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Abstract. Disconnected skeleton [1] is a very coarse yet a very stable
skeleton-based representation scheme for generic shape recognition in
which recognition is performed mainly based on the structure of discon-
nection points of extracted branches, without explicitly using information
about boundary details [2, 3]. However, sometimes sensitivity to bound-
ary details may be required in order to achieve the goal of recognition. In
this study, we first present a simple way to enrich disconnected skeletons
with radius functions. Next, we attempt to resolve the conflicting goals
of stability and sensitivity by proposing a coarse-to-fine shape match-
ing algorithm. As the first step, two shapes are matched based on the
structure of their disconnected skeletons, and following to that, the com-
puted matching cost is re-evaluated by taking into account the similarity
of boundary details in the light of class-specific boundary deformations
which are learned from a given set of examples.

1 Introduction

There is a long history of research in computer vision on representing generic
shape since shape information is a very strong visual clue in recognizing and
classifying objects. A generic shape representation should be insensitive to not
only geometric similarity transformations (i.e. translation, rotation, and scaling)
but also visual transformations such as occlusion, deformation and articulation
of parts. Since their introduction by Blum in [4], local symmetry axis based

representations (commonly referred to as shape skeletons), have attracted and
still attracts many scientists in the field, and became a superior alternative to
boundary-based shape representations. These representation schemes naturally
capture part structure by modeling any given shape via a set of axial curves,
each of which explicitly represents some part of the shape. Once the relations
among extracted shape primitives, i.e. the skeleton branches, are expressed in
terms of a graph or a tree data structure (e.g. [5–7]), resulting shape descriptions
are insensitive to articulations and occlusions.



A challenging issue regarding skeleton-based representations is the so-called
instability of skeletons [8]. These representations are very sensitive to noise
and/or small details on the shape boundary, and hence two visually very sim-
ilar shapes might have structurally different skeleton descriptions. Hence, the
success of any skeletonization method depends on how robust the final skeleton
descriptions are in the presence of noise and shape features such as protrusions,
indentations, necks, and concavities. As one might expect, this instability issue
can also be passed over to the recognition framework, but in this case, the recog-
nition algorithm should be devised in such a way that it includes a mechanism
to handle possible structural changes (e.g. [5, 9–14]). A line of studies that fo-
cuses on solving the instability issue early in the representation level investigates
the abstraction of skeleton graphs. This includes the methods which seek for a
simplified graphical representation where the level of hierarchy is reduced to a
certain extent (e.g. [5, 7, 15, 16]), the studies which try to come up with an ab-
stract representation from a set of example skeletons (e.g. [5, 17, 18]), and more
general graph spectral approaches (e.g. [19, 20]).

The method proposed in [1] is conceptually different than other approaches
in the sense that the aim is obtaining the coarsest yet the most stable skeleton
representations of shapes from scratch. The method depends on computing a
special, excessively smooth distance surface where each skeleton extracted from
this surface is in the form of a set of unconventionally disconnected and sim-
ple branches, i.e. the skeleton branches all terminate before reaching the unique
shape center and no extra branching occurs on them. Hence, one can express dis-
connected skeletons in terms of rooted attributed depth-1 trees, whose nodes store
some measurable properties, such as the location of the disconnection points, the
length and the type (positive or negative, respectively identifying protrusions or
indentations) of the branches [3] (Fig. 1).

Disconnected skeletons have been previously used for recognition in [2, 3] in
which quite successful results are reported. Although the representation does
not suffer from the instability of skeletons as a direct result of the disconnected
nature of extracted branches, and that structure alone is an effective shape

Fig. 1: Disconnected skeletons of some shapes and the corresponding tree representa-
tions. Note that each disconnection point (except the pruned major branches) gives
rise to two different nodes in the tree, representing the positive and negative skeleton
branches meeting at that disconnection point. However, for illustration purposes, only
one node is drawn.



representation, as commented in [21], one might criticize the very coarseness of
descriptions that they do not explicitly carry any information about boundary
details. This issue is in fact about a philosophical choice of compromise between
sensitivity and stability. Clearly, in distinguishing shapes, it might happen that
the similarity of boundary details is more distinctive than the similarity of the
structure of disconnection points (Fig. 6, 7).

In this study, we present a coarse-to-fine strategy to deal with such situations.
The organization of the paper is as follows. In Section 2, we describe a way
to obtain radius functions [4] (associated with the positive skeleton branches)
in order to enrich the disconnected skeleton representation with information
about shape boundary details. In Section 3, we utilize this extra information to
enhance the class-specific knowledge utilized in the category influenced matching

method proposed in [3] that boundary deformations in a shape category are
additionally learned from examples. Following to that, in Section 4, we introduce
a fine tuning step to the category influenced matching method, which then takes
into account the similarity of boundary details. In Section 5, we present some
matching results. Finally, in Section 6, we give a brief summary and provide
some concluding remarks.

2 Obtaining Radius Functions

Disconnected skeleton of a shape is obtained from a special distance surface φ,
the level curves of which are the excessively smoothed versions of the initial
shape boundary (Fig. 2(b)). The surface has a single extremum point captur-
ing the center of a blob-like representation of the shape, and from that one can
extract skeleton branches using the method in [22] in a straightforward way,
without any need of a shock capturing scheme. As analyzed in detail in [2],
this special surface is naively the limit case of the edge strength function v [22]
when the degree of regularization specified by the parameter ρ tends to infin-
ity (Fig. 2(c)-(e)). The excessive regularization employed in the formulation of
φ makes it possible to obtain a very stable skeleton representation but this
stability comes at the expense of losing information about boundary details. In
contrast to Blum’s skeletons, it is impossible to recover the distance from a skele-
ton point to the closest point on the shape boundary from the surface values.

(a) (b) (c) (d) (e)

Fig. 2: (a) A camel shape. The level curves of the surfaces (b) φ, (c) v, computed with
ρ = 16, (d) v, computed with ρ = 64, (e) v, computed with ρ = 256.



Fig. 3: An illustration of a
ribbon-like section and its
skeleton (the dotted line).

In this study, we exploit the link between the sur-
faces φ and v, and in order to obtain the radius
functions associated with the positive branches of
disconnected skeletons (which are analogous to
the Blum skeleton), we propose to benefit from
a corresponding v surface. Consider a ribbon-like
section of a shape illustrated in Fig. 3 in which the
dotted line shows the skeleton points represent-
ing that shape section. Assuming the 1D form of
the edge strength function v, the diffusion process
along a 1D slice (shown in red) is given by:

vxx(x) −
v(x)

ρ2
= 0 ; 0 ≤ x ≤ 2d

with the boundary conditions v(0) = 1, v(2d) = 1.

The explicit solution of this equation can be easily derived as:

v(x) =

(
1 − e2d/ρ

e−2d/ρ − e2d/ρ

)
e−x/ρ −

(
1 − e−2d/ρ

e−2d/ρ − e2d/ρ

)
ex/ρ (1)

The value of v on the skeleton point (the midpoint x = d) is equal to the hy-
perbolic cosine function 1

cosh(d/ρ) , or equivalently, the distance from the skeleton

point to the closest point on the boundary is given by ρcosh−1( 1
v(d)). This ex-

plicit solution is certainly not valid for the 2D case as the interactions in the
diffusion process are more complicated but it can be used as an approximation.
Let s be a skeleton point located at (sx, sy) along a positive skeleton branch.
Given a corresponding edge strength function v computed with a sufficiently
large value of ρ, the minimum distance from s to the shape boundary, denoted
by r(s), can be approximated with:

r(s) = ρcosh−1

(
1

v(sx, sy)

)
(2)

Fig. 4(a) shows the disconnected skeleton of a horse shape where the radius
functions of the positive skeleton branches are approximately obtained from the
edge strength function computed with ρ = 256 (the same value of ρ is used in
the experiments). The reconstructions of the shape sections associated with the
positive skeleton branches are given separately in Fig. 4(b). Notice that small de-
tails on the shape boundary, e.g. the horse’s ears, cannot be recovered completely
since the perturbations on the shape boundary are ignored in disconnected skele-
ton representation. Moreover, the reconstructions might deviate from their true
form at some locations, e.g. the skeleton points close to the leg joints, where a
positive branch loses its ribbon-like structure of having slowly varying width.
However, these approximate radius functions, when normalized with respect to
the radius of maximum circle associated with the shape center, can be used as
the descriptions of the most prominent boundary details (Fig. 4(c)).
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(c)

Fig. 4: (a) Disconnected skeleton of a horse shape and the radius functions obtained
from the edge strength function computed with ρ = 256 (the maximal inscribed circles
are drawn at every 3 consecutive skeleton points). (b) Shape sections associated with
the positive skeleton branches. (c) Normalized radius functions associated with the
branches A-F (from top left to bottom right).

3 Learning Boundary Deformations in a Shape Category

In the previous section, we developed a way to supply information about bound-
ary details to disconnected skeletons. In this section, we extend our analysis
and use the enriched skeleton descriptions to learn boundary deformations in a
shape category from a given set of examples. It is noteworthy that the one-level
hierarchy in the skeleton descriptions makes the learning process very practical
since each positive skeleton branch simply corresponds to a major protrusion of
the shape, and hence the correspondences among two disconnected skeletons can
be found by a one-to-one matching.

Once the correspondence information is available, we follow the approach
in [5], and model boundary deformations of a shape section in a category by
forming a low-dimensional linear space from the corresponding radius functions.
To be specific, we first uniformly sample equal number of points along matched
positive branches (Fig. 5). The deformation space is then modeled by applying



principal component analysis (PCA), where the first few principal components
describe the representation space for possible deformations. In the experiments,
our sample rate is 32 per each positive skeleton branch, and we use the first
five principal components. Hence, each sampled radius functions are represented
with a 5-dimensional vector.

(a)
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Fig. 5: An analysis of boundary deformations using approximated radius functions.
(a) Equivalent shape sections of 15 squirrel shapes, each associated with a positive
skeleton branch. (b) The corresponding set of uniformly sampled radius functions.

4 A Coarse-To-Fine Strategy to Incorporate Similarity of

Boundary Details into Category-Influenced Matching

In [3], we presented a novel tree edit distance based shape matching method,
named as category influenced matching, in which we used rooted attributed
depth-1 trees to represent disconnected skeletons of shapes. The novelty in that
work lies in the fact that the semantic roles of the shapes in comparison are dis-
tinguished as query shape or database shape (i.e. a member of a familiar shape
category), and the knowledge about the category of the database shape is utilized
as a context in the matching process in order to improve the performance. Such
a context is defined by a category tree, which is a special tree union structure,
nodes of which store basically the correspondence relations among the members
of the same shape category, and some statistical information about observed
skeleton attributes.

Here, we propose a fine tuning step to our category influenced matching
method, in which the computed distance between the shapes in comparison is
re-evaluated based on the similarity of their boundary details. Note that the
process presented in Section 2 for learning class-specific boundary deformations
can be easily integrated to the formation procedure of category trees. In that
case, we additionally store the mean of the matched radius functions together



with the reduced set of principle components in the nodes of the category tree.
More formally, the overall algorithm can be summarized with the following two
successive steps:

1. Let T1 be the shape tree of the query shape which is being compared with
the shape tree of a database shape, denoted by T2, nodes of which is linked
with a specific leaf node of the corresponding category tree. Compute an
initial distance and the correspondences between T1 and T2 using category
influenced matching method:

d (T1, T2) = min
S




∑

u∈Λ

rem (u) +
∑

v∈∆

ins (v) +
∑

(u,v)∈Ω

ch (u, v,B)



 (3)

where Λ and ∆ respectively denote the set of nodes removed from T1 and
the set of nodes inserted to T1 from T2, and Ω denotes the set of matched
nodes (See [3] for the details about the definition of cost functions associated
with the edit operations rem(ove), ins(ert) and ch(ange)).

2. Let S∗ = (Λ∗, ∆∗, Ω∗) be the sequence of edit operations transforming T1

into T2 with the minimum cost. Re-calculate the distance between T1 and
T2 according to Equation 4, in which Φ(u, v), appearing inside the extra
term in front of the label change cost function, is the similarity between
the radius functions associated with matched skeleton branches. Note that
Φ(u, v) is calculated after projecting the corresponding uniformly sampled
radius functions onto the related low-dimensional deformation space, as in
Equation 5.

d̂ (T1, T2) =
∑

u∈Λ∗

rem (u) +
∑

v∈∆∗

ins (v) +
∑

(u,v)∈Ω∗

(
(1 − Φ(u, v)) × ch (u, v,B)

)
(4)

Φ(u, v) =






1√
2πσ2

exp

(
−

5∑

i=1

(αi − βi)
2

2σ2

)
if u, v express positive branches

0 otherwise

(5)

where α and β are to the vectors formed by projecting the radius functions
associated with u and v onto related deformation space (σ is taken as σ = 0.4
in the experiments).

5 Experimental Results

To demonstrate the effectiveness of the proposed approach, we test our method
on the matching examples shown in Fig. 6, 7, in which the coarse structure
of disconnected skeletons alone is not enough in distinguishing the shapes. In
these examples, although part correspondences are correctly determined, the
costs obtained with the category influenced matching method in [3] do not well



reflect the perceptual dissimilarities3. On the other hand, when one examines the
differences in the boundary details, it is clear that a more perfect decision can
be made. For example, refer to Fig. 6. The pairs of radius functions associated
with the matched branches is much similar in the case of matching of the horse
shapes than the ones in the matching of the query horse shape with the cat
shape. The only exception is the similarity of the horses’ tails (Fig. 6(b), in the
middle row and on the right) but note that these radius functions are compared
in the corresponding deformation spaces that are learned from the given set of
examples. In this regard, the proposed coarse-to-fine strategy can be used to
refine the matching results.
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Fig. 6: Some matching results and the uniformly sampled radius functions of matched
branches. The final matching costs are (a) 0.5800 (reduced from 0.7240), (b) 0.5368 (re-
duced from 0.7823). Note that the similarity of radius functions are actually computed
in the related low-dimensional deformation spaces.

3 In each experiment, the knowledge about the category of the database shape (the
ones on the right) is defined by 15 examples of that category, randomly selected from
the shape database given in [3].



(a) (b)
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Fig. 7: Some other matching results. The final matching costs are (a) 1.1989 (reduced
from 1.2904), (b) 0.9458 (reduced from 1.4936), (c) 1.9576 (reduced from 2.1879), (d)
1.8744 (reduced from 3.0387), (e) 0.8052 (reduced from 0.8105), (f) 0.6738 (reduced
from 1.0875).

6 Summary and Conclusion

Despite its coarse structure, disconnected skeleton representation is a very stable
and effective skeleton based representation. However, as the result of the exces-
sive regularization employed in the extraction process, no information about
boundary details is available in the skeleton descriptions. As articulated in [2],
this is in fact a compromise between the opposing goals of stability and sen-
sitivity. To enrich disconnected skeletons, we present a simple way to obtain
the radius functions associated with the positive skeleton branches. This allows
us to learn class-specific boundary deformations in a category when the corre-
spondence relations among the members of the category is specified. This extra
information is then incorporated into the category influenced matching method
in [3] as a refinement step, in which the initial matching cost is re-evaluted by
taking into account the similarity of radius functions of the matched positive
branches. Our experiments show that this approach can be used to obtain per-
ceptually more meaningful matching costs when the structure of disconnection
points by themselves are not so distinctive in distinguishing shapes.
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