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Project Title

Name Surname *

Abstract

1. Introduction

Introduce the task that you are going to investigate in your
course project. State why you find your project topic inter-
esting and what is difficult about it.

2. Related Work

Review previous work most relevant to your project topic.
Discuss how you might improve upon these existing ap-
proaches.

3. The Approach

Give a brief outline of your approach. Describe the archi-
tecture you will use, whether you will extend an existing
implementation, etc. Please note that you can change your
approach later.

4. Experimental Evaluation

Explain which dataset(s) you will use to train and test your
model. Describe how you will evaluate the performance of
your approach against those of competing methods.

5. Work Plan

Provide a rough timeline about the planned activitics and
their approximate deadlines. For example,

Activity
| Complete the literature search
i Reproduce results of a baseline approach | N
Hcpam progress report
[ Make improvements X,

\f Prepare final report and
(Hinton & Salakhutdinov, 2006; Goodfellow et al., 2014)
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Lecture overview

* Motivation and Definition of Implicit Models
* Original GAN (Goodfellow et al, 2014)

» Evaluation: Parzen, Inception, Frechet
 Theory of GANs

 GAN Progression
— DC GAN (Radford et al, 2016)
— Improved Training of GANs (Salimans et al'16), Projected GAN (Sauer et al'21)
WGAN, WGAN-GP, Progressive GAN, SN-GAN, SAGAN
—  BigGAN, BigGAN-Deep, StyleGAN, StyleGAN2, StyleGAN3, StyleGAN-XL,
Self-Distilled StyleGAN, VIB-GAN, VO-GAN

« (Conditional GANs, Cycle-Consistent Adversarial Networks
GANs and Representations
Applications



StyleGAN
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Figure 1. While a traditional generator [?()] feeds the latent code
though the input layer only, we first map the input to an in-
termediate latent space VV, which then controls the generator
through adaptive instance normalization (AdalN) at each convo-
lution layer. Gaussian noise is added after each convolution, be-
fore evaluating the nonlinearity. Here “A” stands for a learned
affine transform, and “B” applies learned per-channel scaling fac-
tors to the noise input. The mapping network f consists of 8 lay-
ers and the synthesis network g consists of 18 layers —two for
each resolution (4* — 1024?). The output of the last layer is con-
verted to RGB using a separate 1 X 1 convolution, similar to Kar-
ras et al. [30]. Our generator has a total of 26.2M trainable param-
eters, compared to 23.1M in the traditional generator.



StyleGAN - Adaptive Instance Norm

X; — H (Xz)
o (%)

AdaIN (x;,¥) = ys.i - Vb



StyleGAN - Style Transfer

Coarse styles from source B

Middle styles from source B

Fine from B







StyleGAN - Effect of adding noise




(a) Generated image

(b) Stochastic variation (c) Standard deviation
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StyleGAN Water Droplet-like Artifacts

Figure 1. Instance normalization causes water droplet -like artifacts in StyleGAN images. These are not always obvious in the generated
images, but if we look at the activations inside the generator network, the problem is always there, in all feature maps starting from the
64x64 resolution. It is a systemic problem that plagues all StyleGAN images.

12



StyleGAN2
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(b) StyleGAN (detailed)

(a) StyleGAN

Fig. 2. We redesign the architecture of the StyleGAN synthesis network. (a) The original StyleGAN, where A denotes a learned affine transform from W that produces a style and B
is a noise broadcast operation. (b) The same diagram with full detail. Here we have broken the AdalN to explicit normalization followed by modulation, both operating on the mean
and standard deviation per feature map. We have also annotated the learned weights (w), biases (b), and constant input (¢), and redrawn the gray boxes so that one style is active per
box. The activation function (leaky ReLU) is always applied right after adding the bias. (c) We make several changes to the original architecture that are justified in the main text.
We remove some redundant operations at the beginning, move the addition of b and B to be outside active area of a style, and adjust only the standard deviation per feature map. (d)
The revised architecture enables us to replace instance normalization with a “demodulation” operation, which we apply to the weights associated with each conv layer.
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(c) Revised architecture
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(d) Weight demodulation
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StyleGAN2 Phase Artifacts

Figure 6. Progressive growing leads to “phase” artifacts. In this
example the teeth do not follow the pose but stay aligned to the
camera, as indicated by the blue line.
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StyleGAN2 Phase Artifacts
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(b) Input/output skips (c) Residual nets

Figure 7. Three generator (above the dashed line) and discrimi-

nator architectures.

Up

and

Down

denote bilinear up and down-

sampling, respectively. In residual networks these also include

1x1 convolutions to adjust the number of feature maps. [tRGB

and |fRGB | convert between RGB and high-dimensional per-pixel
data. Architectures used in configs E and F are shown in green.
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StyleGANS3 to resolve “texture sticking”

StyleGAN2 StyleGAN3 (Ours) StyleGAN2 StyleGAN3 (Ours)




StyleGAN3
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Lecture overview

Motivation and Definition of Implicit Models
Original GAN (Goodfellow et al, 2014)
Evaluation: Parzen, Inception, Frechet

Theory of GANSs

GAN Progression

DC GAN (Radford et al, 2016)

Improved Training of GANs (Salimans et al'16), Projected GAN (Sauer et al'21)
WGAN, WGAN-GP, Progressive GAN, SN-GAN, SAGAN

BigGAN, BigGAN-Deep, StyleGAN, StyleGAN2, StyleGANS, StyleGAN-XL,
Self-Distilled StyleGAN, VIB-GAN, VQ-GAN

Conditional GANs, Cycle-Consistent Adversarial Networks
GANs and Representations

Annliratinnce
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StyleGAN-XL

» StyleGAN was designed for controllability
* [ts performance degrades on unstructured datasets such as ImageNet.

» StyleGAN-XL shows that it is possible with a carefully designed
architecture and traning schemes
— StyleGAN3 framework
— Projected GAN objective
— Progressive growing
—1024X1024 images

20



StyleGAN-XL
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Fig. 2. Training StyleGAN-XL. We feed a latent code z and class label ¢ to the pretrained embedding and the mapping network G, to generate style codes
w. The codes modulate the convolutions of the synthesis network Gg. During training, we gradually add layers to double the output resolution for each
stage of the progressive growing schedule. We only train the latest layers while keeping the others fixed. The synthesized image is upsampled when smaller
than 2242 and passed through a CNN and a ViT and respective feature mixing blocks (CCM+CSM). At higher resolutions, the CNN receives the unaltered
image while the ViT receives a downsampled input to keep memory requirements low but still utilize its global feedback. Finally, we apply eight independent

Y

CNN

v
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v
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= Do-D3

c—>EMB

%

ViT

v
CCM
v
S

> D4-D7

D

discriminators on the resulting multi-scale feature maps. The image is also fed to classifier CLF for classifier guidance.
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StyleGAN-XL

Configuration FID| IS

StyleGAN3 53.57 15.30
+ Projected GAN & small z 2298 57.62
+ Pretrained embeddings 2091 35.79
+ Progressive growing 19.51 35.74
+ ViT & CNN as Fy 1243 56.72
+ CLF guidance (StyleGAN-XL) 12.24 86.21

mHEOO® B

642 g ? 2 10242

Fig. 3. Samples at Different Resolutions Using the Same w. The samples are generated by the models obtained during progressive growing. We upsample
all images to 10247 using nearest-neighbor interpolation for visualization purposes. Zooming in is recommended.

&, GLE]GlIE)
Style-based GANs achieve high image fidelity,

Source BigGAN StyleGAN-XL Source BigGAN StyleGAN-XL

Fig. 4. Inversion of a Given Source Image. For BigGAN, we invert to its latent space z, for StyleGAN-XL we invert to style codes w.



Self-Distilled StyleGAN

(a) Self-Filtering (b) Multi-Modal Based Truncation

Cluster  Truncation to No
Cluster Center Thilicatich

(1) Unfiltered Internet Photo Collection (i1) Self-Filtering Collection (ii1) Self-Filtered Collection
(Fixed StyleGAN+Encoder)

StyleGAN
Generator

:.-": Truncation to
/' Global Mean

Global

TR

\ w"-l‘:‘,,

ﬁﬁfﬁéi’%hi‘s

i X
A

* How to train StyleGAN on noisy Internet images?
* GAN Inversion quality to automatically filter out outlier images (LPIPS)
* Multi-modal based truncation trick to cluster
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Self-Distilled StyleGAN - Self-filtering

I_gflllers | Outliers

Original

Reconstruction

LPIPS: 0.25

Without
Filtering

With Filtering
(Ours)
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Self-Distilled StyleGAN — Multi-modal Truncation

(a) No Truncation (b) Trﬁncation to Global Mean (c) Truncation to Cluster (Ours)

we=v-w+ (1 —17)- ¢ C:: the "“nearest” cluster center
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Theory of GANSs

GAN Progression
DC GAN (Radford et al, 2016)
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WGAN, WGAN-GP, Progressive GAN, SN-GAN, SAGAN
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Information Bottleneck
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Information Bottleneck
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Information Bottleneck
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Mutual Information

 Mutual information between two random variables X, Y: [(X; Y) is

defined as

(Y) = H(Y'|X)

H(X|Y) =
H(X) H

H(X,Y)
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Mutual Information

* Mutual Information is a general way to measure dependency between

two random variables

— Unlike the more commonly used covariance
1 0.8 0.4 0 -0.4 -0.8 -1
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Estimating Mutual Information

* \\We can try to estimate the mutual information between z and x in a
latent variable model

I(z;x) = H(z) — H(z|x)

= H(2) — E(; 2)~p(z,2) |~ log p(z]7)]

= H(2) + E(z,0)~p(z,0) log p(2]2) — log q(z]z) + log ¢(2|)]
> H(2) + E(; 0)~p(z,2)[l0g q(2]7)]

<

 Has intractable posterior p(z|x) but we can estimate by introducing a
variational distribution qg(z|x)



Information Bottleneck

I(X:Z) S IC

U

Ux~ii(x) (KL E(z]x)[|r(2)]] < I

Variational Information Bottleneck (VIB)
[Alemi et al., 20106]
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Variational Information Bottleneck
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Variational Information Bottleneck

Instance Noise
D (Z) [Salimans et al. 2016; Senderby et al.
______________ 2016; Arjovsky and Bottou 2017]

Real Fake YA
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Variational Information Bottleneck

Instance Noise
D (Z) [Salimans et al. 2016; Senderby et al.
2016; Arjovsky and Bottou 2017]

________
—y
~

Real Fake YA
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Variational Information Bottleneck

Variational Information Bottleneck
D (Z) [Alemi et al., 2016]
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Variational Information Bottleneck

Variational Information Bottleneck
D (Z) [Alemi et al., 2016]
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Variational Information Bottleneck

Variational Information Bottleneck
D (Z) [Alemi et al., 2016]
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Variational Information Bottleneck

Variational Information Bottleneck
D (Z) [Alemi et al., 2016]
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Variational Information Bottleneck GAN

Discriminator Prediction
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VQGAN

real/fake
———— (" Codebook Z ) (" Transformer B e e [ o _ _ _
"3 ';- ] I II The complete objective for finding the optimal compression
N — 0 — _ll ll, gl e | odel O* = {E*. G*. Z*) th d
2 N 1 p(s) = IL; p(sils<i) . =7 T model Q* = {E",G", 2"} then reads
. . - ! — L
z 3 7S fle|r|r Q" = arg min max Evptey [£VQ(Ea G,2)
e EGz D
N-1 ,
- > ) +\oan({E, G, 2}, D)] . (6)
~
— - = i CNN - where we compute the adaptive weight A according to
N iscriminator
Is Niag 5 . Vai [['rec]
A ~ AL - B . A e (7)
. 500 5 L2
argmincz ||2 zz I o4 57 Decoder [ ‘ ; where L, is the perceptual reconstruction loss [£1], Vg, []
quanfization w|a|te _= denotes the gradient of its input w.r.t. the last layer L of
1 ]153]94|15

.,

* A convolutional VQGAN to learn a codebook of context-rich visual parts

* An autoregressive Transformer to generate novel samples
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Quantitative Evaluation

CelebA-HQ 256 x 256 FFHQ 256 X 256
Method FID | Method FID |
GLOW [33] 69.0 VDVAE (t =0.7) [ 1] 38.8
NVAE [59] 40.3 VDVAE (¢ = 1.0) 33.5
PIONEER (B.) [21] 39.2 (25.3) VDVAE (t = 0.8) 29.8
NCPVAE [ ] 24.8 VDVAE (t = 0.9) 28.5
VAEBM [66] 20.4 VOGAN+P.SNAIL 21.9
Style ALAE [49] 19.2 BigGAN 12.4
DC-VAE [47] 15.8 ours 114
ours 10.7 U-Net GAN (+aug) [57] 10.9 (7.6)
PGGAN [27] 8.0 StyleGAN2 (+aug) [30] 3.8 (3.6)

Table 3. FID score comparison for face image synthesis. CelebA-
HQ results reproduced from [ 1, 47, 66, 22], FFHQ from [57, 28].
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Lecture overview

* Motivation and Definition of Implicit Models

* Original GAN (Goodfellow et al, 2014)

« Evaluation: Parzen, Inception, Frechet

 Theory of GANs

 GAN Progression

 Conditional GANs, Cycle-Consistent Adversarial Networks
 GANSs and Representations

* Applications
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Conditional GANs / pix2pix




Conditional GANs / pix2pix

G

Generator

Discriminator

real or fake
pair?
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Conditional GANs / pix2pix

Q! _ G(x) D

real or fake
pair?

—— o p—t ﬁ

Generator Discriminator

G tries to synthesize fake images that fool D

D tries to identity the fakes
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Conditional GANs / pix2pix

| — fake (0.9)

11— real (0.1)

argmax Ex |
D

log(1 — D(y))
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Conditional GANs / pix2pix

X G(x)

| M.““M il | : Loss Function
Abb . ,. D

G's perspective: D is a loss function.

Rather than being hand-designed, It Is learned.




Conditional GANs / pix2pix

X

arg min max ixy| log D(G(x))

H —— real or fake?

_|_

log(1 - D(y)) |
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Conditional GANs / pix2pix

arg m(%n max ixy| log D(G(x))

e G (x) D

H —— real!

_|_

(" Aqguarius”)

log(1 — D(y)) |
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Conditional GANs / pix2pix

argminmax Ey y| log D(G(x))

G D

1 — real or fake pair?




Conditional GANs / pix2pix

1 — real or fake pair?

arg min max *ny[ lOgDE G(x) )+108(1—D@ y)) |

G D 56
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Conditional GANs / pix2pix

{ — real or fake pair ?
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Conditional GANs / pix2pix

G* = arg m(%n max L.aan(G, D) + AL11(G)



- : - Shrinking the capacity:
Condltlonal GANS / plXZpIX Patch Discriminator

D Rather than penalizing if output image
— looks fake, penalize if each overlapping
patch in output looks fake

N pixels

' —

N pixels

Y Li & Wand 2016]
[Shrivastava et al. 2017]

[Isola et al. 2017]e:



Conditional GANs / pix2pix

Input 1x1 Discriminator




Conditional GANs / pix2pix

Input 16x16 Discriminator




Conditional GANs / pix2pix

Input

70x70 Discriminator
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Conditional GANs / pix2pix

Input 16x16 Discriminator




- : - Shrinking the capacity:
Condltlonal GANS / plXZpIX Patch Discriminator

D Rather than penalizing if output image
I looks fake, penalize if each overlapping
. patch in output looks fake
T
g_ ' >
Z
N pixels e Faster, fewer parameters
e More supervised observations
e Applies to arbitrarily large images

Y Li & Wand 2016]
[Shrivastava et al. 2017]

[Isola et al. 2017]s7



Conditional GANs / pix2pix
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Conditional GANs / pix2pix  BW - Color

Input Output Input Output

Data from [Russakovsky et al. 2015]



Conditional GANs / piXZpiX #edges2cats [Chris Hesse]

TOOL INPUT OUTPUT

( line Q]
eraser@




Conditional GANs / pix2pix

INPUT

OUTPUT

Vitaly Vidmirov @wvid
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Conditional GANs / pix2pix
BW — Color

Input Qutput
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Conditional GANs / pix2pix

Structured Prediction

Input Output
h

L(y,y) = I¥ =yl
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* Motivation and Definition of Implicit Models

* Original GAN (Goodfellow et al, 2014)
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Cycle-Consistent Adversarial Networks

Paired dat Unpaired data
Lg Yi

ec0o e g



Cycle-Consistent Adversarial Networks

— H H — real or fake pair?

arg mén max ﬂx,y[ log D(x,G(x)) + log(1 — D(x,y)) ]



Cycle-Consistent Adversarial Networks

—— H H — real or fake pair ?

argm(%n max x.y| log D(x,G(x)) +log(l — D(x,y)) |

No input-output pairs!



Cycle-Consistent Adversarial Networks

—— H H—— real or fake?

argminmax Ex | log D(G(x)) + log(l— D(y)) |

G D

« Usually loss functions check if output matches a target instance
* QAN loss checks if output is part of an admissible set



Cycle-Consistent Adversarial Networks

Gaussian Target distribution




Cycle-Consistent Adversarial Networks

Horses /ebras




Cycle-Consistent Adversarial Networks

- — il — Reall




Cycle-Consistent Adversarial Networks

- Real too!

Nothing to force output to correspond to input



Cycle-Consistent Adversarial Networks

/\
X Yy
|
e DY ®

[Zhu et al. 2017], [Yi et al. 2017], [Kim et al. 2017]



Cycle-Consistent Adversarial Networks

N ]




Cycle Consistency Loss

reconstruction .
1Y .
| ) \.‘

error




Cycle Consistency Loss

F(y) G(F(x))

Nl

reconstruction

. — \ u’ error
reconstruction .
ap® \. G —

[F(GC0) =x[l,  [IG(FG) =¥,




Cycle-Consistent Adversarial Networks




Cycle-Consistent Adversarial Networks




Cycle-Consistent Adversarial Networks
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Cycle-Consistent Adversarial Networks




Cycle-Consistent Adversarial Networks




Cycle-Consistent Adversarial Networks




Cycle-Consistent Adversarial Networ




Lecture overview

* Motivation and Definition of Implicit Models

* Original GAN (Goodfellow et al, 2014)

» Evaluation: Parzen, Inception, Frechet

 Theory of GANs

 GAN Progression

« (Conditional GANs, Cycle-Consistent Adversarial Networks
 GANSs and Representations

* Applications
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DCGAN Revisited: Vector Arithmetic

smiling neutral neutral smiling man
woman woman man

[Radford et al 2016]
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GANs for unsupervised feature learning

* INfoGAN (Information Maximizing GAN)

 BIGAN (Bidirectional Generative Adversarial Networks)
ALI (Adversarially Learned Inference)

— BigBiGAN (Big Bidirectional Generative Adversarial Networks)

98



InfoGAN

array([[151, 157, 250, ..., 20, 0, 0],
148, 161, 242, ..., 15, 0, 0],
235, 228, 255, ..., 3, 0, 0],

252, 254, 176, ..., 240, 253, 253
253, 253, 253, ..., 253, 200, 200],
253, 253, 253, ..., 253, 200, 200]]
, dtype=uint8)
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InfoGAN

array([[151, 157, 250, ..., 20, 0, 0], Simple factors interact to create
5:148, 161,242, ... 15, 0, Ol, complex observations.
235, 228,255, ..., 3; 0, 0],

Digit type: “5”
252, 254,176, ..., 240, 253, 253 Rotation: Tilting to the right

253, 253, 253, ..., 253, 200, 200], Width:  Medium
253, 253, 253, ..., 253, 200, 200]]

, dtype=uint8)

Data: x Latent code: ¢

100



InfoGAN
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InfoGAN

 Simple idea: Independent factors in latent code should maximally
explain variations in generated images

* Formally: We want to maximize the mutual information between latent
code and generated images:

H(x) — H(x|c)

max Il )
= H(c) — H(c|z)

where = = G(z,¢)
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InfoGAN

 Mutual information can be maximized easily with a variational
lower bound:
I(c;G(z,c)) = H(c) — H(c|G(z,c))

H(C) T ]E'J:NG(z,C) []EC’NP(clsc) [log P(C’|:C)]]

H(C) i ]E.’I_,'NG(Z,(!) [E(:’NP((:I:I:)[IOg Q(C,‘.’L')] +PKL(P(’$) ” Q(IZU))]

>y

N

>0

> H(C> = E.’L‘NG(Z,C) [EC’NP(CI:I:) [1Og Q(Cllx)]]

/

Simply MLE for a classifier/regressor
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InfoGAN

(“Which source? ) What code?

x(data) | \ G [

GAN InfoGAN
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InfoGAN

\VWhat code?

Shared ConvNet

GAN InfoGAN
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InfoGAN




W @ T i

W g T
W g TD
Wt T A
Wb [T 0

W g TN

InfoGAN



InfoGAN

Emotion
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InfoGAN

| ‘ .
i .
4 ' g g
¥ L - v A
0 - - ’ Q'. P - - - ;
. y : 4“ . ./‘ . . -
B i i )
- ¥ -
- — - - . -
'n ‘ {1 - ' » é
: . g - - ~
. . - >

vary z

Presence/absence of glasses
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Unsuperwsed Category Dlscovery BlgGAN

Z = concat(]
(@) [N(O,N]"20,
(b) UniformCateg(1024)

)

of the categorical (b);
columns are Gaussian

samples (a)

110

Slide credit; Jeff Donahue



Unsupervised Category Discovery - BigGAN

* Trained with no labels! i
z = concat(] - -

(a) [N(O,1)]"29,
(b) UniformCateg(1024)

)

 Each row Is one value
of the categorical (b);
columns are Gaussian
samples (a)

Slide credit; Jeff Donahue



But what about inference...

 How can we use generative models?

— GANSs can generate content, but somethings you want to make inference about
observed data.

» Can we incorporate an inference mechanism into GANs?

» Can we learn an inference mechanisms using an adversarial training
paradigm?
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Two papers, one model

* ALI: Vincent Dumoulin, Ishmael Belghazi, Olivier Mastropietro
ADVERSARIALLY LEARNED INFERENCE, ICLR 2017
Ben Poole, Alex Lamb, Martin Arjovsky

« BIGAN: Donahue, Krahenbuhl and Darrell (2016), ADVERSARIAL
FEATURE LEARNING, ICLR 2017
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Adversarially Learned Inference (ALI)

features

%

data

B

|

\

(G,

Opd

2

©

)

Cema

Dal®

 |dea: Cast the learning of both an inference model (encoder) and a generative
model (decoder) in a GAN-like adversarial framework

* Discriminator is trained to discriminate between joint samples (x, z) from:
— Encoder distribution q(x, z) = g(x) q(z | x), or
— Decoder distribution p(x, z) = p(z) p(x | z).

 Generator learns conditionals g(z | x) and p(x | z) to fool the discriminator.
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Slide credit; Jeff Donahue

Adversarially Learned Inference (ALI)

* |n the global optimum,
E and G are inverses:
for all x and z we have

- x = G(E(x))
-z = E(G(2))

* |n practice, this
Inversion property does
not hold perfectly

— Reconstructions
still often capture
Interesting
semantics

AONRR0e A
ol GELERT.
Be AeARER
daRRHASE
RaEsicnan
ERaBEERDR
En%e - ORD
spADEEA &

(a) CelebA samples.

a.nmmaum
CEEHA G 20
ﬁ@lnﬂﬂﬂﬂ
AQAASaAR®
HEAALS & &
EENNAREE
2afBR L E BAE

(b) CelebA reconstructions. 45




Big Bidirectional GAN (BigBiGAN)

data
x~ Py, x~G(z)

® O &
@@

3 Jepo:)ue
generator Q

HOu
O
e

latents

Slide credit; Jeff Donahue

discriminator D

1D

D

vy

}_

SCOI‘CS

7

@J

loss

(0
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BigBiGAN

generated image

BigGAN generator convnet

generator ¢

latent sample

Slide credit: Jeff Donahue 117



BigBiGAN

X ~ Py

2 I9poou?

Slide credit; Jeff Donahue

real image sample

image recognition model (ResNet)

predicted latent
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BigBiGAN

Discriminates
between input
pairs:

Encoder pair
(x, 2" = E(x))

VS.

Generator pair
(x' = Gl(z), 2)

sees Images x and latents z (not just images x)

discriminator D

SCOTrES

vy

}_

unary score terms
for x & z only
119



BigBiGAN

2 I9pOoduQ
generator G

latents

Slide credit; Jeff Donahue

discriminator D

D

D

vy

}_

SCOI'CS

7

@J

loss

(0
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BigBiGAN: Unconditional Image Generation

Slide credit; 121



BigBiGAN: Unconditional Image Generation

- - - L] a2

- o _, \

-

"".: e .,‘
A R
-

’

Slide credit; Jeff Donahue 122



BigBiGAN: Representation Learning

Method Architecture Feature Top-1 Top-5
BiGAN [7, 42] AlexNet Conv3 31.0 -
SS-GAN [4] ResNet-19 Block6 38.3 -
Motion Segmentation (MS) [30, 6] ResNet-101 AvePool 22.6 48.3
Exemplar (Ex) [8, 6] ResNet-101 AvePool 315 53.1
Relative Position (RP) [5, 6] ResNet-101 AvePool 36.2 59.2
Colorization (Col) [41, 6] ResNet-101 AvePool 39.6 62.5
Combination of MS+Ex+RP+Col [6] ResNet-101 AvePool - 69.3
CPC 139) ResNet-101 AvePool 48.7 136
Rotation [ | |, 24] RevNet-50 x4  AvePool 554 -
Efficient CPC [17] ResNet-170 AvePool 61.0 83.0
ResNet-50 AvePool 554 774
— ResNet-50 BN+CReLLU | 56.6 78.6
g N oE) RevNet-50 x4  AvePool 60.8 814
RevNet-50 x4 BN+CReLU | 61.3 81.9

Slide credit; Jeff Donahue 123



BigBIGAN: Latent Space NNs

Slide credit; Jeff Donahue 124



BigBiGAN Reconstructions

Computing a reconstruction X' = G(E(x)): (Big)BiGAN is not directly trained for reconstruction! =
(1) Sample a real image x ~ P, Arises out of the objective: approx. reconstruction X' = G(E(x))
(2) Encoder predicts latents z' = E(x) Optimally confuses the joint data-latent discriminator.
(3) Generator predicts reconstruction x' = G(z)
: Reconstructions give insight into the semantics modeled.
real images x

h» | feded ; v
reconstructions X' = G(E(x))

Slide credit; Jeff Donahue 125



BigBiGAN Reconstructions

Slide credit; Jeff Donahue 126



Lecture overview

* Motivation and Definition of Implicit Models

* Original GAN (Goodfellow et al, 2014)

» Evaluation: Parzen, Inception, Frechet

 Theory of GANs

 GAN Progression

« (Conditional GANs, Cycle-Consistent Adversarial Networks
 GANSs and Representations

 Applications
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: . . e _ (Salimans et al., 2016;
Semi-supervised Classification bumoulin et al., 2016)

SVNH
Model Misclassification rate
VAE (M1 + M2) (Kingma et al., 2014) 36.02
SWWAE with dropout (Zhao et al., 2015) 23.56
DCGAN + L2-SVM (Radford et al., 2015) 22.18
SDGM (Maalge et al., 2016) 16.61

GAN (feature matching) (Salimans et al., 2016) 8.11 +1.3
ALI (ours, L2-SVM) 19.14 £ 0.50
ALI (ours, no feature matching) 7.42 4+ 0.65
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Text Generation: MaskGAN Fedus et al. 2018)

Pitch Black was a complete shock to me when I first saw it back in

Ground Truth 2000 In the previous years I
MaskGAN Pitch Black was a complete shock to me when I first saw it back in 1979
I was really looking forward
MaskMLE Black was a complete shock to me when I first saw it back in 1969 I live

in New Zealand

Table 3: Conditional samples from IMDB for both MaskGAN and MaskMLE models.
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Audio SyntheSiS: WaveGAN Dponahue et al. 2020)

SC09 Drums Birds

E!.Ia .!- -u -
. ‘
l g. ... i i
ek N =

Piano TIMIT

TIMIT (detail)

Real

WaveGAN
LY Y

J LA

..' ””mm'. 214

SpecGAN
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Video Generation (vondrick et al.. 2016)

B
64,5%/
Input Frame

Encoder
2D convolutions

Foreground Stream
3D convolutions

- %
.JJ — o
] s/ Foreground
e -‘—'je Tanh
6, I 2, iz
I o ¥,
49, )f&,‘, %, ‘%/ /130/ s, ,6'/ \ _¢
A
mOf+(1-m)Ob—
Q’m’ ? Iy
‘J(/I/
Mask
- ‘ Sigmoid
1/3,"/ o.,,? J i“’
‘us/be |—~
4 3"'-'3 | Replicate over Time
Background Stream

2D convolutions

p

S, Background
“ Tanh

g,
s
7

Generated Video
Space-Time Cuboid

Train Station

!“‘



DVD-GAN: Efficient Video Generation

(Clark et al., 2019)

g Apply ResNet to all frames individually.
\ N ——
ol e B e o -
temporal Attent:aon =
axis. —__ [l e
JS——

Afﬁne_ Separable

mapping ConvGRU | = =1L ‘Atmntion

|
|
I
|
|
|
|
|
|
|
|
|
|
I
: tO ZD ResNe
I
|
|
|
|
I
|
|
|
|
|
|

Apply ResNet to all frames individually. 'Ds

The

— e @ Generator is
trained to
fool both.

Select k
random
frames.

N

- - - - -

Attention

features.\ ]I
e
Separable
A |- - -
“ / \ResNeti 3D ResNet on frames then a

Gaussian latent Non-causal self-attention applied Input video ResNet on each frame.

vector. Zero initial state. to spatio-temporal feature map. (real or generated). ' Downsample all frames.
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DVD-GAN: Efficient Video Generation

(Clark et al., 2019)




3DGAN: Generative Shape Modeling

(Wu et al., 20106)

,—-—:J’ :5:— i T
= (@ T | | T -1
Zolazo@) | @
512x4x4x4 bV ==—— =1 .

256x8x8x8

128x16x16x16 64x32x32x32

y4 G(z) in 3D Voxel Space
64x64x64

Chairs Sofas

~d =
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HoloGAN: Learning 3D Representations from
Images (Nguyen-Phuoc et al., 2020)

During training, we randomly sample identity z and pose 0.
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HoloGAN: Learning 3D Representations from
(Nguyen-Phuoc et al., 2020)
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Motion Transfer: Everybody Dance Now

3

(SN

£

Source 10 Twrget | Result Sowolobwt)ﬁ"l
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Vid2Vid: Video to Video Synthesis

L
¥
L
b




StackGAN: Text-to-Image Synthesis (zhangetal. 16

The small bird has a red head with feathers that fade from red to gray from head to tail

This flower The flower A flower that
A unique yellow This floweris  This is a light 1s yellow have large has white petals
The petals of flower withno  pink and yellow colored flower and green in petals that are with some
this flower are  visible pistils in color, with  with many color, with pink with tones of yellow
white with a protruding from petals that are  different petals petals that yellow on some and green
large stigma the center oddly shaped  on a green stem  are ruffled of the petals filaments




SRGAN: Single Image Super-Resolution

(Ledig et al., 2017)
e Combine content loss with adversarial loss

original

<E- »,




Image Inpamtmg (Pathak et al., 2016)

ilmh

.—-_—..———




Unsupervised Domain Adaptation (Bousmalis et al., 2016)

Residual Block

Irelu
nl128s2
conv_| B,
BN [&
Irelu |
n512s2
n1024s2
fe:sigmoid

RGDB image samples
( ondltloned on a synthetic |mage)
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Semantic Image Editing: GauGAN

"""""""" >(X) >(H)—
Baxh 4 eiement-wiée
Norm y

(Park et al. 2019)
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Semantic Image Editing (karacan et al. 2020

Style Transfer Network

ool

Scene Generation Network

Center Crop
and Resizing

Source Image

‘ Hallucinated
==~ | Style Image

Source Layout

Target Attributes
Flowers 1, Cloudy 1

https://hucvl.github.io/attribute hallucination/
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https://hucvl.github.io/attribute_hallucination/

* The semantic layout categories are
encoded into 8-bit binary codes

Scene Generation Network (SGN) - e

represented by a 40-d vector.

Generator Network _,? Discriminator Network

-

=~

Binary coding

S R Binary coding

Rep hcar]on

Spatial Replication

m

- —
1x1
Convolution i

{0,1}

Z iN N (0, 1 ) = Residual Blocks

Image resolu‘uon
100 8 512 x 512

* An architecture similar to Pix2pixHD model (Wang et al. 2018)

* Generator network: A coarse-to-fine model with 2 generator networks

* Discriminator network: A combination of three different discriminator
networks operating at an image pyramid of 3 scales

T.-C. Wang et al. High-resolution image synthesis and semantic manipulation with conditional GANs. CVPR 2018. 145



Training Objective of SGNs

L — mi L G.D A percen (G
SGN mén D={5??5{27D3}k§:23 GAN( ; k) T p p( )

* Relative Negative Mining (RNM)

— real Image, relevant attributes and layout
VS.
fake image, relevant attributes and layout
real image, mismatching layout (chosen from hard negatives)
or mismatching attributes

 Layout-Invariant Perceptual Loss

2
= Lpereen(G) = B, (oo Srampanra(s.0) |1 10(@) = fr(G (2,0, 9))])
— fP: CNN encoder for the scene parser network (Zhou et al., 2018)

B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, A. Torralba. Scene Parsing through ADE20K Dataset. CVPR 2017. 146



Style Transfer Network

style image

 The FPST method of (Li et al., 2018),
which is composed of two steps with
close-form solutions:

1. Stylization step JF;
2. Smoothing step Fo

Iout — FQ (Fl(IC'7IS)7IC)

Y = File,Is)
T

Fo

content image

]:2(Y7 IC)

* The stylization step Is based on the
whitening and coloring transform to
stylize images via feature projections Ic ||l

— Style information encoded by the -
covariance matrix of VGG features -

>—

Pc

Ps

5T
Ps = EsAZE]

* The smoothing step ensures spatially
consistent stylizations via a manifold
ranking operator.

whitening

1 Convolution BEE Max pooling [ Max pooling mask
= Upsampling E=3 Unpooling

Y. Li, M.-Y. Liu, X. Li, M.-H. Yang, J. Kautz. A Closed-form Solution to Photorealistic Image Stylization. ECCV 2018.

_ 5 T

coloring
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ALS18K Dataset

» A dataset of 17772 outdoor images with layout and

transient attribute labels, formed by combining and
annotated images from
sunny/direct sun | 0.80

— Transient Attributes dataset (Laffont et al., 2013) loudsiovercast [0
— ADE20K dataset (Zhou et al., 2017) ogre

winter ] 1.00

OO0 0 bS] 5 2. ]

= 3 S0 = =. =0330330005 % .
gocozx32530637%29 307 22<BFTVOOO 53083755652 |
7580573504055 TR 2653823728835 active/busy 0.00

2can
2 )
559 D
3 Q 83730 32 5 Q
L] L] - = [oR=] o 09 3 = [eNe)
$g @ %0 5 < 37 58 ~ ~ggk 35 oxo o o 2 g% =’ ©
( } 20 < d K] b oo 3 ®a0 Ea
/ =9 [ o
. .
'Tg<00U000SI0QFOVSTOZNTIVCOTTOZNOISANO QU VT 2TQ 2T I T=2ZXZ3p00 F03sgQ@=ITIFO
1338 IMages fOI’ teSt” | SEPEEEEERR A R e b SR R PERSE L I FSEEEEFL
3x0%32°9 <302 0258 §32835%2722583035885536939543Ac 2550350 85058832
o o B0 E H °-9g 0805 3 D-— 2 3 803
- 55 S0 o °= B 3 o
E > 2 5 @

o oza2g~

0= =} 0]
o] 2
aQ 5] [°} -

* 150 semantic categories i~ | |
lighting: sunrise/sunset, bright, daylight, etc.
° 40 tl‘a nSient attrl bUteS weather: sunny, warm, moist, foggy, cloudy, etc.

seasons: spring, summer, autumn, winter

in f|Ve CategOneS subjective impressions: gloomy, soothing, beautiful, etc.

additional attributes: active/busy, cluttered,
dirty/polluted, lush vegetation, etc.

P.-Y. Laffont, Z. Ren, X. Tao, C. Qian, J. Hays. Data-driven Hallucination of Different Times of Day from a Single Outdoor Photo. SIGGRAPH Asia 2013.

B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, A. Torralba. Scene Parsing through ADE20K Dataset. CVPR 2017. 148




Style Transfer Network

Target Attributes
Flowers 1, Cloudy ¢

ground s

_~Semant|c Iayout e e R P s B

Manipulating Attributes of Natural Scenes Via HaIIucma’un [Karacan et al., 2020]



I\/Iampulatmg Attnbutes of Natural Scenes via Hallu a’uon [Karacan et al., 2020]



night

prediction

Manipulating Attributes of Natural Scenes via Hallucination [Karacan et al., 2020]



Manipulating Attributes of Natural Scenes via Hallucination [Karacan et al., 2020]



SNOW

-~

Manipulating Attributes of Natural Scenes via Hallucination [Karacan et al., 2020]



winter

Manipulating Attributes of Natural Scenes via Hallucination [Karacan et aI.,. éCZO]



Spring and clouds

prediction




Moist, rain and fog

prediction

Manipulating Attributes of Natural Scenes via Hallucination [Karacan et al., 2020]



flowers

h “o ;

-h;‘v‘ L 2

I\/Iampulatmg Attnbutes of Natural Scehes V|a HaIIucmann [Kara‘can et al., 2018]



HACETTEPE
UNIVERSITY
COMPUTER

s VISION LAB

Sunset ' Wi ‘ Spring & Clouds Moist,
Rain

& Fog

Manipulating Attributes of Natural Scenes via Hallucination
Levent Karacan, Zeynep Akata, Aykut Erdem, Erkut Erdem

ACM Transactions on Graphics

Demo



Reference Source
Real/Synlhesized (D(T+1.T2)-1)%D(T4, G(T1)Y
label Adversarial loss

se loss

=
g
=
o
=8
£
>
£ 3
Q
=3

G(T1) T
!

Per ept al los:

Real/Synthesized
label

A(Dra(T)-1V-Dra Graf T4 )
Adversarial loss
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£ 4
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Cycle consistency loss

Gyy(T2)
Real/Synthesized
label

Gra(Gri(T2)) (Dny(T 41Dy (Gr(T2)P

- Image Synthesis in Multi-Contrast MRI [Ul Hassan Dar et al. 2019]




Next lecture;
Score-Based and
Denoising Diffusion Models



