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Abstract—Predicting saliency in videos is a challenging prob-1

lem due to complex modeling of interactions between spatial2

and temporal information, especially when ever-changing, dy-3

namic nature of videos is considered. Recently, researchers have4

proposed large-scale datasets and models that take advantage of5

deep learning as a way to understand what’s important for video6

saliency. These approaches, however, learn to combine spatial and7

temporal features in a static manner and do not adapt themselves8

much to the changes in the video content. In this paper, we9

introduce Gated Fusion Network for dynamic saliency (GFSal-10

Net), the first deep saliency model capable of making predictions11

in a dynamic way via gated fusion mechanism. Moreover, our12

model also exploits spatial and channel-wise attention within a13

multi-scale architecture that further allows for highly accurate14

predictions. We evaluate the proposed approach on a number15

of datasets, and our experimental analysis demonstrates that it16

outperforms or is highly competitive with the state of the art.17

Importantly, we show that it has a good generalization ability,18

and moreover, exploits temporal information more effectively via19

its adaptive fusion scheme.20

Index Terms—dynamic saliency estimation, gated fusion, deep21

saliency networks22

I. INTRODUCTION23

Human visual system employs visual attention mechanisms24

to effectively deal with huge amount of information by fo-25

cusing only on salient or attention grabbing parts of a scene,26

and thus filtering out irrelevant stimuli. Saliency estimation27

methods offer different computational models of attention28

to mimic this key component of our visual system. These29

methods generate a so-called saliency map within which a30

pixel value indicates the likelihood of that pixel being fixated31

by a human. Since the pioneering work of [1], this research32

area has gained a lot of interest in the last few decades (please33

refer to [2] for an overview), and it has found to have practical34

use in a variety of computer vision tasks such as visual quality35

assessment [3], [4], image and video resizing [5], [6], video36

summarization [7], to name a few. Early saliency prediction37

approaches use low-level (color, orientation, intensity) and/or38

high-level (pedestrians, faces, text, etc.) image features to39

estimate salient regions. While low-level cues are used to40

detect regions that are different from their surroundings, top-41

down cues are used to infer high-level semantics to guide the42

model. For example, humans tend to focus some object classes43

more than others. Recently, deep learning based models have44

started to dominate over the traditional approaches as they45

can directly learn both low and high-level features relevant46

for saliency prediction [8], [9].47

Most of the literature on saliency estimation focuses on48

static images. Lately, predicting saliency in videos has also49

A single input frame and its corre-
sponding fixation map

Four consecutive overlaid frames and
their overlaid fixation maps

Fig. 1: Predicting video saliency requires finding a harmonious
interaction between appearance and temporal information. For
example, while the first row shows a case in which attention
is guided more by visual appearance, in the second row,
motion is the most determining factor for attention. Hence,
we speculate that an adaptive scheme would be better suited
for this task.

gained some attraction, but it still remains a largely unexplored 50

field of research. Video saliency models (also called dynamic 51

saliency models) aim to predict attention grabbing regions in 52

dynamically changing scenes. While static saliency estimation 53

considers only low-level and high-level spatial cues, dynamic 54

saliency needs to take into account temporal information too 55

as there is evidence that moving objects or object parts can 56

also guide our attention. Motion and appearance play comple- 57

mentary roles in human attention and their significance can 58

change over time. As we illustrate in Fig. 1, in dynamic scenes, 59

humans tend to focus more on moving parts of the scene and 60

the eye fixations change over time, showing the importance 61

of motion cues (bottom row). On the other hand, when there 62

is practically no motion in the scene, low-level appearance 63

cues dominantly guide our attention and we focus more on 64

the regions showing different visual characteristics than their 65

surroundings (top row). Motivated by these observations, in 66

this work, we develop a deep dynamic saliency model which 67

handles spatial and temporal changes in the visual stimuli in 68

an adaptive manner. 69

The first generation of dynamic saliency methods were 70

simply extensions of the static saliency approaches, e.g. [10], 71

[11], [12], [13], [14]. In other words, these methods adapted 72

the strategies proposed for static scenes and mostly modified 73

them to work on either 3D feature maps that are formed by 74

stacking 2D spatial features over time or 2D feature maps 75

encoding motion information like optical flow images. Sev- 76

eral follow-up works, however, have approached the problem 77
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from a fresh perspective and developed specialized methods78

for dynamic saliency detection, e.g. [15], [16], [17], [18],79

[19], [20], [21], [22], [23]. These models either utilize novel80

spatio-temporal features or employ data-driven techniques to81

learn relevant features from data. As with the case of state-82

of-the-art static saliency models, approaches based on deep83

learning have also shown promise for dynamic saliency. These84

studies basically explore different neural architectures used for85

processing temporal and spatial information in a joint manner,86

and they either use 3D convolutions [24], LSTMs [24], [25]87

or multi-stream architectures that encode temporal information88

separately [26], [27], [28].89

In this work, we introduce Gated Fusion Network for video90

saliency (GFSalNet). Our proposed network model is radically91

different from the previously proposed deep models in that92

it includes a novel content-driven fusion scheme to combine93

spatial and temporal streams in a more dynamic manner. In94

particular, our model is based on two-stream CNNs [29], [30],95

which have been successfully applied to various video analysis96

tasks. To our interest, these architectures are inspired by the97

ventral and dorsal pathways which are suggested to subserve98

object identification and motion perception, respectively [31],99

[32], in the human visual cortex [33]. Although the use100

of two-stream CNNs in video saliency prediction has been101

investigated before [27], the main novelty of our work lies102

in the ability to fuse appearance and motion information103

in a spatio-temporally coordinated manner by estimating the104

importance of each cue with respect based on the current video105

content.106

The rest of the paper is organized as follows: In Section 2,107

we give a brief overview of the existing dynamic saliency108

approaches. In Section 3, we present the details of our pro-109

posed deep architecture for video saliency. In Section 4, we110

give the details of our experimental setup, including evaluation111

metrics, datasets and the competing dynamic saliency models,112

and discuss the results of our experiments. Finally, in the last113

section, we offer some concluding remarks.114

Our codes and predefined models, along with the saliency115

maps extracted with our approach, will be publicly available116

at the project website1.117

II. RELATED WORK118

Early visual saliency models can be dated back to 1980s119

with the Feature Integration Theory by [34]. The first models120

of saliency, such as [35], [1], provide computational solutions121

to [34], and since then a notable number of saliency models122

are developed, most of which deal with static scenes. For a de-123

tailed list of pre-deep learning saliency estimation approaches,124

please refer to [2]. After the availability of large-scale datasets,125

researchers proposed various deep learning based models for126

static saliency that outperformed previous approaches by a127

large margin [36], [37], [38], [39], [40], [41], [42], [43], [44].128

Early models for dynamic saliency generally depend on129

previously proposed static saliency models. Adaptation of130

these models to dynamic scenes is achieved by considering131

1https://hucvl.github.io/GFSalNet/

features related to motion such as the optical flow infor- 132

mation. For example, [10] proposed a saliency prediction 133

method called PQFT that predicts the salient regions via the 134

phase spectrum of Fourier Transform of the given image. In 135

particular, PQFT generates a quaternion image representation 136

by using color, intensity, orientation and motion features and 137

estimates the salient regions in the frequency domain by using 138

this combined representation. [11] extracted salient parts of 139

video frames by similarly performing a spectral analysis of the 140

frames considering both spatial and temporal domains. [12] 141

employed local regression kernels as features to calculate 142

self similarities between pixels or voxels for figure-ground 143

segregation. [13] extended the previously proposed static 144

saliency model by [45]’s model by including motion cues 145

to the graph-theoretic formulation. [46] employ a two stream 146

approach that generates spatial saliency map (using color and 147

texture features) and temporal saliency map (using optical flow 148

feature) separately and combines these maps with an entropy 149

based adaptive method. [14] proposed a dynamic saliency 150

model for activity recognition that works in an unsupervised 151

manner. Their method is based on an encoding scheme that 152

considers color along with motion cues. 153

Following these early approaches, the researchers started 154

to develop novel video saliency models specifically designed 155

for dynamic stimuli. For instance, [15] proposed a sparsity 156

based framework that generates spatial saliency maps and 157

temporal saliency maps separatelty based on entropy gain 158

and temporal consistency, respectively, and then combines 159

them. [16] integrated several visual cues such as static and 160

dynamic image features based on color, texture, edge distri- 161

bution, motion boundary histograms, through learning-based 162

fusion strategies and later employed this dynamic saliency 163

model for action recognition. [17] suggested a learning-based 164

model that generates a candidate set regions with the use 165

of existing methods and then predicts gaze transitions over 166

subsequent video frames conditionally on these regions. [18] 167

proposed a simple dynamic saliency model that combines 168

spatial saliency maps with temporal saliency using pixel- 169

wise maximum operation. In their work, while the spatial 170

saliency maps are extracted using multi-scale analysis of 171

low-level features, temporal saliency maps are obtained by 172

examining dynamic consistency of motion through an optical 173

flow model. [19] suggested an approach that independently 174

estimates superpixel-level and pixel-level temporal and spa- 175

tial saliency maps and subsequently combines them using 176

an adaptive fusion strategy. [20] proposed an approach that 177

oversegments video frames by using both spatial and tem- 178

poral information and estimates the saliency score for each 179

region by computing the regional contrast values via low- 180

level features extracted from these regions. [21] suggested 181

to learn a filter bank from low-level features for fixations. 182

This filterbank encodes the association between local feature 183

patterns and probabilities of human fixations, and is used to re- 184

weight fixation candidates. [22] formulated another dynamic 185

saliency model by exploiting the compressibility principle. 186

More recently, [23] proposed a saliency model (called AWS- 187

D) for dynamic scenes by considering the observation that 188

high-order statistical structures carry most of the perceptually 189
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relevant information. AWS-D [23] removes the second-order190

information from input sequence via a whitening process.191

Then, it computes bottom-up spatial saliency maps using a192

filter bank at multiple scales, and temporal saliency maps with193

the use of a 3D filter bank. Finally, it combines all these maps194

by considering their relative significance.195

In addition to the aforementioned studies, some researchers196

also investigated the problem of salient object detection in197

videos where the main aim is not to predict human fixation198

maps in each frame but to detect foreground objects and199

their boundaries that pop out as compared to their surround-200

ings [47], [48], [49], [50], [51], [52], [53]. Some of the deep201

salient object detection methods also uses global and local202

information by processing information at multiple levels [54],203

[55], [56], [57], [58], [59], [60], [61]. Since, these methods are204

trained on salient object segmentation datasets and evaluated205

differently than the saliency prediction models, we do not206

include these studies in our experimental evaluation.207

Deep learning based dynamic saliency models have208

received attention only recently. [24] proposed a recurrent209

mixture density network (RMDN) for spatio-temporal visual210

attention. The method uses a C3D architecture [62] as a211

backbone to integrate spatial and temporal information. This212

representation module is fed to a Long Short-Term Memory213

(LSTM) network, which is connected to Mixture Density Net-214

work (MDN) whose outputs are the parameters of a Gaussian215

mixture model expressing the saliency map of each frame. [27]216

suggested a two stream CNN model [29], [30] which considers217

the motion and appearance clues in videos. While, optical flow218

images are used to feed the temporal stream, raw RGB frames219

are used as input for the spatial stream. [26] presented an220

attention network to predict where driver is focused. In this221

work, the authors also proposed a dataset that consists of ego-222

centric and car-centric driving videos and eye tracking data223

belongs to the videos. Their network consists of three indepen-224

dent paths, namely spatial, temporal and semantic paths. While225

the spatial path uses raw RGB data as input, the temporal one226

uses optical flow data to integrate motion information and the227

last one processes the segmentation prediction on the scene228

given by the model by [63]. In the final layer of the network,229

the three independent maps are summed and then normalized230

to obtain the final saliency map. [28] proposed a deep model231

called OM-CNN which consists of two subnetworks, namely232

objectness subnet to highlight the regions that contain an233

object, motion subnet to encode temporal information, whose234

outputs are then combined to generate some spatio-temporal235

features. [25] proposed a model called ACLNet which employs236

a CNN-LSTM architecture to predict human gaze in dynamic237

scenes. The proposed approach focuses static information with238

an attention module and allows an LSTM to focus on learning239

dynamic information. Recently, [64] proposed an encoder-240

decoder based deep neural network called SalEMA, which241

employs a convolutional recurrent neural network method to242

include temporal information. In particular, it processes a243

sequence of RGB video frames as input to employ spatial244

and temporal information with the temporal information being245

inferred by the weighted average of the convolution state of246

the current frame and all the previous frames. [65] suggested a247

different model called TASED-Net, which utilizes a 3D fully- 248

convolutional encoder-decoder network architecture where the 249

encoded features are spatially upsampled while aggregating the 250

temporal information. [66] recently developed another two- 251

stream spatiotemporal salieny model called STRA-Net that 252

considers dense residual cross connections and a composite 253

attention module. 254

The aforementioned dynamic saliency models suffer from 255

different drawbacks. The early methods employ (hand-crafted) 256

low-level features that do not provide a high-level understand- 257

ing of the video frames. Deep models eliminate this pitfall by 258

utilizing an end-to-end learning strategy and, hence, provide 259

better saliency predictions. They differ from each other by how 260

they include motion information within their respective archi- 261

tectures. As we reviewed, the two main alternative approaches 262

include using recurrent connections or processing data in 263

multiple streams. Although RNN-based models help to encode 264

temporal information with less amount of parameters, the 265

encoding procedure compresses all the relevant information 266

into a single vector representation, which affects the robustness 267

especially for longer sequences. In that respect, the accuracy of 268

the two-stream models do not, in general, degrade as the length 269

of a sequence increases. Moreover, they are more interpretable 270

as they need to perform fusion of spatial and temporal features 271

in an explicit manner. On the other hand, their performance 272

depends on accurate estimation of the optical flow maps used 273

as input to the temporal stream. Hence, most of these two- 274

stream models employ recent deep-learning based optical flow 275

estimation models and even some of them uses some additional 276

post-processing steps such as confining the absolute values of 277

the magnitudes within a certain interval to avoid noise, as in 278

STRA-Net [66]. Our proposed model also uses a two-stream 279

approach, but as we will show, it exploits a novel and more 280

dynamic fusion strategy, which boosts the performance and 281

further improves the interpretability. 282

III. OUR MODEL 283

A general overview of our proposed spatio-temporal net- 284

work architecture is given in Fig. 2(a). We use a two-stream 285

architecture that processes temporal and spatial information 286

in separate streams, similar to the one in [27]. That is, we 287

respectively feed the spatial stream and temporal stream with 288

RGB video frames and the corresponding optical flow images 289

as inputs. Different than [27], however, our network com- 290

bines information coming from several levels (Section III-A) 291

and fuses both streams via a novel dynamic fusion strat- 292

egy (Section III-C). We additionally utilize attention blocks 293

(Section III-B) to select more relevant features to further boost 294

the performance of our model. Here, we use a pre-trained 295

ResNet-50 model [67] as the backbone of our saliency network 296

as commonly explored by the previous saliency studies. In 297

particular, we remove the average pooling and fully connected 298

layers after the last residual block (ResBlock4) and then 299

adapt it for saliency prediction by adding extra blocks. Using 300

ResNet-50 model allows us to encode both low-, mid- and 301

high-level cues in the visual stimuli in an efficient manner. 302

Moreover, the number of network parameters is much smaller 303

as compared to other alternative backbone networks. 304
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(a) Our full model

(b) Our submodules: (i) Multi-level infor-
mation, (ii) spatial attention, (iii) channel-
wise attention blocks.

Fig. 2: Our two-stream dynamic saliency model uses RGB frames for spatial stream and optical flow images for temporal
stream. These streams are integrated with a dynamic fusion strategy that we referred to as gated fusion. Our architecture also
employs multi-level information block to fuse multi-scale features extracted at different levels of the network and attention
blocks for feature selection. While the spatial attention block defines spatial importance weights for individual feature maps,
the channel-wise attention block introduces feature-level weighting which allows for a better use of context information.

A. Multi-level Information Block305

As its name implies, the purpose of multi-level information306

block is to let the information extracted at different levels307

guide the saliency prediction process. It has proven to be308

useful that employing a multi-level/multiscale structure almost309

always improves the performance for many different vision310

tasks such as object detection [68], segmentation [69], [70],311

[71], and static saliency detection [72], [73]. In our work, we312

also employ a multi-level information block to enhance feature313

learning capability of our model. Specifically, it allows low-,314

mid-, and high-level information to be fused together and to be315

taken into account simultaneously while making predictions.316

Fig. 2b-(i) shows the proposed multi-level information block317

that we employ in our model. This block considers low-318

level and high-level representations of frames by processing319

features maps which are extracted at each residual block.320

The aim is to combine primitive image features (e.g. edges,321

shared common patterns) obtained at lower levels with rich322

semantic information (e.g. object parts, faces, text) extracted323

at higher levels of the network. Here, we prefer to utilize 1×1324

convolution and bilinear interpolation layers to combine cues325

from higher and lower levels. That is, after each residual block,326

we expand the feature map with bilinear interpolation to make327

equal size of the feature map with the size of the output of the328

previous residual block. Then, we concatenate the expanded329

feature map with the previous residual block’s output and fuse330

them via 1× 1 convolution layers.331

B. Attention Blocks332

Neural attention mechanisms allow for learning to pay333

attention to features more useful for a given task, and hence,334

it has been demonstrated many times that they can boost the335

performance of a neural network architecture proposed for any 336

computer vision problem, such as object detection [74]), visual 337

question answering [75], pose estimation [76], image caption- 338

ing [77] and salient object detection [72]. Motivated with these 339

observations, in our work, we integrate several attention blocks 340

to our proposed deep architecture to let the model choose 341

the most relevant features for the dynamic saliency estimation 342

problem. Resembling the structures in [77], [72], we exploit 343

two separate attention mechanisms: spatial and channel-wise 344

attention, as explained below. 345

Fig. 2b-(ii) shows our spatial attention block, which we 346

introduce at the lower levels of our network model (see Fig. 2a) 347

that helps to filter out the irrelevant information. The block 348

takes the output of ResBlock4, shaped [B × C × H × W ] 349

with C = 2048, as input and it determines the important 350

locations by calculating a weight tensor, which is shaped 351

[B × 1 × H × W ]. To estimate this tensor, input channels 352

are fused via 1× 1 convolution layer following by a sigmoid 353

layer. The output (shaped [B×C×H×W ]) of this block is a 354

result of Hadamard product between input and spatial weight 355

tensor. 356

The second type of our attention block, the channel-wise at- 357

tention block, is shown in Fig. 2b-(iii), whose main purpose is 358

to utilize the context information in a more efficient way. The 359

block consists of average pooling, full connected and ReLU 360

layers. In particular, it takes the concatenation of the feature 361

maps from the main stream and multi-level information block 362

as input which is shaped [B×96×H×W ], then downsamples 363

it with average pooling (output shape is [B×96]). The weight 364

of each channel is determined after two fully connected layers 365

followed by ReLUs. The shape of the matrices are [B × 24] 366

and [B × 96] respectively. The output of last ReLU which is 367

shaped [B × 96 × 1 × 1], contains a scalar value to weight 368
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Fig. 3: Gated fusion block. It integrates the spatial and
temporal streams to learn a weighted gating scheme to de-
termine their contributions in predicting dynamic saliency of
the current input video frame.

each channel. At the end of the block, the input feature map369

is weighted via Hadamard product.370

C. Gated Fusion Block371

One of the main contributions of our framework is to372

employ a dynamic fusion strategy to combine temporal and373

spatial information. Gated fusion has been exploited before for374

different problems such as image dehazing [78], image deblur-375

ring [79], semantic segmentation [80]. The main purpose to376

use a gated fusion block is to combine different kind of infor-377

mation with a dynamic structure which considers the current378

inputs’ characteristics. For example, in [80] feature maps that379

are generated via RGB information and depth information is380

combined for solving semantic segmentation. In our case, our381

aim is to come up with a fusion module that considers the382

content of the video at inference time. To our knowledge, we383

are the first to provide a truly dynamic approach for dynamic384

saliency. As opposed to the classical learning based approaches385

that learn the contributions of temporal and spatial streams in386

a static manner from the training data, our gated fusion block387

performs the fusion process in an adaptive way. That is, it388

decides the contribution of each stream on a location- and389

time-aware manner according to the content of the video.390

The structure of the proposed gated fusion block is shown391

in Fig. 3. It takes the feature maps of the spatial and temporal392

streams as inputs and produces a probability map which is393

used to designate contribution of each stream with regard to394

their current characteristics. Let SA, ST denote the feature395

maps from spatial and temporal streams, respectively. Gated396

fusion module first concatenates these features and then learns397

their correlations by applying a 1× 1 convolution layer. After398

that, it uses a sigmoid layer to regularize the feature map399

which is used to estimate weights of the gate. Let GA and400

GT denote how confidently we can rely on appearance and401

motion, respectively, as follows:402

GA = P , GT = 1− P , (1)

where P is the output of the sigmoid layer. Then, gated fusion403

module estimates the weights denoting the contributions of the404

spatial and temporal streams, as given below:405

S′A = SA �GA , S′T = ST �GT , (2)

where � represents the Hadamard product operation. Finally, 406

it generates the final saliency map, Sfinal, via weighting 407

the appearance and temporal streams’ feature maps with the 408

estimated probability map: 409

Sfinal = S′A + S′T . (3)

As mentioned earlier, appearance and motion are the two 410

important cues affecting attended regions in videos. Fig. 4 411

visualizes how gated fusion block adaptively integrates these 412

two visual modalities on two sample video sequences. While 413

the appearance stream computes a saliency map SA from the 414

RGB frame, the temporal stream extracts a second saliency 415

map ST from the optical image obtained from successive 416

frames. As can be seen, these intermediate maps encode differ- 417

ent characteristic of the input dynamic stimuli. The appearance 418

based saliency map SA mostly focuses on the regions that have 419

distinct visual properties than theirs surroundings, whereas 420

the motion based saliency map ST mainly pay attention 421

to motion. Gated fusion scheme estimates spatially varying 422

probability maps GA and GT and employs them to integrate 423

the appearance and temporal streams, respectively, resulting in 424

more confident predictions. The spatial stream generally gives 425

more accurate predictions than the temporal stream, as will be 426

presented in the Experiments section. On the other hand, as 427

can be seen from the estimated weight maps GA and GT , the 428

gated fusion scheme in the proposed model has a tendency to 429

pay more attention to the temporal stream. We suspect that 430

this is because the model considers that it may carry auxiliary 431

information. In that regard, it can be also argued that the 432

proposed gated fusion block improves the interpretability of 433

our deep model on a given visual stimuli via the estimated 434

probabilty maps as they allow us to highlight which regions 435

are ignored or paid more attention by the appearance and the 436

temporal streams throughout the sequence. 437

IV. EXPERIMENTS 438

Here, we first provide a brief review of the datasets used 439

in our experimental analysis. Then, we give the details of our 440

training procedure including the loss functions and settings 441

we use to train our proposed model. Next, we summarize the 442

evaluation metrics and the dynamic saliency models used in 443

our experiments. We then discuss our findings and present 444

some qualitative and quantitative results. Finally, we present 445

an ablation study to evaluate the effectiveness of the blocks 446

of the proposed dynamic saliency model. 447

A. Datasets 448

In our experiments, we employ six different datasets to 449

evaluate the effectiveness of the proposed saliency model. 450

The first four, namely UCF-Sports [81], Holywood-2 [82], 451

DHF1K [25], and DIEM [83], are the most commonly used 452

benchmarks. Among them, we specifically utilize DIEM 453

to test the generalization ability of our model. The last 454

two datasets considered in our analysis, DIEM-Meta [84] 455

and LEDOV-Meta [84], are two recently proposed datasets, 456

particularly designed to explore the performance of a dynamic 457

saliency model under situations where understanding temporal 458
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Fig. 4: Gated fusion block estimates the final saliency map by combining the appearance and the temporal maps SA and ST
with the spatially varying weights GA and GT .

effects is critical to give results more compatible with humans.459

460

UCF-Sports dataset [81] is the smallest dataset in terms of its461

size, consisting of 150 videos obtained from 13 different action462

classes. It is originally collected for action recognition, but463

then enriched by [82] to include eye fixation data. The videos464

are annotated by 4 subjects under free-viewing condition.465

In the experiments, we used the same train/test splits given466

in [85].467

Holywood-2 dataset [82] contains 1,707 videos from468

Hollywood-2 action recognition dataset [86], among which469

823 are used for training and the remaining 884 are left for470

testing. Since the videos are collected from 69 Hollywood471

movies with 12 action categories, its content is limited to472

human actions. In [82], the authors collected human fixation473

data for each sequence from 3 subjects under free-viewing474

condition. In our experiments, we use all train and test frames.475

DHF1K [25] is the most recent and the largest video saliency476

dataset, which contains a total of 1000 videos with eye tracking477

data collected from 17 different human subjects. The authors478

split the dataset into 600 training, 100 validation videos and479

300 test videos. The ground truth fixation data for the test split 480

is intentionally kept hidden and the evaluation of a model on 481

the test data is carried out by the authors themselves. 482

DIEM [83] includes 84 natural videos. Each video sequence 483

has eye fixation data collected from approximately 50 different 484

human subjects. Following the common experimental setup 485

first considered in [17], we used all frames from 64 videos 486

for training and the first 300 frames from the remaining 20 487

videos as test set. 488

DIEM-Meta [84] and LEDOV-Meta [84] are two so-called 489

meta datasets collected from the existing video saliency 490

datasets DIEM [83] and LEDOV [28], respectively. The main 491

difference between these and the aforementioned datasets 492

lies in the characteristics of the video frames they consider. 493

They are constructed by eliminating the video frames from 494

their original counterparts where spatial patterns are generally 495

enough to predict where people look. To detect them, they 496

employ a deep static saliency model that they developed. 497

DIEM-Meta and DIEM-Meta are thus better testbeds for 498

evaluating whether or not a dynamic saliency model learns to 499

use the temporal domain effectively. DIEM-Meta contains only 500
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35% of the video frames from DIEM, LEDOV-Meta includes501

just 20% of the original LEDOV frames.502

B. Training Procedure503

As we mentioned previously, our network takes RGB video504

frames and optical flow images as inputs. We extract the505

frames from the videos by considering their original frame506

rate. We employ these RGB frames to feed our appearance507

stream. For the temporal stream, we generate the optical508

flow images between two consecutive frames by using PWC-509

Net [87]. We resize all the input images to 640 × 480 pixels510

and map the ground truth fixation points accordingly.511

Instead of training our dynamic saliency network from512

scratch, we first train the subnet for the appearance stream513

on SALICON dataset [88]. Then, we initialize the weights514

of both of our subnets for spatial and temporal streams515

with this pre-trained static saliency model and finetune our516

whole two-stream network model using the dynamic saliency517

datasets described above. Pre-training on static data allows518

our dynamic saliency model to converge in fewer epochs519

when trained on dynamic stimuli. We use Kullback-Leibler520

(KL) divergence and Normalized Scanpath Saliency (NSS)521

loss functions (which we will explain in detail later) with522

Adam optimizer during the training process. We set the initial523

learning rate to 10e-5 and reduce it to one tenth in every524

3000th iteration. The batch size is set to 8 for UCF-Sports525

and 16 for the other video datasets. We train our model on526

NVIDIA V100 GPUs (3×GPUs) and while one epoch takes527

approximately 2 days for the larger datasets of DHF1K, DIEM528

and Hollywood-2, it takes approximately 2 hours for UCF-529

Sports. We train our models for 2-3 epochs. Our (unoptimized)530

Pytorch implementation achieves a near real-time performance531

of 8.2 fps for frames of size 640×480 on a NVidia Tesla K40c532

GPU.533

For our experiments on standard benchmark datasets, we534

consider two different training settings for dynamic stimuli.535

In our first setting, we use the training split of the dataset536

under consideration to train our proposed model. On the other537

hand, in our second setting, we utilize a combined training538

set containing training sequences from both UCF-Sports,539

Hollywood-2 and DHF1K datasets. The second setting further540

allows us to test the generalization ability of our model on541

DIEM, DIEM-Meta and LEDOV-Meta datasets.542

543

Loss functions. In our work, we employ the combination of544

KL-divergence and NSS loss functions to train our proposed545

dynamic saliency model. As explored in previous studies, [89],546

[25], considering more than one loss function during training,547

in general, improves the model performance. Moreover, em-548

pirical experiments on the analysis of the existing automatic549

evaluation metrics in [90] have shown that KL-divergence and550

NSS are good choices for evaluating saliency models. Here,551

we should also note that we have one loss layer defined for552

the output of the merged branch. We do not define individual553

losses for the motion and appearance branches as we believe554

that they should work in harmony and complement each other555

in a content-dependent manner.556

Let P denote the predicted saliency map, F represent 557

ground truth (binary) fixation map collected from human 558

subjects and S be the ground truth (continuous) fixation 559

density map which is generated by blurring fixation maps with 560

a small Gaussian kernel. 561

KL-divergence is a widely used metric to compare two 562

probability distributions. It has been proven to be effective 563

for evaluating and trainig the performance of saliency models 564

where the ground truth fixation map S and the predicted 565

saliency map P are interpreted as probability distributions. 566

Formally, KL-divergence loss function is defined as: 567

LKL(P, S) =
∑
i

S(i)log

(
S(i)

P (i)

)
. (4)

NSS is a location based metric which is computed as the 568

average of the normalized predicted saliency values at fixated 569

locations that is provided with the ground truth. By using this 570

metric as a loss function, we force the saliency model to better 571

detect the fixation locations and assign high likelihood scores 572

to those pixel locations. This loss function is defined as below: 573

LNSS(P, F ) = − 1

N

∑
i

P̄ (i)× F (i) , (5)

where N is the total number of fixated pixels
∑
i F (i) and 574

P̄ is the normalized saliency map P−µ(P )
σ(P ) . 575

576

Our final loss function is then defined as: 577

L(P, F, S) = αLKL(P, S) + βLNSS(P, F ) , (6)

where LKL is the KL loss function, LNSS is the NSS loss 578

function, and α and β are the weights for these loss functions. 579

We first perform a set of experiments on SALICON dataset 580

to empirically determine the optimal values of α and β, and 581

then set α = 1 and β = 0.1 for all the experiments. 582

C. Evaluation Metrics and Compared Saliency Models 583

In our evaluation, we employ the following five commonly 584

reported saliency metrics: Area Under Curve (AUC-Judd), 585

Pearson’s Correlation Coefficient (CC), Normalized Scanpath 586

Saliency (NSS), Similarity Metric (SIM) and KL-divergence 587

(KLDiv). For a detailed analysis of these metrics and their 588

definitions, please refer to [90]. Each metric measures a 589

different aspect of visual saliency and none of them is superior 590

to the others. AUC metric considers the saliency map as 591

classification map. A ROC curve is constituted by measuring 592

the true and false positive rates under different binary classifier 593

thresholds. While a score of 1 indicates a perfect match, a 594

score close to 0.5 indicates the performance of chance. NSS 595

is another commonly used metric, which we formally defined 596

before while describing our loss functions. CC metric is a 597

distribution based metric which is used to measure the linear 598

relationship between saliency and fixation maps using the 599

following formula: 600

CC(P, S) =
σ(P, S)

σ(P )× σ(S)
(7)
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where σ corresponds to covariance. A CC value close to +1/-1601

demonstrates a perfect linear relationship. SIM is another pop-602

ular metric that measures the similarity between the predicted603

and human saliency maps, as defined below:604

SIM(P, S) =
∑
i

min(Pi, Si)

where
∑
i

Pi = 1 and
∑
i

Si = 1 (8)

KLDiv metric evaluates the dissimilatrity between two distri-605

butions. Since KLDiv represents the difference between the606

saliency map and the density map, a small value indicates a607

good result. However, we note that, according to the aforemen-608

tioned study, NSS and CC seem to provide more fair results.609

In our experiments, we report the scores obtained with the610

implementations provided by MIT benchmark website2.611

We compare our method with ten different models: Sal-612

GAN [91], PQFT [10], [46], AWS-D [23], [27], OM-613

CNN [28], ACLNet [25], SalEMA [64], STRA-Net [66], and614

TASED-Net [65]. Among these, SalGAN [91] is the only static615

saliency model that gives the state-of-the-art results in the616

image datasets. We evaluate this method on video datasets617

considering each frame as a static image. PQFT [10], [46],618

and AWS-D [23] are non-deep learning models whereas all619

the other models employs deep learning techniques to predict620

where people look in videos. We note that in [27], the authors621

tested different fusion strategies with static weighting schemes622

and here we only report the results obtained with convolutional623

fusion strategy, which was shown to perform better than the624

others.625

In our experiments, we use the implementations and the626

trained models provided by the authors and test our approach627

against them with the settings explained in Sec. IV-A for628

fair comparison. In particular, after a careful analysis, we629

notice that some methods do not report results on whole630

test set of Hollywood-2 and/or they mistakenly consider task-631

specific gaze data collected for UCF-Sports while generating632

the groundtruth fixation density maps. Hence, some of the633

results are different than those reported in the papers but634

they give a better picture of their performances. Moreover, in635

our experiments, we also provide the results of single-stream636

versions of our model that respectively consider either spatial637

or temporal information.638

D. Qualitative and Quantitative Results639

Performance on UCF-Sports. Table I reports the comparative640

results on UCF-Sports test set, which contains 43 sequences.641

As can be seen, the single-stream versions of our proposed642

model gives worse scores than our full model. Moreover,643

spatial stream generally predicts saliency much better than the644

temporal stream, which is a trend that we observe on the other645

standard benchmark datasets too. Our model trained only on646

UCF-Sports outperforms all the competing models in most of647

the metrics. It results in a performance very close to those648

of SalEMA and STRA-Net in terms of SIM. We believe that649

weighting the predictions by the spatial and temporal streams650

2https://github.com/cvzoya/saliency/tree/master/code forMetrics

TABLE I: Performance comparison on UCF-Sports dataset.
The best and the second best performing models are shown in
bold typeface and underlined, respectively.
`````````Method

Metric AUC-J↑ CC↑ NSS↑ SIM↑ KLDiv↓
Static SalGAN 0.869 0.389 2.074 0.258 2.169

PQFT* 0.776 0.211 1.189 0.157 2.458
Fang et al.* 0.879 0.387 2.319 0.247 2.012
AWS-D* 0.845 0.313 1.870 0.195 2.202
Bak et al. 0.864 0.387 2.231 0.130 2.575

Dynamic OM-CNN 0.880 0.398 2.443 0.294 1.902
ACLNet 0.876 0.367 2.045 0.292 2.135
SalEMA 0.895 0.470 2.979 0.384 1.728
STRA-Net 0.902 0.479 2.916 0.384 2.483
TASED-Net 0.887 0.453 2.680 0.369 1.876

Ours Spatial 0.870 0.461 3.029 0.377 2.504
(Single) Temporal 0.851 0.418 2.535 0.345 2.721
Ours Setting 1 0.914 0.526 3.333 0.382 1.516
(Gated) Setting 2 0.911 0.499 2.980 0.353 1.568

* Non-deep learning model

TABLE II: Performance comparison on Hollywood-2 dataset.
`````````Method

Metric AUC-J↑ CC↑ NSS↑ SIM↑ KLDiv↓
Static SalGAN 0.892 0.428 2.383 0.298 1.760

PQFT* 0.689 0.150 0.610 0.139 2.387
Fang et al.* 0.862 0.312 1.614 0.221 1.781
AWS-D* 0.747 0.227 0.994 0.193 2.256
Bak et al. 0.840 0.310 1.439 0.158 2.339

Dynamic OM-CNN 0.893 0.430 2.625 0.330 1.896
ACLNet 0.899 0.459 2.463 0.342 1.701
SalEMA 0.873 0.383 2.226 0.330 3.157
STRA-Net 0.913 0.558 3.226 0.459 2.251
TASED-Net 0.916 0.570 3.324 0.471 2.740

Ours Spatial 0.904 0.501 3.051 0.378 1.473
(Single) Temporal 0.898 0.489 2.581 0.362 1.468
Ours Setting 1 0.914 0.549 3.114 0.413 1.277
(Gated) Setting 2 0.919 0.563 3.201 0.424 1.242

* Non-deep learning model

using a gating mechanism allows the model to better handle 651

the variations throughout video sequence, thus resulting in 652

more accurate saliency maps on this action-specific relatively 653

small dataset. 654

Performance on Hollywood-2. In our experiments on 655

Hollywood-2 dataset, we use all the frames from the test 656

set that contains 884 video sequences. In that regard, it is 657

the largest test set that we considered in our experimental 658

evaluation. In Table II, we provide comparison against the 659

competing saliency models. Our results show that our model 660

gives better saliency predictions than all the other methods 661

in terms of the AUC-J and KLDiv metrics. The performance 662

of the model trained considering our second training setting 663

that includes a larger and more diverse training set provides 664

much better results than the one trained with the first setting. 665

In terms of the remaining evaluation metrics, our results are 666

highly competitive as compared to the recent state-of-the-art 667

models, namely STRA-Net and TASED-Net, as well. 668

Performance on DHF1K. We test the performance of our 669

model on the recently proposed DHF1K video saliency dataset, 670

which includes 300 test videos. As mentioned before, the 671

annotations for the test split are not publicly available and 672

all the evaluations are carried out externally by the authors of 673

the dataset. As Table III shows, our proposed model achieves 674

performance on par with the state-of-the-art models. In terms 675
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TABLE III: Performance comparison on DHF1K dataset.
`````````Method

Metric AUC-J↑ CC↑ NSS↑ SIM↑
Static SalGAN 0.866 0.370 2.043 0.262

PQFT* 0.699 0.137 0.749 0.139
Fang et al.* 0.819 0.273 1.539 0.198
AWS-D* 0.703 0.174 0.940 0.157
Bak et al. 0.834 0.325 1.632 0.197

Dynamic OM-CNN 0.856 0.344 1.911 0.256
ACLNet 0.890 0.434 2.354 0.315
SalEMA 0.890 0.449 2.574 0.466
STRA-Net 0.895 0.458 2.558 0.355
TASED-Net 0.895 0.470 2.667 0.361

Ours Setting 1 0.891 0.448 2.505 0.326
(Gated) Setting 2 0.895 0.457 2.528 0.321

* Non-deep learning model

TABLE IV: Performance comparison on DIEM dataset.
`````````Method

Metric AUC-J↑ CC↑ NSS↑ SIM↑ KLDiv↓
Static SalGAN 0.860 0.492 2.068 0.392 1.431

PQFT* 0.680 0.190 0.656 0.220 2.140
Fang et al.* 0.825 0.360 1.407 0.313 1.688
AWS-D* 0.768 0.313 1.228 0.272 1.825
Bak et al. 0.810 0.313 1.212 0.206 2.050

Dynamic OM-CNN 0.847 0.464 2.037 0.381 1.599
ACLNet 0.878 0.554 2.283 0.444 1.331
SalEMA 0.863 0.513 2.249 0.452 2.393
STRA-Net 0.864 0.527 2.277 0.456 2.461
TASED-Net 0.872 0.535 2.259 0.470 2.635

Ours Spatial 0.868 0.512 2.202 0.439 1.387
(Single) Temporal 0.846 0.446 1.785 0.391 1.513
Ours Setting 1 0.870 0.543 2.313 0.454 1.401
(Gated) Setting 2 0.874 0.525 2.228 0.421 1.176

* Non-deep learning model

of AUC-J, along with the recent STRA-Net and TASED-Net676

models, it outperforms all the other saliency models. In terms677

of CC, our model gives roughly the second best result.678

Performance on DIEM. We also evaluate our model on DIEM679

test set consisting of 20 videos. Table IV summarizes these680

quantitative results. As can be seen, our model achieves the681

highest scores in NSS and KLDiv metrics and very competitive682

in others. The second setting demonstrates the generalization683

capability of our proposed approach as compared to the recent684

models like SalEMA, STRA-Net and TASED-Net.685

In Fig. 5, we show some sample saliency maps predicted by686

our proposed model and three other deep saliency networks:687

ACLNet, SalEMA, STRA-Net, and TASED-Net models. As688

one can observe, our model makes generally better predictions689

than the competing approaches. For instance, for the sequence690

from UCF-Sports (Fig. 5a) most the models fail to identify691

the salient region on the swimmer, or for the sequence from692

the Hollywood-2 dataset (Fig. 5b) our model is the only693

model that correctly predicts the soldier at the center of the694

background as salient. Similar kind of observations are also695

valid for the sample sequences from DHF1K (Fig. 5c) and696

DIEM (Fig. 5d) datasets.697

698

Performance on DIEM-Meta and LEDOV-Meta. As men-699

tioned before, [84] have recently showed that most of the700

current benchmarks for video saliency include many sequences701

in which spatial attention is more dominant than temporal702

effects in describing saliency. DIEM-Meta and LEDOV-Meta703

TABLE V: Performance comparison on DIEM-Meta dataset.
`````````Method

Metric AUC-J↑ CC↑ NSS↑ SIM↑ KLDiv↓
ACLNet 0.845 0.437 1.627 0.391 1.473
SalEMA 0.832 0.392 1.576 0.374 1.664
STRA-Net 0.840 0.419 1.637 0.385 1.634
TASED-Net 0.857 0.455 1.810 0.416 1.479
Ours 0.857 0.460 1.814 0.395 1.305

TABLE VI: Performance comparison on LEDOV-Meta
dataset.
`````````Method

Metric AUC-J↑ CC↑ NSS↑ SIM↑ KLDiv↓
ACLNet 0.879 0.384 1.750 0.342 1.837
SalEMA 0.863 0.380 1.815 0.353 1.850
STRA-Net 0.893 0.423 2.041 0.370 2.304
TASED-Net 0.882 0.489 2.450 0.403 1.697
Ours 0.892 0.457 2.190 0.370 1.485

datasets are curated in a special way to contain video frames 704

in which temporal signals are found to be more influential 705

than appearance cues. Hence, they both offer a better way 706

to test how well a dynamic saliency model utilizes temporal 707

information. In our experimental evaluation, we compare our 708

proposed model with the state-of-the-art deep saliency models, 709

which are all trained on the combined training set that includes 710

frames from DIEM or LEDOV datasets. As can be seen 711

from Table V and Table VI, our model outperforms all the 712

other models in DIEM-Meta, and is the second best model 713

in LEDOV-Meta, achieving highly competitive performances. 714

These results demonstrate the effectiveness of the proposed 715

gated mechanism and its ability to use temporal information to 716

the full extent, as compared to the state-of-the-art approaches. 717

Overall, the results reported on all the six datasets used in 718

our experimental analysis suggest that our model has better 719

capacity to mimic human attention mechanism by combining 720

the temporal and static clues in an effective way. It has a better 721

generalization ability that it can predict where people look at 722

the videos from unseen domains much better. Moreover, it 723

utilizes the temporal information more successfully with its 724

gated fusion mechanism, which adaptively integrates spatial 725

and temporal cues depending on video content. 726

E. Ablation study. 727

In this section, we aim to analyze the influence of each 728

component of our proposed deep dynamic saliency model. 729

We perform the ablation study on UCF-Sports, DIEM-Meta, 730

LEDOV-Meta datasets by disabling or removing some blocks 731

of our model and by examining how these changes affect the 732

model performance. As done in training our proposed model, 733

for each version of our model under evaluation, we first train 734

a single stream model on SALICON dataset and then use it to 735

finetune the actual two-stream version on UCF-Sports dataset. 736

Table VII shows the contributions of different components 737

of our saliency model on UCF-Sports dataset. Moreover, to 738

demonstrate the generalization capabilities of each version 739

of our model, in Table VIII and Table IX, we evaluate 740

their performance on LEDOV-Meta and DIEM-Meta datasets, 741

respectively. In the following, we summarize our observations. 742

743
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Fig. 5: Qualitative results of our proposed framework and the deep learning based SalEMA, ACLNet and SalGAN models.
Our approach, in general, produces more accurate saliency predictions than these state-of-the-art models.

Effect of gated fusion. As we emphasized before, the role744

of gated fusion block is to adaptively integrate spatial and745

temporal streams is a key component of our model. In our746

analysis, we replace the gated fusion block with a standard 747

1×1 convolution layer (that version of our model is referred to 748
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Fig. 6: Our model dynamically decides the contribution of motion and appearance streams via gated fusion. Here, we plot the
average motion probabilities (the contribution of motion stream) for two regions having different characteristic, one containing
a moving object (the gummy bear) and the other with relatively no motion, shown with red and blue, respectively. As can be
seen, our model assigns higher weights to the motion stream when motion becomes the dominant visual cue, and the weights
adaptively change throughout the sequence.

as “w/o gated fusion”)3. As can be seen from Table VII-IX, the749

performance of the model decreases considerably without the750

gated fusion mechanism. That is, using a dynamic weighting751

strategy, instead of a fixed weighting scheme (learned via 1×1752

convolution), generates much better predictions. Fig. 6 shows a753

visualization of how our proposed gated fusion operates in an754

adaptive manner, demonstrating the behavior of the weighting755

scheme for both static and dynamic parts of a given video. In756

particular, we plot the motion probabilities averaged within757

the corresponding image regions over time, which clearly758

shows that the motion probability (the contribution of motion759

stream) for the region that contains a moving object is, in760

general, much higher than that of the static region. Moreover,761

depending on the characteristics of the regions, it shows the762

changes in the motion probabilities throughout the whole763

sequence. For example, when no motion is taking place in764

the region initially containing the moving object, the weight765

of the temporal stream starts to fall. These results supports766

our main claim that the proposed gated fusion mechanism767

successfully adapts itself according to the content of the768

video, as opposed to having a fixed fusion strategy as in the769

competing approaches.770

Effect of multi-level information. Previous studies demon-771

strate that low and high-level cues are equally important for772

saliency prediction [8], [9]. Motivated with these, we included773

a multi-level information block to fuse features extracted from774

different levels of our deep model. For this analysis, we disable775

this multi-level information block and train a single-scale776

model instead. Compared to our full model, disabling this777

block reduces the performance as can be seen in Table VII-IX.778

Employing a representation that contains information from low779

and high levels helps to improve the performance of our model.780

We speculate that our multi-level information block allows the781

network to better identify the regions semantically important782

3Other fusion strategies such as average and max fusion were investigated
in [27] and shown to be less effective than convolution fusion. Hence, we did
not consider them in our ablation study.

TABLE VII: Ablation study on UCF-Sports dataset.
XXXXXXXXMethod

Metric AUC-J↑ CC↑ NSS↑ SIM↑ KLDiv↓
w/o spatial attention 0.872 0.474 2.884 0.374 2.223
w/o channel-wise attention 0.892 0.489 2.923 0.319 1.707
w/o spatial & ch.-wise attention 0.875 0.447 2.885 0.364 2.646
w/o multi-level information 0.890 0.484 2.755 0.303 1.711
w/o gated fusion 0.900 0.480 2.913 0.353 1.676
full model 0.914 0.526 3.333 0.382 1.516

TABLE VIII: Ablation study on LEDOV-Meta dataset.
XXXXXXXXMethod

Metric AUC-J↑ CC↑ NSS↑ SIM↑ KLDiv↓
w/o spatial attention 0.859 0.380 1.861 0.339 2.091
w/o channel-wise attention 0.884 0.420 1.997 0.318 1.589
w/o spatial & ch.-wise attention 0.820 0.310 1.487 0.297 2.906
w/o multi-level information 0.895 0.458 2.074 0.329 1.517
w/o gated fusion 0.852 0.381 1.743 0.280 1.765
full model 0.893 0.441 2.123 0.356 1.483

for saliency. 783

TABLE IX: Ablation study on DIEM-Meta dataset.
XXXXXXXXMethod

Metric AUC-J↑ CC↑ NSS↑ SIM↑ KLDiv↓
w/o spatial attention 0.806 0.338 1.372 0.334 2.155
w/o channel-wise attention 0.823 0.387 1.527 0.330 1.489
w/o spatial & ch.-wise attention 0.758 0.251 1.008 0.268 3.592
w/o multi-level information 0.809 0.370 1.428 0.314 1.567
w/o gated fusion 0.800 0.359 1.373 0.304 1.620
full model 0.827 0.380 1.531 0.345 1.511

Effect of attention blocks. As discussed before, the reasons 784

we introduce the attention blocks are to eliminate the irrelevant 785

features via the spatial attention and to choose the most 786

informative feature channels via the channel-wise attention 787

when processing a video frame. In this experiment, we remove 788

the spatial and the channel-wise attention blocks from our full 789

model and train two different models, respectively. The results 790

given in Table VII support our assertion that both of these 791

attention blocks improve the model performance. Disabling 792

them results in a much lower performance as compared to 793

that of the full model. 794
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Fig. 7: Sample failure cases. Our model performs poorly on videos that contain readable text or large objects with fine details.
The first shortcoming is inevitable since the data seen during training lack enough number of samples to learn to mimic
eye gaze movement during reading effectively. The second drawback, on the other hand, can be attributed to the underlying
convolutional neural architecture that our model depends on.

V. SUMMARY AND CONCLUSION795

In this study, we proposed a new spatio-temporal saliency796

network for video saliency. It follows a two-stream network797

architecture that processes spatial and temporal information in798

separate streams, but it extends the standard structure in many799

ways. First, it includes a gated fusion block that performs800

integration of spatial and temporal streams in a more dynamic801

manner by deciding the contribution of each channel one802

frame at a time. Second, it utilizes a multi-level information803

block that allows for performing multi-scale processing of804

appearance and motion features. Finally, it employs spatial805

and channel-wise attention blocks to further increase the806

selectivity. Our extensive set of experiments on six different807

benchmark datasets shows the effectiveness of the proposed808

model in extracting the most salient parts of the video frames809

both qualitatively and quantitatively. Moreover, our ablation810

study demonstrates the gains achieved by each component811

of our model. Our analysis reveals that the proposed model812

deals with the videos from unseen domains much better that813

the existing dynamic saliency models. Additionally, it uses814

temporal cues more effectively via the proposed gated fusion815

mechanism which allows for adaptive integration of spatial816

and temporal streams.817

As can be seen in Fig. 7 our model performs poorly818

especially for the videos containing readable text and repetitive819

patterns that cover most of the frames. Since our model is820

not able to explicitly interpret text from semantically, it can821

not mimic the reading behaviour of the human. Moreover,822

exploring the details in the objects that have repetitive patterns823

is particularly challenging for the models that are based on824

convolutional neural networks due to the effective receptive825

fields of the learned filters.826

We believe that our work highlights several important direc-827

tions to pursue for better modeling of saliency in videos. As828

future work, we plan to explore more efficient ways to include829

the temporal information. For instance, instead of using optical830

flow images, one can use features extracted from early and mid831

layers of an optical flow network model to encode motion832

information. This can reduce the memory footprint of the833

model and decreases the running times. Another interesting834

research direction is to adapt the proposed gating mechanism835

for an architecture that alternatively utilizes 3D convolutions836

instead of a two-stream framework.837
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[40] J. Pan, E. Sayrol, X. Giró-i Nieto, K. McGuinness, and N. E. OConnor,958

“Shallow and deep convolutional networks for saliency prediction,” in959

Proc. CVPR, 2016, pp. 598–606.960

[41] W. Wang and J. Shen, “Deep visual attention prediction,” IEEE Trans-961

actions on Image Processing, vol. 27, no. 5, pp. 2368–2378, 2018.962

[42] E. Vig, M. Dorr, and D. Cox, “Large-scale optimization of hierarchical963

features for saliency prediction in natural images,” in Proc. CVPR, 2014,964

pp. 2798–2805.965

[43] M. Cornia, L. Baraldi, G. Serra, and R. Cucchiara, “Predicting human966

eye fixations via an lstm-based saliency attentive model,” IEEE Trans-967

actions on Image Processing, vol. 27, no. 10, pp. 5142–5154, 2018.968

[44] Z. Wang, Z. Liu, W. Wei, and H. Duan, “Saled: Saliency prediction 969

with a pithy encoder-decoder architecture sensing local and global 970

information,” Image and Vision Computing, vol. 109, p. 104149, 2021. 971

[Online]. Available: https://www.sciencedirect.com/science/article/pii/ 972

S0262885621000548 973

[45] J. Harel, C. Koch, and P. Perona, “Graph-based visual saliency,” in 974

Proceedings of the 19th International Conference on Neural Information 975

Processing Systems (NIPS), 2006, pp. 545–552. 976

[46] Y. Fang, Z. Wang, W. Lin, and Z. Fang, “Video saliency incorporating 977

spatiotemporal cues and uncertainty weighting,” IEEE Transactions on 978

Image Processing, vol. 23, no. 9, pp. 3910–3921, 2014. 979

[47] E. Rahtu, J. Kannala, M. Salo, and J. Heikkilä, “Segmenting salient 980
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