feature matching). We found that ALI did
not require feature matching to obtain comparable results. We achieve results competitive with the
state-of-the-art, as shown in Tables 1 and 2. Table 2 shows that ALI offers a modest improvement
over Salimans et al. (2016), more specifically for 1000 and 2000 labeled examples.

Table 1: SVHN test set missclassification rate

.

Model Misclassification rate

VAE (M1 + M2) (Kingma et al., 2014) 36.02

SWWAE with dropout (Zhao et al., 2015) 23.56

DCGAN + L2-SVM (Radford et al., 2015) 22.18

SDGM (Maaløe et al., 2016) 16.61

GAN (feature matching) (Salimans et al., 2016) 8.11± 1.3

ALI (ours, L2-SVM) 19.14± 0.50

ALI (ours, no feature matching) 7.42± 0.65

Table 2: CIFAR10 test set missclassification rate for semi-supervised learning using different numbers
of trained labeled examples. For ALI, error bars correspond to 3 times the standard deviation.

Number of labeled examples 1000 2000 4000 8000
Model Misclassification rate

Ladder network (Rasmus et al., 2015) 20.40

CatGAN (Springenberg, 2015) 19.58

GAN (feature matching) (Salimans et al., 2016) 21.83± 2.01 19.61± 2.09 18.63± 2.32 17.72± 1.82

ALI (ours, no feature matching) 19.98± 0.89 19.09± 0.44 17.99± 1.62 17.05± 1.49

8

SVNH



Text Generation: MaskGAN

129

(Fedus et al. 2018)



Audio Synthesis: WaveGAN

130

(Donahue et al. 2020)



Video Generation (Vondrick et al., 2016)
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Beach Golf Train Station



DVD-GAN: Efficient Video Generation

132

(Clark et al., 2019)



DVD-GAN: Efficient Video Generation

133

(Clark et al., 2019)



3DGAN: Generative Shape Modeling

134

(Wu et al., 2016)

z G(z) in 3D Voxel Space
64×64×64

512×4×4×4
256×8×8×8

128×16×16×16 64×32×32×32

Figure 1: The generator in 3D-GAN. The discriminator mostly mirrors the generator.

developed a recurrent adversarial network for image generation. While previous approaches focus on
modeling 2D images, we discuss the use of an adversarial component in modeling 3D objects.

3 Models

In this section we introduce our model for 3D object generation. We first discuss how we build
our framework, 3D Generative Adversarial Network (3D-GAN), by leveraging previous advances
on volumetric convolutional networks and generative adversarial nets. We then show how to train
a variational autoencoder [Kingma and Welling, 2014] simultaneously so that our framework can
capture a mapping from a 2D image to a 3D object.

3.1 3D Generative Adversarial Network (3D-GAN)

As proposed in Goodfellow et al. [2014], the Generative Adversarial Network (GAN) consists of
a generator and a discriminator, where the discriminator tries to classify real objects and objects
synthesized by the generator, and the generator attempts to confuse the discriminator. In our 3D
Generative Adversarial Network (3D-GAN), the generator G maps a 200-dimensional latent vector z,
randomly sampled from a probabilistic latent space, to a 64⇥ 64⇥ 64 cube, representing an object
G(z) in 3D voxel space. The discriminator D outputs a confidence value D(x) of whether a 3D
object input x is real or synthetic.

Following Goodfellow et al. [2014], we use binary cross entropy as the classification loss, and present
our overall adversarial loss function as

L3D-GAN = logD(x) + log(1�D(G(z))), (1)

where x is a real object in a 64⇥ 64⇥ 64 space, and z is a randomly sampled noise vector from a
distribution p(z). In this work, each dimension of z is an i.i.d. uniform distribution over [0, 1].
Network structure Inspired by Radford et al. [2016], we design an all-convolutional neural
network to generate 3D objects. As shown in Figure 1, the generator consists of five volumetric fully
convolutional layers of kernel sizes 4 ⇥ 4 ⇥ 4 and strides 2, with batch normalization and ReLU
layers added in between and a Sigmoid layer at the end. The discriminator basically mirrors the
generator, except that it uses Leaky ReLU [Maas et al., 2013] instead of ReLU layers. There are no
pooling or linear layers in our network. More details can be found in the supplementary material.
Training details A straightforward training procedure is to update both the generator and the
discriminator in every batch. However, the discriminator usually learns much faster than the generator,
possibly because generating objects in a 3D voxel space is more difficult than differentiating between
real and synthetic objects [Goodfellow et al., 2014, Radford et al., 2016]. It then becomes hard
for the generator to extract signals for improvement from a discriminator that is way ahead, as all
examples it generated would be correctly identified as synthetic with high confidence. Therefore,
to keep the training of both networks in pace, we employ an adaptive training strategy: for each
batch, the discriminator only gets updated if its accuracy in the last batch is not higher than 80%. We
observe this helps to stabilize the training and to produce better results. We set the learning rate of
G to 0.0025, D to 10�5, and use a batch size of 100. We use ADAM [Kingma and Ba, 2015] for
optimization, with � = 0.5.

3.2 3D-VAE-GAN

We have discussed how to generate 3D objects by sampling a latent vector z and mapping it to the
object space. In practice, it would also be helpful to infer these latent vectors from observations. For
example, if there exists a mapping from a 2D image to the latent representation, we can then recover
the 3D object corresponding to that 2D image.

3



HoloGAN: Learning 3D Representations from 
Images

135

(Nguyen-Phuoc et al., 2020)
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(Nguyen-Phuoc et al., 2020)
HoloGAN: Learning 3D Representations from 
Images



Motion Transfer: Everybody Dance Now
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Vid2Vid: Video to Video Synthesis
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StackGAN: Text-to-Image Synthesis

139

(Zhang et al.’16)

Failure Cases

The main reason for failure cases is that Stage-I GAN fails to generate plausible rough shapes or colors of the objects.

CUB failure cases:

Oxford-102 failure cases:

Stage-I 
images 

Stage-II 
images 

Text 
description 

The flower 
have large 
petals that are 
pink with 
yellow on some 
of the petals 

A flower that 
has white petals 
with some 
tones of yellow 
and green 
filaments 

This flower 
is yellow 
and green in 
color, with 
petals that 
are ruffled 

This flower is 
pink and yellow 
in color, with 
petals that are 
oddly shaped 

The petals of 
this flower are 
white with a 
large stigma 

A unique yellow 
flower with no 
visible pistils 
protruding from 
the center 

This is a light 
colored flower 
with many 
different petals 
on a green stem 
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The main reason for failure cases is that Stage-I GAN fails to generate plausible rough shapes or colors of the objects.
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bicubic SRResNet SRGAN original
(21.59dB/0.6423) (23.53dB/0.7832) (21.15dB/0.6868)

Figure 2: From left to right: bicubic interpolation, deep residual network optimized for MSE, deep residual generative
adversarial network optimized for a loss more sensitive to human perception, original HR image. Corresponding PSNR and
SSIM are shown in brackets. [4⇥ upscaling]

perceptual difference between the super-resolved and orig-
inal image means that the recovered image is not photo-
realistic as defined by Ferwerda [16].

In this work we propose a super-resolution generative
adversarial network (SRGAN) for which we employ a
deep residual network (ResNet) with skip-connection and
diverge from MSE as the sole optimization target. Different
from previous works, we define a novel perceptual loss us-
ing high-level feature maps of the VGG network [49, 33, 5]
combined with a discriminator that encourages solutions
perceptually hard to distinguish from the HR reference
images. An example photo-realistic image that was super-
resolved with a 4⇥ upscaling factor is shown in Figure 1.

1.1. Related work

1.1.1 Image super-resolution

Recent overview articles on image SR include Nasrollahi
and Moeslund [43] or Yang et al. [61]. Here we will focus
on single image super-resolution (SISR) and will not further
discuss approaches that recover HR images from multiple
images [4, 15].

Prediction-based methods were among the first methods
to tackle SISR. While these filtering approaches, e.g. linear,
bicubic or Lanczos [14] filtering, can be very fast, they
oversimplify the SISR problem and usually yield solutions
with overly smooth textures. Methods that put particularly
focus on edge-preservation have been proposed [1, 39].

More powerful approaches aim to establish a complex
mapping between low- and high-resolution image informa-
tion and usually rely on training data. Many methods that
are based on example-pairs rely on LR training patches for

which the corresponding HR counterparts are known. Early
work was presented by Freeman et al. [18, 17]. Related ap-
proaches to the SR problem originate in compressed sensing
[62, 12, 69]. In Glasner et al. [21] the authors exploit patch
redundancies across scales within the image to drive the SR.
This paradigm of self-similarity is also employed in Huang
et al. [31], where self dictionaries are extended by further
allowing for small transformations and shape variations. Gu
et al. [25] proposed a convolutional sparse coding approach
that improves consistency by processing the whole image
rather than overlapping patches.

To reconstruct realistic texture detail while avoiding
edge artifacts, Tai et al. [52] combine an edge-directed SR
algorithm based on a gradient profile prior [50] with the
benefits of learning-based detail synthesis. Zhang et al. [70]
propose a multi-scale dictionary to capture redundancies of
similar image patches at different scales. To super-resolve
landmark images, Yue et al. [67] retrieve correlating HR
images with similar content from the web and propose a
structure-aware matching criterion for alignment.

Neighborhood embedding approaches upsample a LR
image patch by finding similar LR training patches in a low
dimensional manifold and combining their corresponding
HR patches for reconstruction [54, 55]. In Kim and Kwon
[35] the authors emphasize the tendency of neighborhood
approaches to overfit and formulate a more general map of
example pairs using kernel ridge regression. The regression
problem can also be solved with Gaussian process regres-
sion [27], trees [46] or Random Forests [47]. In Dai et al.
[6] a multitude of patch-specific regressors is learned and
the most appropriate regressors selected during testing.

Recently convolutional neural network (CNN) based SR

bicubic SRResNet SRGAN original
(21.59dB/0.6423) (23.53dB/0.7832) (21.15dB/0.6868)

Figure 2: From left to right: bicubic interpolation, deep residual network optimized for MSE, deep residual generative
adversarial network optimized for a loss more sensitive to human perception, original HR image. Corresponding PSNR and
SSIM are shown in brackets. [4⇥ upscaling]

perceptual difference between the super-resolved and orig-
inal image means that the recovered image is not photo-
realistic as defined by Ferwerda [16].

In this work we propose a super-resolution generative
adversarial network (SRGAN) for which we employ a
deep residual network (ResNet) with skip-connection and
diverge from MSE as the sole optimization target. Different
from previous works, we define a novel perceptual loss us-
ing high-level feature maps of the VGG network [49, 33, 5]
combined with a discriminator that encourages solutions
perceptually hard to distinguish from the HR reference
images. An example photo-realistic image that was super-
resolved with a 4⇥ upscaling factor is shown in Figure 1.

1.1. Related work

1.1.1 Image super-resolution

Recent overview articles on image SR include Nasrollahi
and Moeslund [43] or Yang et al. [61]. Here we will focus
on single image super-resolution (SISR) and will not further
discuss approaches that recover HR images from multiple
images [4, 15].

Prediction-based methods were among the first methods
to tackle SISR. While these filtering approaches, e.g. linear,
bicubic or Lanczos [14] filtering, can be very fast, they
oversimplify the SISR problem and usually yield solutions
with overly smooth textures. Methods that put particularly
focus on edge-preservation have been proposed [1, 39].

More powerful approaches aim to establish a complex
mapping between low- and high-resolution image informa-
tion and usually rely on training data. Many methods that
are based on example-pairs rely on LR training patches for

which the corresponding HR counterparts are known. Early
work was presented by Freeman et al. [18, 17]. Related ap-
proaches to the SR problem originate in compressed sensing
[62, 12, 69]. In Glasner et al. [21] the authors exploit patch
redundancies across scales within the image to drive the SR.
This paradigm of self-similarity is also employed in Huang
et al. [31], where self dictionaries are extended by further
allowing for small transformations and shape variations. Gu
et al. [25] proposed a convolutional sparse coding approach
that improves consistency by processing the whole image
rather than overlapping patches.

To reconstruct realistic texture detail while avoiding
edge artifacts, Tai et al. [52] combine an edge-directed SR
algorithm based on a gradient profile prior [50] with the
benefits of learning-based detail synthesis. Zhang et al. [70]
propose a multi-scale dictionary to capture redundancies of
similar image patches at different scales. To super-resolve
landmark images, Yue et al. [67] retrieve correlating HR
images with similar content from the web and propose a
structure-aware matching criterion for alignment.

Neighborhood embedding approaches upsample a LR
image patch by finding similar LR training patches in a low
dimensional manifold and combining their corresponding
HR patches for reconstruction [54, 55]. In Kim and Kwon
[35] the authors emphasize the tendency of neighborhood
approaches to overfit and formulate a more general map of
example pairs using kernel ridge regression. The regression
problem can also be solved with Gaussian process regres-
sion [27], trees [46] or Random Forests [47]. In Dai et al.
[6] a multitude of patch-specific regressors is learned and
the most appropriate regressors selected during testing.

Recently convolutional neural network (CNN) based SR
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Figure 2. An overview of the model architecture. On the left, we depict the overall model architecture following the style in [34]. On the
right, we expand the details of the generator and the discriminator components. The generator G generates an image conditioned on a
synthetic image xs and a noise vector z. The discriminator D discriminates between real and fake images. The task–specific classifier T
assigns task–specific labels y to an image. A convolution with stride 1 and 64 channels is indicated as n64s1 in the image. lrelu stands for
leaky ReLU nonlinearity. BN stands for a batch normalization layer and FC for a fully connected layer. Note that we are not displaying
the specifics of T as those are different for each task and decoupled from the domain adaptation process.

and non-adapted source images. When training T only
on adapted images, it’s possible to achieve similar perfor-
mance, but doing so may require many runs with different
initializations due to the instability of the model. Indeed,
without training on source as well, the model is free to shift
class assignments (e.g. class 1 becomes 2, class 2 becomes
3 etc) while still being successful at optimizing the training
objective. We have found that training classifier T on both

source and adapted images avoids this scenario and greatly
stabilizes training (See Table 5). Finally, it’s important to
reiterate that once trained, we are free to adapt other images
from the source domain which might use a different label
space (See Table 4).

In our implementation, G is a convolutional neural net-
work with residual connections that maintains the resolu-
tion of the original image as illustrated in figure 2. Our dis-
criminator D is also a convolutional neural network. The
minimax optimization of Equation 1 is achieved by alter-
nating between two steps. During the first step, we up-
date the discriminator and task-specific parameters ✓D,✓T ,
while keeping the generator parameters ✓G fixed. During
the second step we fix ✓D,✓T and update ✓G.

3.2. Content–similarity loss
In certain cases, we have prior knowledge regarding the

low-level image adaptation process. For example, we may
expect the hues of the source and adapted images to be the
same. In our case, we render single objects on black back-

grounds and consequently we expect images adapted from
these renderings to have similar foregrounds and different
backgrounds from the equivalent source images. Render-
ers typically provide access to z-buffer masks that allow us
to differentiate between foreground and background pixels.
This prior knowledge can be formalized via the use of an ad-
ditional loss that penalizes large differences between source
and generated images for foreground pixels only. Such a
similarity loss grounds the generation process to the origi-
nal image and helps stabilize the minimax optimization, as
shown in Sect. 4.4 and Table 5. Our optimization objective
then becomes:

min
✓G,✓T

max
✓D

↵Ld(D,G) + �Lt(T,G) + �Lc(G) (4)

where ↵, �, and � are weights that control the interaction of
the losses, and Lc is the content–similarity loss.

We use a masked pairwise mean squared error, which
is a variation of the pairwise mean squared error (PMSE)
[11]. This loss penalizes differences between pairs of pix-
els rather than absolute differences between inputs and out-
puts. Our masked version calculates the PMSE between the
generated foreground and the source foreground. Formally,
given a binary mask m 2 Rk, our masked-PMSE loss is:

Lc(G) = Exs,z

h1
k
k(xs �G(xs

, z;✓G)) �mk22

� 1

k2

�
(xs �G(xs

, z;✓G))
>m

�2 i
(5)
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Abstract

Collecting well-annotated image datasets to train mod-

ern machine learning algorithms is prohibitively expensive

for many tasks. One appealing alternative is rendering syn-

thetic data where ground-truth annotations are generated

automatically. Unfortunately, models trained purely on ren-

dered images often fail to generalize to real images. To ad-

dress this shortcoming, prior work introduced unsupervised

domain adaptation algorithms that attempt to map repre-

sentations between the two domains or learn to extract fea-

tures that are domain–invariant. In this work, we present

a new approach that learns, in an unsupervised manner, a

transformation in the pixel space from one domain to the

other. Our generative adversarial network (GAN)–based

method adapts source-domain images to appear as if drawn

from the target domain. Our approach not only produces

plausible samples, but also outperforms the state-of-the-art

on a number of unsupervised domain adaptation scenarios

by large margins. Finally, we demonstrate that the adap-

tation process generalizes to object classes unseen during

training.

1. Introduction
Large and well–annotated datasets such as ImageNet [9],

COCO [29] and Pascal VOC [12] are considered crucial
to advancing computer vision research. However, creat-
ing such datasets is prohibitively expensive. One alterna-
tive is the use of synthetic data for model training. It has
been a long-standing goal in computer vision to use game
engines or renderers to produce virtually unlimited quan-
tities of labeled data. Indeed, certain areas of research,

(a) Image examples from the Linemod dataset.

(b) Examples generated by our model, trained on Linemod.

Figure 1. RGBD samples generated with our model vs real RGBD
samples from the Linemod dataset [22, 46]. In each subfigure the
top row is the RGB part of the image, and the bottom row is the
corresponding depth channel. Each column corresponds to a spe-
cific object in the dataset. See Sect. 4 for more details.

such as deep reinforcement learning for robotics tasks, ef-
fectively require that models be trained in synthetic do-
mains as training in real–world environments can be ex-
cessively expensive and time–consuming [38, 43]. Conse-
quently, there has been a renewed interest in training mod-
els in the synthetic domain and applying them in real–world
settings [8, 48, 38, 43, 25, 32, 35, 37]. Unfortunately, mod-
els naively trained on synthetic data do not typically gener-
alize to real images.

A common solution to this problem is using unsuper-
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such as deep reinforcement learning for robotics tasks, ef-
fectively require that models be trained in synthetic do-
mains as training in real–world environments can be ex-
cessively expensive and time–consuming [38, 43]. Conse-
quently, there has been a renewed interest in training mod-
els in the synthetic domain and applying them in real–world
settings [8, 48, 38, 43, 25, 32, 35, 37]. Unfortunately, mod-
els naively trained on synthetic data do not typically gener-
alize to real images.

A common solution to this problem is using unsuper-

1

ar
X

iv
:1

61
2.

05
42

4v
1 

 [
cs

.C
V

] 
 1

6 
D

ec
 2

01
6

Image examples from the Linemod dataset 
RGDB image samples 

(conditioned on a synthetic image)



Semantic Image Editing: GauGAN

143

(Park et al. 2019)



Semantic Image Editing

144

(Karacan et al. 2020)

https://hucvl.github.io/attribute_hallucination/

https://hucvl.github.io/attribute_hallucination/


Scene Generation Network (SGN)

• An architecture similar to Pix2pixHD model (Wang et al. 2018)

• Generator network: A coarse-to-fine model with 2 generator networks
• Discriminator network: A combination of three different discriminator

networks operating at an image pyramid of 3 scales
145T.-C. Wang et al. High-resolution image synthesis and semantic manipulation with conditional GANs. CVPR 2018.
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Fig. 3. Scene Generation Network (SGN). Our proposed CGAN architecture for generating synthetic outdoor scenes consistent with given layout and transient
a�ributes.

our scene generation network (SGN). We then present architectural
details of our SGN model, followed by the two strategies applied for
improving the training process. All the implementation details are
included in the Supplementary Materials.

3.2.1 Generative Adversarial Networks. Generative Adversarial
Networks (GANs) [Goodfellow et al. 2014] have been designed as a
two-player min-max game where a discriminator network D learns
to determine if an image is real or fake and a generator network G
strives to output as realistic images as possible to fool the discrimi-
nator. Within this min-max game, G and D can be trained jointly
by performing alternative updates to solve the following objective:

min
G

max
D

V (D,G) = Ex⇠pdata (x )[logD(x)] + (1)

Ex⇠pz (z)[log (1 � D(G(z)))]

where x is a natural image drawn from the true data distribution
pdata (x) and z is a random noise vector sampled from a multivariate
Gaussian distribution. In [Goodfellow et al. 2014], it is shown that
the optimal solution to this min-max game is when the distribution
pG converges to pdata .

Conditional GANs [Mirza and Osindero 2014] (CGANs) engage
additional forms of side information as generation constraints, e.g.
class labels [Mirza and Osindero 2014], image captions [Reed et al.
2016b], bounding boxes and object keypoints [Reed et al. 2016a],
and etc. Given a context vector c as side information, the generator
G(z, c), taking both the random noise and the side information, tries
to synthesize a realistic image that satis�es the condition c . The
discriminator, now having real/fake images and context vectors
as inputs, aims at not only distinguishing real and fake images
but also whether an image satis�es the paired condition c . Such
characteristics is referred to as match-aware [Reed et al. 2016b]. In
this way, we expect the generated output of CGAN x� is controlled
by the side information c . Particularly, in our model, c is composed
of semantic layouts s and transient attributes a.

3.2.2 Proposed Architecture. We follow similar multi-scale strat-
egy with Pix2pixHD [Wang et al. 2018]. Di�erent from Pix2pixHD,

our secene generator network(SGN) takes additional noise input to
provide the stochastic diversity and transient attributes in residual
blocks as condition to control generation process. In more detail,
our multi-scale generator network G = {G1,G2} consists of coarse
(G1) and �ne (G2) scale generators as illustrated in Figure 3. Both
coarseG1 and �neG2 scale generators have similar components and
architecture except that �ne scale generator G2 has an additional
tensor input from the coarse scale generatorG1. In course generator
and �ne generator, while the semantic layout categories are encoded
into 8-bit binary codes and transient attributes are represented by a
40-d vector, we concatenate semantic layout S and noise z, feed their
concatenation into convolutional layers by downsampling with 2⇥
factor to obtain semantic feature tensor as input to the residual
blocks. Then, spatially replicated attribute vectors a are concate-
nated to input tensors of each residual block to condition transient
scene attributes and �nally, deconvolutional layers upsample the
feature tensor of the last residual block to obtain �nal image gen-
eration. As for �ne scale generator G2, after convolutional layers,
semantic feature tensor is summed with feature tensor from the
last residual block of coarse generator G1 before feeding into resid-
ual blocks of �ne scale generatorG2. The multi-scale discriminator
D = {D1,D2,D3} takes in tuples of real or generated images, match-
ing or mismatching semantic layouts and transient attributes to
decide whether the images are fake or real and whether the pairings
are valid. Note that, for each scale, identical discriminator architec-
ture is employed. Formally, we can de�ne multi-scale discriminator
for k = 1, 2, 3 scales as:

Dk (xk ,ak , sk ) =
(
1,xk 2 Pdata and xk ,ak , sk correctly match,
0, otherwise.

, Vol. 1, No. 1, Article . Publication date: April 2019.

Generator Network Discriminator Network

Image resolution:
256 × 256

Image resolution:
512 × 512

• The semantic layout categories are 
encoded into 8-bit binary codes 

• The transient attributes are 
represented by a 40-d vector.



Training Objective of SGNs

• Relative Negative Mining (RNM)
– real image, relevant attributes and layout

vs.
fake image, relevant attributes and layout
real image, mismatching layout (chosen from hard negatives) 
or mismatching attributes

• Layout-Invariant Perceptual Loss
–
– : CNN encoder for the scene parser network (Zhou et al., 2018)

146B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, A. Torralba. Scene Parsing through ADE20K Dataset. CVPR 2017.

LSGN = min
G

0

@

0

@ max
D={D1,D2,D3}

X

k=1,2,3

LGAN (G,Dk)
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Style Transfer Network
• The FPST method of (Li et al., 2018), 

which is composed of two steps with 
close-form solutions:

1. Stylization step 
2. Smoothing step

• The stylization step is based on the 
whitening and coloring transform to 
stylize images via feature projections
– Style information encoded by the 

covariance matrix of VGG features

• The smoothing step ensures spatially 
consistent stylizations via a manifold 
ranking operator.

147Y. Li, M.-Y. Liu, X. Li, M.-H. Yang, J. Kautz. A Closed-form Solution to Photorealistic Image Stylization. ECCV 2018.
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Iout = F2 (F1(IC , IS), IC)
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ALS18K Dataset
• A dataset of 17772 outdoor images with layout and

transient attribute labels, formed by combining and
annotated images from
– Transient Attributes dataset (Laffont et al., 2013) 
– ADE20K dataset (Zhou et al., 2017)

• 16434 images for training, 
1338 images for testing

• 150 semantic categories 

• 40 transient attributes 
in five categories
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B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, A. Torralba. Scene Parsing through ADE20K Dataset. CVPR 2017.

(Zhou et al., 2017)
(Laffond et al., 2013)

lighting: sunrise/sunset, bright, daylight, etc. 
weather: sunny, warm, moist, foggy, cloudy, etc. 
seasons: spring, summer, autumn, winter
subjective impressions: gloomy, soothing, beautiful, etc. 
additional attributes: active/busy, cluttered, 
dirty/polluted, lush vegetation, etc. 
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Fig. 7 Wordnet tree constructed from the 150 objects in the SceneParse150 benchmark. Clusters inside the wordnet tree represent various hierarchical
semantic relations among objects

Table 2 Baseline performance
on the validation set of
SceneParse150

Networks Pixel Acc. (%) Mean Acc. (%) Mean IoU Weighted IoU

FCN-8s 71.32 40.32 0.2939 0.5733

SegNet 71.00 31.14 0.2164 0.5384

DilatedVGG 73.55 44.59 0.3231 0.6014

DilatedResNet-34 76.47 45.84 0.3277 0.6068

DilatedResNet-50 76.40 45.93 0.3385 0.6100

Cascade-SegNet 71.83 37.90 0.2751 0.5805

Cascade-DilatedVGG 74.52 45.38 0.3490 0.6108

Since some classes like wall and floor occupy far more
pixels of the images, pixel accuracy is biased to reflect the
accuracy over those few large classes. Instead, mean IoU
reflects how accurately the model classifies each discrete
class in the benchmark. The scene parsing data and the devel-
opment toolbox are released in the Scene Parsing Benchmark
website.2

The segmentation performance of the baseline networks
on SceneParse150 is listed in Table 2. Among the baselines,
the networks based on dilated convolutions achieve better
results in general than FCN and SegNet. Using the cascade
framework, the performance is further improved. In terms
of mean IoU, Cascade-SegNet and Cascade-DilatedVGG
outperform SegNet and DilatedVGG by 6% and 2.5%,
respectively.

Qualitative scene parsing results from the validation set
are shown in Fig. 8. We observe that all the baseline net-
works can give correct predictions for the common, large
object and stuff classes, the difference in performance comes
mostly from small, infrequent objects and how well they han-

2 http://sceneparsing.csail.mit.edu.

dle details. We further plot the IoU performance of all the 150
categories given by the baseline model DilatedResNet-50 in
Fig. 9. We can see that the best segmented categories are
stuffs like sky, building and road; the worst segmented cate-
gories are objects that are usually small and have few pixels,
like blanket, tray and glass.

4.2 Open-Sourcing the State-of-the-Art Scene
ParsingModels

Since the introduction of SceneParse150 firstly in 2016,
it has become a standard benchmark for evaluating new
semantic segmentation models. However, the state-of-the-art
models are in different libraries (Caffe, PyTorch, Tensor-
flow) while training code of some models are not released,
which makes it hard to reproduce the original results reported
in the paper. To benefit the research community, we re-
implement several state-of-the-art models in PyTorch and
open-source them.3 Particularly, we implement: (1) the plain

3 Re-implementation of the state-of-the-art models are released at
https://github.com/CSAILVision/semantic-segmentation-pytorch.
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Fig. 2. Overview of the proposed a�ribute manipulation framework. Given an input image and its semantic layout, we first resize and center crop the layout
to 512 ⇥ 512 pixels and feed it to our scene generation network. A�er obtaining the scene synthesized according to the target transient a�ributes, we transfer
the look of the hallucinated style back to the original input image.

can be easily automated by a scene parsing model. Once an arti�cial
scene with desired properties is generated, we then transfer the look
of the hallucinated image to the original input image to achieve
attribute manipulation in a photorealistic manner.
Since our approach depends on a learning-based strategy, it re-

quires a richly annotated training dataset. In Section 3.1, we describe
our own dataset, named ALS18K, which we have created for this
purpose. In Section 3.2, we present the architectural details of our
attribute and layout conditioned scene generation network and the
methodologies employed for e�ectively training our network. Fi-
nally, in Section 3.3, we discuss the photo style transfer method that
we utilize to transfer the appearance of generated images to the
input image. We will make our code and dataset publicly available
on the project website.

3.1 The ALS18K Dataset
For our dataset, we pick and annotate images from two popular
scene datasets, namely ADE20K [Zhou et al. 2017] and Transient
Attributes [La�ont et al. 2014], for the reasons which will become
clear shortly.
ADE20K [Zhou et al. 2017] includes 22, 210 images from a di-

verse set of indoor and outdoor scenes which are densely annotated
with object and stu� instances from 150 classes. However, it does
not include any information about transient attributes. Transient
Attributes [La�ont et al. 2014] contains 8, 571 outdoor scene im-
ages captured by 101 webcams in which the images of the same
scene can exhibit high variance in appearance due to variations
in atmospheric conditions caused by weather, time of day, season.
The images in this dataset are annotated with 40 transient scene
attributes, e.g. sunrise/sunset, cloudy, foggy, autumn, winter, but
this time it lacks semantic layout labels.
To establish a richly annotated, large-scale dataset of outdoor

images with both transient attribute and layout labels, we further
operate on these two datasets as follows. First, from ADE20K, we

manually pick the 9,201 images corresponding to outdoor scenes,
which contain nature and urban scenery pictures. For these im-
ages, we need to obtain transient attribute annotations. To do so,
we conduct initial attribute predictions using the pretrained model
from [Baltenberger et al. 2016] and then manually verify the pre-
dictions. From Transient Attributes, we select all the 8,571 images.
To get the layouts, we �rst run the semantic segmentation model
by Zhao et al. [2017], the winner of the MIT Scene Parsing Challenge
2016, and assuming that each webcam image of the same scene has
the same semantic layout, we manually select the best semantic
layout prediction for each scene and use those predictions as the
ground truth layout for the related images.

In total, we collect 17,772 outdoor images (9,201 from ADE20K +
8,571 from Transient Attributes), with 150 semantic categories and
40 transient attributes. Following the train-val split from ADE20K,
8,363 out of the 9,201 images are assigned to the training set, the
other 838 testing; for the Transient Attributes dataset, 500 randomly
selected images are held out for testing. In total, we have 16,434
training examples and 1,338 testing images. More samples of our
annotations are presented in the supplementary materials. Lastly,
we resize the height of all images to 512 pixels and apply center-
cropping to obtain 512 ⇥ 512 images.

3.2 Scene Generation
In this section, we �rst give a brief technical summary of GANs
and conditional GANs (CGANs), which provides the foundation for
our scene generation network (SGN). We then present architectural
details of our SGN model, followed by the two strategies applied for
improving the training process. All the implementation details are
included in the Supplementary Materials.

3.2.1 Generative Adversarial Networks. Generative Adversarial
Networks (GANs) [Goodfellow et al. 2014] have been designed as a
two-player min-max game where a discriminator network D learns

, Vol. 1, No. 1, Article . Publication date: May 2019.
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is acquired under multiple different tissue contrasts (e.g., T1- 
and T2-weighted images). Inspired by the recent success of 
adversarial networks, here we employed conditional GANs to 
synthesize MR images of a target contrast given as input an 
alternate contrast. For a comprehensive solution, we considered 

two distinct scenarios for multi-contrast MR image synthesis. 
First, we assumed that the images of the source and target 
contrasts are perfectly registered. For this scenario, we propose 
pGAN that incorporates a pixel-wise loss into the objective 
function as inspired by the pix2pix architecture [49]:  
 

            (4) 

 
where ,2% is the pixel-wise L1 loss function. Since the 
generator ' was observed to ignore the latent variable in pGAN, 
the latent variable was removed from the model.  

Recent studies suggest that incorporation of a perceptual loss 
during network training can yield visually more realistic results 
in computer vision tasks. Unlike loss functions based on pixel-
wise differences, perceptual loss relies on differences in higher 
feature representations that are often extracted from networks 
pre-trained for more generic tasks [25]. A commonly used 
network is VGG-net trained on the ImageNet [56] dataset for 
object classification. Here, following [25], we extracted feature 
maps right before the second max-pooling operation of VGG16 
pre-trained on ImageNet. The resulting loss function can be 
written as: 
 

 (5) 

 
where  3 is the set of feature maps extracted from VGG16.  

To synthesize each cross-section # from ! we also leveraged 
correlated information across neighboring cross-sections by 
conditioning the networks not only on ! but also on the 
neighboring cross-sections of !. By incorporating the 
neighboring cross-sections (3), (4) and (5) become: 
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where 45 = [!789:;, … , !7&, !7%, !, !7%, !7&, … , !>89:;] is a vector 

consisting of ? consecutive cross-sections ranging from −85&; 
to 85&;, with the cross section ! in the middle, and ,ABCD-./75 
and ,2%75 are the corresponding adversarial and pixel-wise loss 
functions. This yields the following aggregate loss function:  

 
 (9) 

 
where ,E-./ is the complete loss function, F controls the 
relative weighing of the pixel-wise loss and FEGHA controls the 
relative weighing of the perceptual loss. 
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Fig. 1.  The pGAN method is based on a conditional adversarial network with 
a generator G, a pre-trained VGG16 network V, and a discriminator D. Given 
an input image in a source contrast (e.g., T1-weighted), G learns to generate 
the image of the same anatomy in a target contrast (e.g., T2-weighted). 
Meanwhile, D learns to discriminate between synthetic (e.g., T1-G(T1)) and 
real (e.g., T1-T2) pairs of multi-contrast images. Both subnetworks are trained 
simultaneously, where G aims to minimize a pixel-wise, a perceptual and an 
adversarial loss function, and D tries to maximize the adversarial loss function. 
 

 
Fig. 2.  The cGAN method is based on a conditional adversarial network with 
two generators (GT1, GT2) and two discriminators (DT1, DT2). Given a T1-
weighted image, GT2 learns to generate the respective T2-weighted image of 
the same anatomy that is indiscriminable from real T2-weighted images of 
other anatomies, whereas DT2 learns to discriminate between synthetic and real 
T2-weighted images. Similarly, GT1 learns to generate realistic a T1-weighted 
image of an anatomy given the respective T2-weighted image, whereas DT1 
learns to discriminate between synthetic and real T1-weighted images. Since 
the discriminators do not compare target images of the same anatomy, a pixel-
wise loss cannot be used. Instead, a cycle-consistency loss is utilized to ensure 
that the trained generators enable reliable recovery of the source image from 
the generated target image. 
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simultaneously, where G aims to minimize a pixel-wise, a perceptual and an 
adversarial loss function, and D tries to maximize the adversarial loss function. 
 

 
Fig. 2.  The cGAN method is based on a conditional adversarial network with 
two generators (GT1, GT2) and two discriminators (DT1, DT2). Given a T1-
weighted image, GT2 learns to generate the respective T2-weighted image of 
the same anatomy that is indiscriminable from real T2-weighted images of 
other anatomies, whereas DT2 learns to discriminate between synthetic and real 
T2-weighted images. Similarly, GT1 learns to generate realistic a T1-weighted 
image of an anatomy given the respective T2-weighted image, whereas DT1 
learns to discriminate between synthetic and real T1-weighted images. Since 
the discriminators do not compare target images of the same anatomy, a pixel-
wise loss cannot be used. Instead, a cycle-consistency loss is utilized to ensure 
that the trained generators enable reliable recovery of the source image from 
the generated target image. 
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http://github.com/icon-lab/mrirecon. Replica was based on a 
MATLAB implementation, and a Keras implementation [68] of 
Multimodal with the Theano backend [69] was used. 

III. RESULTS 

A. Comparison of GAN-based models 
We first evaluated the proposed models on T1- and T2-

weighted images from the MIDAS and IXI datasets. We 
considered two cases for T2 synthesis (a. T1→T2#, b. T1#→T2, 
where # denotes the registered image), and two cases for T1 
synthesis (c. T2→T1#, d. T2#→T1). Table I lists PSNR and SSIM 
for pGAN, cGANreg trained on registered data, and cGANunreg 
trained on unregistered data in the MIDAS dataset. We find that 
pGAN outperforms cGANunreg and cGANreg in all cases 
(p<0.05). Representative results for T1→T2# are displayed in 
Fig. 3a and T2#→T1 are displayed in Supp. Fig. Ia, respectively. 
pGAN yields higher synthesis quality compared to cGANreg. 
Although cGANunreg was trained on unregistered images, it can 
faithfully capture fine-grained structure in the synthesized 
contrast. Overall, both pGAN and cGAN yield synthetic images 
of remarkable visual similarity to the reference. Supp. Tables II 
and III (k=1) lists PSNR and SSIM across test images for T2 
and T1 synthesis with both directions of registration in the IXI 
dataset. Note that there is substantial mismatch between the 
voxel dimensions of the source and target contrasts in the IXI 
dataset, so cGANunreg must map between the spatial sampling 
grids of the source and the target. Since this yielded suboptimal 
performance, measurements for cGANunreg are not reported. 
Overall, similar to the MIDAS dataset, we observed that pGAN 
outperforms the competing methods (p<0.05). On average, 
across the two datasets, pGAN achieves 1.42dB higher PSNR 
and 1.92% higher SSIM compared to cGAN.  These 
improvements can be attributed to pixel-wise and perceptual 
losses compared to cycle-consistency loss on paired images.  

In MR images, neighboring voxels can show structural 
correlations, so we reasoned that synthesis quality can be 
improved by pooling information across cross sections. To 
examine this issue, we trained multi cross-section pGAN (k=3, 
5, 7), cGANreg and cGANunreg models (k=3; see Methods) on 
the MIDAS and IXI datasets. PSNR and SSIM measurements 
for pGAN are listed in Supp. Table II, and those for cGAN are 
listed in Supp. Table III. For pGAN, multi cross-section models 
yield enhanced synthesis quality in all cases. Overall, k=3 offers 
optimal or near-optimal performance while maintaining 
relatively low model complexity, so k=3 was considered 
thereafter for pGAN. The results are more variable for cGAN, 
with the multi-cross section model yielding a modest 
improvement only in some cases. To minimize model 
complexity, k=1 was considered for cGAN.  

Table II compares PSNR and SSIM of multi cross-section 
pGAN and cGAN models for T2 and T1 synthesis in the MIDAS 
dataset. Representative results for T1→T2# are shown in Fig. 3b 
and T2#→T1 are shown in Supp. Fig. Ib. Among multi cross-
section models, pGAN outperforms alternatives in PSNR and 
SSIM (p<0.05), except for SSIM in T2#→T1. Moreover, 
compared to the single cross-section pGAN, the multi cross-
section pGAN improves PSNR and SSIM values. These 
measurements are also affirmed by improvements in visual 

quality for the multi cross-section model in Fig. 3 and Supp. 
Fig. I. In contrast, the benefits are less clear for cGAN. Note 
that, unlike pGAN that works on paired images, the 
discriminators in cGAN work on unpaired images from the 
source and target domains. In turn, this can render incorporation 
of correlated information across cross sections less effective. 
Supp. Tables II and III compare PSNR and SSIM of multi cross-

 
Fig. 3.  The proposed approach was demonstrated for synthesis of T2-weighted 
images from T1-weighted images in the MIDAS dataset. Synthesis was 
performed with pGAN, cGAN trained on registered images (cGANreg), and 
cGAN trained on unregistered images (cGANunreg). For pGAN and cGANreg, 
training was performed using T2-weighted images registered onto T1-weighted 
images (T1→T2#). Synthesis results for (a) the single cross-section, and (b) 
multi cross-section models are shown along with the true target image 
(reference) and the source image (source). Zoomed-in portions of the images 
are also displayed. While both pGAN and cGAN yield synthetic images of 
striking visual similarity to the reference, pGAN is the top performer. Synthesis 
quality is improved as information across neighboring cross sections is 
incorporated, particularly for the pGAN method. 

TABLE I 
QUALITY OF SYNTHESIS IN THE MIDAS DATASET  

SINGLE CROSS-SECTION MODELS  

 
cGANunreg cGANreg pGAN 

SSIM PSNR SSIM PSNR SSIM PSNR 

T1 ® T2# 
0.829 
±0.017 

23.66 
±0.632 

0.895 
±0.014 

26.56 
±0.432 

0.920 
±0.014 

28.79 
±0.580 

T1# ® T2 
0.823 
±0.021 

23.85 
±0.420 

0.854 
±0.024 

25.47 
±0.556 

0.876 
±0.028 

27.07 
±0.618 

T2 ® T1# 
0.826 
±0.015 

23.20 
±0.503 

0.892 
±0.017 

26.53 
±1.169 

0.912 
±0.017 

27.81 
±1.424 

T2# ® T1 
0.821 
±0.021 

22.56 
±1.008 

0.863 
±0.022 

26.15 
±0.974 

0.883 
±0.023 

27.31 
±0.983 

T1# is registered onto the respective T2 image; and T2# is registered onto the 
respective T1 image; and ® indicates the direction of synthesis. PSNR and 
SSIM measurements are reported as mean±std across test images. Boldface 
marks the model with the highest performance. 

 
TABLE II 

QUALITY OF SYNTHESIS IN THE MIDAS DATASET  
MULTI CROSS-SECTION MODELS (K=3) 

 
cGANunreg cGANreg pGAN 

SSIM PSNR SSIM PSNR SSIM PSNR 

T1 ® T2# 
0.829 
±0.016 

23.65 
±0.650 

0.895 
±0.014 

26.62 
±0.489 

0.926 
±0.014 

29.34 
±0.592 

T1# ® T2 
0.797 
±0.027 

23.37 
±0.604 

0.862 
±0.022 

25.83 
±0.384 

0.883 
±0.027 

27.49 
±0.643 

T2 ® T1# 
0.824 
±0.015 

24.00 
±0.628 

0.900 
±0.017 

27.04 
±1.238 

0.920 
±0.016 

28.16 
±1.303 

T2# ® T1 
0.805 
±0.021 

23.55 
±0.782 

0.864 
±0.022 

26.44 
±0.871 

0.887 
±0.023 

27.42 
±1.127 

Boldface marks the model with the highest performance. 
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is acquired under multiple different tissue contrasts (e.g., T1- 
and T2-weighted images). Inspired by the recent success of 
adversarial networks, here we employed conditional GANs to 
synthesize MR images of a target contrast given as input an 
alternate contrast. For a comprehensive solution, we considered 

two distinct scenarios for multi-contrast MR image synthesis. 
First, we assumed that the images of the source and target 
contrasts are perfectly registered. For this scenario, we propose 
pGAN that incorporates a pixel-wise loss into the objective 
function as inspired by the pix2pix architecture [49]:  
 

            (4) 

 
where ,2% is the pixel-wise L1 loss function. Since the 
generator ' was observed to ignore the latent variable in pGAN, 
the latent variable was removed from the model.  

Recent studies suggest that incorporation of a perceptual loss 
during network training can yield visually more realistic results 
in computer vision tasks. Unlike loss functions based on pixel-
wise differences, perceptual loss relies on differences in higher 
feature representations that are often extracted from networks 
pre-trained for more generic tasks [25]. A commonly used 
network is VGG-net trained on the ImageNet [56] dataset for 
object classification. Here, following [25], we extracted feature 
maps right before the second max-pooling operation of VGG16 
pre-trained on ImageNet. The resulting loss function can be 
written as: 
 

 (5) 

 
where  3 is the set of feature maps extracted from VGG16.  

To synthesize each cross-section # from ! we also leveraged 
correlated information across neighboring cross-sections by 
conditioning the networks not only on ! but also on the 
neighboring cross-sections of !. By incorporating the 
neighboring cross-sections (3), (4) and (5) become: 
 

 (6) 

 
 (7) 

 
 (8) 

 
where 45 = [!789:;, … , !7&, !7%, !, !7%, !7&, … , !>89:;] is a vector 

consisting of ? consecutive cross-sections ranging from −85&; 
to 85&;, with the cross section ! in the middle, and ,ABCD-./75 
and ,2%75 are the corresponding adversarial and pixel-wise loss 
functions. This yields the following aggregate loss function:  

 
 (9) 

 
where ,E-./ is the complete loss function, F controls the 
relative weighing of the pixel-wise loss and FEGHA controls the 
relative weighing of the perceptual loss. 
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Fig. 1.  The pGAN method is based on a conditional adversarial network with 
a generator G, a pre-trained VGG16 network V, and a discriminator D. Given 
an input image in a source contrast (e.g., T1-weighted), G learns to generate 
the image of the same anatomy in a target contrast (e.g., T2-weighted). 
Meanwhile, D learns to discriminate between synthetic (e.g., T1-G(T1)) and 
real (e.g., T1-T2) pairs of multi-contrast images. Both subnetworks are trained 
simultaneously, where G aims to minimize a pixel-wise, a perceptual and an 
adversarial loss function, and D tries to maximize the adversarial loss function. 
 

 
Fig. 2.  The cGAN method is based on a conditional adversarial network with 
two generators (GT1, GT2) and two discriminators (DT1, DT2). Given a T1-
weighted image, GT2 learns to generate the respective T2-weighted image of 
the same anatomy that is indiscriminable from real T2-weighted images of 
other anatomies, whereas DT2 learns to discriminate between synthetic and real 
T2-weighted images. Similarly, GT1 learns to generate realistic a T1-weighted 
image of an anatomy given the respective T2-weighted image, whereas DT1 
learns to discriminate between synthetic and real T1-weighted images. Since 
the discriminators do not compare target images of the same anatomy, a pixel-
wise loss cannot be used. Instead, a cycle-consistency loss is utilized to ensure 
that the trained generators enable reliable recovery of the source image from 
the generated target image. 
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