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Abstract

Graph transduction is a popular class of semi-supervised learning techniques which

aims to estimate a classification function defined over a graph of labeled and unlabeled

data points. The general idea is to propagate the provided label information to unlabeled

nodes in a consistent way. In contrast to the traditional view, in which the process of

label propagation is defined as a graph Laplacian regularization, this paper proposes a

radically different perspective that is based on game-theoretic notions. Within the pro-

posed framework, the transduction problem is formulated interms of a non-cooperative

multi-player game whereby equilibria correspond to consistent labelings of the data. An

attractive feature of this formulation is that it is inherently a multi-class approach and

imposes no constraint whatsoever on the structure of the pairwise similarity matrix, be-

ing able to naturally deal with asymmetric and negative similarities alike. Experiments



on a number of real-world problems demonstrate that the proposed approach performs

well compared with state-of-the-art algorithms and it can deal effectively with various

types of similarity relations.

1 Introduction

In the machine learning community, semi-supervised learning (SSL) has gained con-

siderable popularity over the last decade (Chapelle et al.,2006; Zhu, 2005) and within

the existing paradigms, graph-based approaches to SSL, namely the graph transduction

methods, constitute an important class of algorithms. These methods model the geom-

etry of the data as a graph with nodes corresponding to the labeled and unlabeled points

and edges being weighted by the similarity between the points, and try to estimate the

labels of unlabeled points by propagating the coarse information available at the labeled

nodes to the unlabeled ones. Performing this propagation ina consistent way relies on

a common a priori assumption, known as thecluster assumption(Zhou et al., 2004;

Chapelle et al., 2006), which is reminiscent of the homophily principle used in social

network analysis (Easley and Kleinberg, 2010). The assumption simply states that (1)

points which are close to each other are expected to have the same label, and (2) points

in the same cluster (or on the same manifold) are expected to have the same label.

Building on this assumption, traditional graph-based approaches formalize graph trans-

duction as a regularized function estimation problem on an undirected graph (Joachims,

2003; Zhu et al., 2003; Zhou et al., 2004).

This paper presents a novel game-theoretic perspective to the problem of graph

transduction. Specifically, graph transduction is formulated in terms of amulti-player

non-cooperative gamewhere the players are the data points that take part in the game

to decide their class memberships. In this setting, while the strategies played by the

labeled points are already decided at the outset, as each of them knows which class

it belongs to, the possible strategies available to unlabeled points are the whole set of

hypotheses of being a member of one of the available classes.Within this formula-

tion, the well-known Nash equilibrium concept for non-cooperative games provides a

well-founded way of consistent labeling for the unlabeled points.

The game-theoretic interpretation presented in this paperis appealing for a number
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of reasons. To begin with, it is intrinsically a multi-classapproach. But more impor-

tantly, it can cope with both asymmetric and/or negative similarities. Since the seminal

work of Tversky (1977), a large body of psychological studies suggests that human

similarity judgments are non-metric (in particular, asymmetric). Non-metric similari-

ties or dissimilarities also arise naturally in many practical applications, like comparing

shapes (Jacobs et al., 2000) and protein sequences (Meila and Pentney, 2007). Common

examples include the directed Hausdorff distance between sets, the Kullback-Leiber

divergence between probability distributions, and Tversky’s contrast model (Tversky,

1977; Santini and Jain, 1999). Non-metricity has been largely regarded as an artifact

of poor choice of features or algorithms. Note, however, that it has been shown that

non-metricity is sometimes essential to the nature of the problem and rendering the

similarities metric may destroy relevant information (Laub et al., 2006).

The organization of the paper is as follows. Section 2 shows that transduction on

an unweighted undirected graph can be formulated as a binaryconstraint satisfaction

problem, which in turn provides the motivation for the proposed approach. Section 3

briefly reviews some basic notions of non-cooperative game theory. Next, Section 4

extends our analysis to the general case of transduction on weighted (directed) graphs,

where graph transduction is formalized as a non-cooperative game using the connection

between so-called relaxation labeling processes and game theory (Miller and Zucker,

1991). Section 5 investigates the loose relation between the proposed game-theoretic

formulation and the traditional energy-based formulations. Section 6 reports experi-

mental results on a number of real-world classification problems.

2 Transductive learning on unweighted undirected graphs

The theoretical motivation for the proposed approach stemsfrom the analysis of the

simplest case of graph transduction where the graph expressing the similarity relation-

ships among the data points is anunweighted undirected graph. To give an example,

the graph can be seen as a k-nearest neighbor (k-NN) graph with 0/1 weights over

points in which the presence of an edge simply denotes the perfect similarity between

a pair of two data points, otherwise the points are completely dissimilar. To illustrate

this toy problem, consider the graph shown in Figure 1 in which edges are unweighted.
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(a) (b)

Figure 1: Transductive learning on an unweighted undirected graph. (a) An unweighted

undirected graph describing the similarity relationshipsamong the points. Two nodes

of the graph are marked with different labels, respectivelyrepresented by a square and

a triangle. (b) The consistent labeling of points satisfying the constraints based on the

cluster assumption of SSL.

The classification task is to estimate the labels of the unlabeled points based exclu-

sively on the information available at the two labeled points, each of which is marked

with a different label. Recall the cluster assumption of semi-supervised learning that

neighboring objects and objects in the same cluster (or on the same manifold structure)

tend to belong to the same class. Clearly, in the unweighted graph setting, the clus-

ter assumption is also valid and can be expressed as the hypothesis that every node in

a connected component of a binary similarity graph has the same class label as each

connected component describes a manifold.

Following this observation, we can formulate this toy version of graph transduction

as a(binary) constraint satisfaction problem(CSP) (Tsang, 1993; Marriott and Stuckey,

1998). CSPs are widely used to solve combinatorial problemsin a variety of application

domains, such as artificial intelligence and computer vision. In the computer vision

literature, the problem is often known as theconsistent labeling problem(Waltz, 1975;

Haralick and Shapiro, 1979).

A binary CSP is defined by a set ofvariablesrepresenting the elements of the prob-

lem being modeled and a set of binaryconstraintsrepresenting the relationships among

variables. A solution of the problem is simply an assignmentof values to the variables

which satisfies all the constraints. If there is no such assignment, then the problem is un-

satisfiable. When each variable can take a value from a finitedomain, abinary CSPcan

be described in a formal manner as a triple(V, D, R), whereV = {v1, . . . , vn} is a set of
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variables,D = {Dv1
, . . . , Dvn

} is a set of domains of the variables, eachDvi
denoting

a finite set of possible values for variablevi, andR = {Rij | Rij ⊆ Dvi
× Dvj

} is a set

of binary constraints, eachRij describing compatible pairs of values for the variables

vi andvj . If the cardinality of the domains of variables arep andq, respectively, then

Rij can be expressed by a 0/1 matrix of sizep × q, whereRij(λ, λ′) = 1 if the assign-

mentvi = λ is compatible with the assignmentvj = λ′. For a general CSP on a finite

domain, the problem of finding a solution is known to be NP-complete (Haralick et al.,

1978). The simplest way to obtain an assignment satisfying all the given constraints

or to report non-existence of such a solution is to perform backtracking. However, it

is time consuming, so in practice, either a constraint propagation technique or a local

search method is used to solve the problem (Tsang, 1993; Marriott and Stuckey, 1998).

Returning back to the motivating problem of transductive learning on an unweighted

undirected graph, suppose that we are given a data setD = {Dℓ,Du} consisting of

labeled pointsDℓ = {d1, . . . , dℓ} and unlabeled pointsDu = {dℓ+1, . . . , dn} and a set

of labelsΦ = {1, . . . , c} such that the labels provided for the firstℓ labeled points are

given by{φ1, . . . , φℓ} ∈ Φ. The task of transductive learning is to estimate the unknown

labels{φℓ+1, . . . , φn} of unlabeled points{dℓ+1, . . . , dn}. Now further suppose that

the relationships among the data points are given by an unweighted undirected graph

G = (D, E), whereD is the set of nodes andE is the set of edges such that an edge

eij ∈ E shows that pointsi andj are perfectly similar to each other. LetA = (aij)

denote the 0/1 adjacency matrix ofG. Reflecting the constraints imposed by the cluster

assumption of SSL, the problem of graph transduction on an unweighted graph can be

formalized as a binary CSP as follows:

• The set of variables:V = {v1, . . . , vn}

• Domains:Dvi
=




{φi}, for all 1 ≤ i ≤ ℓ

Φ for all ℓ + 1 ≤ i ≤ n

• Binary constraints:∀ij: if aij = 1, thenvi = vj e.g. for a 2-class problem,

Rij =


1 0

0 1


.

Each assignment of values to the variables satisfying all the constraints is a solution of

the CSP, and provides a consistent labeling for the unlabeled points.
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Classical CSPs such as the one given in this section assumecrispconstraints, in the

sense that constraints are either completely satisfied or completely violated. However,

for many real-world applications, such a formulation is toorestrictive to be practical.

A classical generalization to deal with soft constraints isdescribed in (Hummel and

Zucker, 1983), in which each constraint is assigned a weightrepresenting a level of

confidence. Later, it was shown that the notion of consistency proposed in (Hummel

and Zucker, 1983) is related to the Nash equilibrium conceptin non-cooperative game

theory (Miller and Zucker, 1991). In this study, we build on this connection to devise

a graph transduction gamewhich serves as a generalization of the binary CSP for the

motivating problem. For the sake of completeness, we next provide an overview of

some basic notions from non-cooperative game theory (Nash,1951).

3 Non-cooperative games and Nash equilibria

Non-cooperative game theory deals with models of strategicinteractions (games) among

anonymous agents (players), where the goal of each player is to maximize its own utility

or payoff. Each player has a set of possible actions (pure strategies) to play, called the

pure strategy set, and receives a payoff based on its own choice and those of theother

players. In the definitions below, we restrict ourselves tomulti-player gamesexpressed

in normal form and follow the notations used in (Weibull, 1995).

In normal form, a game with many players can be expressed as a triple G =

(I, S, π), whereI = {1, . . . , n}, with n ≥ 2, is the set ofplayers, S = ×i∈ISi is

the joint strategy spacedefined as the Cartesian product of the individual pure strategy

setsSi = {1, . . . , mi}, andπ : S → R
n is thecombined payoff functionwhich assigns a

real valued payoffπi(s) ∈ R to eachpure strategy profiles ∈ S and playeri ∈ I. In the

case of two players, payoff functions can be represented as two m1 × m2 matrices. To

illustrate, consider the well-knownrock-paper-scissorsgame. It is a 2-player game in

which each player has three possible strategies,i.e. Si = {rock, paper, scissors} for

eachi = 1, 2. Both players simultaneously choose a strategy and consequently receive

a payoff based on their actions with respect to the rules “rock beats scissors”, “scissors

beats paper”, and “paper beats rock”. The payoff matrix of the game is given in Table 1

in which player 1 is the row player and player 2 is the column player. For example, if
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player 1 playsrock and player 2 playspaper, player 1 loses the game,i.e. receives a

payoff of -1, and player 2 wins the game,i.e. receives a payoff of 1.

rock paper scissors

rock (0,0) (-1,1) (1,-1)

paper (1,-1) (0,0) (-1,1)

scissors (-1,1) (1,-1) (0,0)

Table 1: The payoff matrix of therock-paper-scissorsgame.

A mixed strategyof playeri ∈ I is a probability distribution over its pure strategy

setSi, which can be described as the vectorxi = (xi1, . . . , ximi
)T such that each com-

ponentxih denotes the probability that the player chooses to play itshth pure strategy

among all the available strategies. Mixed strategies for each playeri ∈ I are con-

strained to lie in thestandard simplexof themi-dimensional Euclidean spaceR
mi :

∆i =

{
xi ∈ R

mi :

mi∑

h=1

xih = 1, andxih ≥ 0 for all h

}
.

Accordingly, amixed strategy profilex = (x1, . . . , xn) is defined as a vector of mixed

strategies, eachxi ∈ ∆i representing the mixed strategy assigned to playeri ∈ I, and

each mixed strategy profile lives in themixed strategy spaceof the game, given by the

Cartesian product

Θ = ×i∈I∆i. (1)

For the sake of simplicity, letz = (xi, y−i) ∈ Θ denote the strategy profile where

playeri plays strategyxi ∈ ∆i whereas the other playersj ∈ I \ {i} play based on the

strategy profiley ∈ Θ, that is to say,zi = xi andzj = yj for all j 6= i. The expected

value of the payoff that playeri obtains can be determined by a weighted sum for any

i, j ∈ I (when all the other players’ strategies are kept fixed) as

ui(x) =
∑

s∈S

x(s)πi(s) =

mj∑

k=1

ui

(
ek

j , x−j

)
xjk (2)

whereui

(
ek

j , x−j

)
denotes the payoff that playeri receives when playerj adopts its

kth pure strategy, andek
j ∈ ∆j stands for theextreme mixed strategycorresponding the

vector of lengthmj whose components are all zero except thekth one which is equal to
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one. Note that for playerj, playing itskth pure strategy is probabilistically equivalent

to playing the extreme mixed strategyek
j .

The mixed best repliesfor player i against a mixed strategyy ∈ Θ, denoted by

βi(y), is the set of mixed strategies such that no other mixed strategy other than the

ones included in this set gives a higher payoff to playeri against strategyy:

βi(y) = {xi ∈ ∆i : ui (xi, y−i) ≥ ui (zi, y−i) ∀zi ∈ ∆i} .

Subsequently, the combined mixed best replies is defined as the Cartesian product of

best replies of all the playersβ(y) = ×i∈Iβi(y) ⊂ Θ.

Definition 1. A mixed strategyx∗ = (x∗
1, . . . , x

∗
n) is said to be a Nash equilibrium if it

is the best reply to itself,x∗ ∈ β(x∗), that is

ui(x
∗
i , x

∗
−i) ≥ ui(xi, x

∗
−i) (3)

for all i ∈ I, xi ∈ ∆i, andxi 6= x∗
i . Furthermore, a Nash equilibriumx∗ is calledstrict

if eachx∗
i is the unique best reply tox∗, β(x∗) = {x∗}

Nash equilibrium constitutes the key concept of game theory. It is motivated by the

idea that a theory of rational decision-making should not bea self-destroying prophecy

that creates an incentive to deviate for those who believe it. Indeed, the notion itself is

a stability condition which states that no player can obtaina higher payoff by changing

unilaterally its own strategy once such an equilibrium state is reached. Note that not all

games do have a Nash equilibrium in pure strategies (e.g., the rock-paper-scissors game

introduced above), but a fundamental result of game theory states that any normal-form

game has at least one mixed Nash equilibrium (Nash, 1951). For example, the rock-

paper-scissors game has a (unique) mixed Nash equilibrium which corresponds to the

case where each player picks a strategy uniformly at random,i.e. xi = (1/3, 1/3, 1/3)

for eachi = 1, 2. The algorithmic issue of computing a Nash equilibria will be dis-

cussed later in Section 4.2.

4 The graph transduction game (GTG)

Consider the followinggraph transduction game. Assume each playeri ∈ I partic-

ipating in the game corresponds to a particular point in a data setD = {d1, . . . , dn}
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and can choose a strategy among the set of strategiesSi = {1, . . . , c}, each expressing

a certain hypothesis about its membership to a class andc being the total number of

classes. Hence, the mixed strategy profile of each playeri ∈ I lies in thec-dimensional

simplex∆i. By problem definition, the players of the game can be categorized into two

disjoint groups: those which already have knowledge of their membership, referred to

aslabeled playersand denoted with the symbolIℓ, and those which do not have any

idea about this at the beginning of the game, which are hence calledunlabeled players

and correspondingly denoted withIu.

The so-called labeled players of the game can further be distinguished based on the

strategies they follow without hesitation, coming from their membership information.

In formal terms,Iℓ = {Iℓ|1, . . . , Iℓ|c}, where each disjoint subsetIℓ|k stands for the set

of players always playing theirkth pure strategies. It thus follows from this statement

that each playeri ∈ Iℓ|k plays its extreme mixed strategyek
i ∈ ∆i. In other words,

xi is constrained to belong to the minimal face of the simplex∆i spanned by{ek
i }. In

this regard, it can be argued that the labeled players do not play the game to maximize

their payoffs since they have already chosen their strategies. In fact, the transduction

game can be easily reduced to a game with only unlabeled playersIu where the definite

strategies of labeled playersIℓ act as bias over the choices of unlabeled players.

It is important to note that any instance of the proposed transduction game will

always have a Nash equilibrium in mixed strategies (Nash, 1951). Recall that, for the

players, such an equilibrium corresponds to a steady state such that each player plays a

strategy that could yield the highest payoff when the strategies of the remaining players

are kept fixed, and it provides us a globally consistent labeling of the data set. Once an

equilibrium is reached, the label of a data point (player)i is simply given by the strategy

with the highest probability in the equilibrium mixed strategy of playeri as

φi = arg max
h=1...c

xih, (4)

thereby yielding a crisp classification.

4.1 Payoff functions

In this paper, we assume that the proposed graph transduction game is an instance of

a special subclass of multi-player games, known aspolymatrix games(Janovskaya,
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1968; Howson, 1972), in which players are nodes of a graph andevery edge denote a

two-player game between corresponding pair of players. In other words, we suppose

that only pairwise interactions are allowed in the game and the payoffs associated to

each player are additively separable so that the payoff of each player is given by the

sum of the payoffs gained from each game played with one of itsneighbor. Formally

speaking, for a pure strategy profiles = (s1, . . . , sn) ∈ S, the payoff function of every

playeri ∈ I is in the form:

πi(s) =

n∑

j=1

Aij(si, sj) (5)

whereAij is thepartial payoff matrix between playersi andj. It follows that, in terms

of a mixed strategy profilex = (x1, . . . , xn), the payoffs are computed asui(e
h
i ) =

∑n
j=1(Aijxj)h andui(x) =

∑n
j=1 xT

i Aijxj .

In an instance of the transduction game, since each labeled player is restricted to

play a definite strategy of its own, all of these fixed choices can be reflected directly in

the payoff function of a unlabeled playeri ∈ Iu as follows:

ui(e
h
i ) =

∑

j∈IU

(Aijxj)h +

c∑

k=1

∑

j∈ID|k

Aij(h, k) (6)

ui(x) =
∑

j∈IU

xT
i Aijxj +

c∑

k=1

∑

j∈ID|k

xT
i (Aij)k (7)

Now, what is left is how to specify partial payoff matrices between each pair of play-

ers. For doing so, the binary logical constraints for the toytransduction problem can be

simply replaced with their weighted versions. Let the geometry of the data be modeled

with a weighted graphG = (D, E , w) in whichD is the set of nodes representing both

labeled and unlabeled points, andw : E → R is a weight function assigning a similarity

value to each edgee ∈ E . Representing the graph with its weighted adjacency matrix

W = (wij), the partial payoff matrix between two playersi andj is set asAij = wij×Ic

whereIc is the identity matrix of sizec. Note that when partial payoff matrices are rep-

resented in block form asA = (Aij), the matrixA is given by the Kronecker product

A = Ic ⊗ W . Notice that in the case of binary-valued similarity relations, the above

partial payoff matrices coincide with the compatibility matrices defined for the binary

CSP given in Section 2. Further, if only pure strategies are allowed, then the transduc-

tion game reduces to the presented CSP. In a pure Nash equilibrium of such a game, the
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neighboring players all play the same pure strategy to get the maximum support from

their neighbors. Note that, however, when the data containsnoise, then class manifolds

may be connected; hence a pure Nash equilibrium may not exist, or in other words, the

CSP may be unsatisfiable.

Empirically, we observed that specifying payoffs in terms of normalized similar-

ity matrix Ŵ = D−1/2WD−1/2 with D = (dii) being the diagonal degree matrix ofW

whose elements are given bydii =
∑

j wij performs better than the case with the orig-

inal similarities. In that regard, we add that the use of normalization is a common

practice in graph-based approaches because it can typically achieve a better perfor-

mance. To give an example, while the GFHF method (Zhu et al., 2003) uses original

(unnormalized) similarities, the LGC method (Zhou et al., 2004) employs the normal-

ized similarity matrix in its formulation. Moreover, whilenot directly related to graph

transduction, it has been shown that the use of normalization has nice convergence

properties in spectral clustering (von Luxburg et al., 2004). In terms of game the-

ory, however, it is interesting to note that both versions ofthe transduction game (with

and without normalizing input similarities) belong to the so-called class ofnormalized

games, i.e. games with payoffs in a unit-length interval (Daskalakis, 2011), but the gap

in their classification performance requires further investigation.

4.2 Computing Nash equilibria

In the recent years, there has been a growing interest in the computational aspects of

Nash equilibria. The general problem of computing a Nash equilibrium is shown to be-

long to the complexity class PPAD-complete, a newly defined subclass of NP (Daskalakis

et al., 2009; Daskalakis, 2011). Nevertheless, there are many refinements and exten-

sions of Nash equilibria which can be computed efficiently and moreover, the former

result does not apply to certain classes of games (Nisan et al., 2007). This paper utilizes

the well-establishedevolutionary approach(Weibull, 1995; Hofbauer and Sigmund,

1998), initiated by Maynard Smith (1982) to find a Nash equilibrium in a multi-player

game, but we mention that other options do exist such as, for example, the simplicial

subdivision method (van der Laan et al., 1987), continuation methods (Govindan and

Wilson, 2003) and enumeration-of-support methods (Mangasarian, 1964; Dickhaut and
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Kaplan , 1991; Porter et al., 2008).

The dynamic interpretation of Nash equilibria through the evolutionary approach

imagines that the game is played repeatedly, generation after generation, during which

a selection process acts on the multi-population of strategies, thereby resulting in the

evolution of the fittest strategies. The selection dynamicsis commonly modeled by the

following set of ordinary differential equations:

ẋih = gih(x)xih (8)

where a dot signifies derivative with respect to time, andg(x) = (g1(x), . . . , gn(x)) is

the growth rate function with open domain containingΘ = ×i∈I∆i, each component

gi(x) being a vector-valued growth rate function for playeri. Hence,gih specifies the

growth rate at which playeri’s pure strategyh replicates. It is generally required that the

functiong be regular (Weibull, 1995),i.e. (1) g is Lipschitz continuous and (2)gi(x) ·

xi = 0 for all x ∈ Θ and playersi ∈ I. While the first condition guarantees that the

system (8) has a unique solution through every initial state, the conditiongi(x) · xi = 0

ensures that the simplex∆i is invariant under (8).

The class of regular selection dynamics includes a wide subclass known aspayoff

monotonic dynamics, in which the ratio of strategies with a higher payoff increase at a

higher rate. Formally, a regular selection dynamics (8) is said to be payoff monotonic if

ui

(
eh

i , x−i

)
> ui

(
ek

i , x−i

)
⇔ gih(x) > gik(x) (9)

for all x ∈ Θ, i ∈ I and pure strategiesh, k ∈ Si.

A particular subclass of payoff monotonic dynamics, which is used to model the

evolution of behavior by imitation processes, is given by

ẋih = xih

[
∑

l∈Si

xil

(
φi

[
ui

(
eh

i − el
i, x−i

)]
− φi

[
ui

(
el

i − eh
i , x−i

)] )
]

(10)

whereφi(ui) is a strictly increasing function ofui. The multi-population version of the

replicator dynamics is obtained whenφi is taken as the identity function,i.e. φi(ui) = ui,

as:

ẋih = xih

(
ui(e

h
i , x−i) − ui(x)

)
(11)

The following theorem states that the fixed points of (11) areNash equilibria.
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Theorem 1. A pointx ∈ Θ is the limit of a trajectory of (11) starting from the interior

of Θ if and only if x is a Nash equilibrium. Further, if pointx ∈ Θ is a strict Nash

equilibrium then it is asymptotically stable, additionally implying that the trajectories

starting from all nearby states converge tox.

Proof. See (Weibull, 1995).

In the experiments, the discrete-time counterpart of (11) given below is utilized,

where the mixed strategies of each unlabeled player is initialized to uniform probabili-

ties,i.e. the barycenter of the simplex∆i:

xih(t + 1) = xih(t)
ui(e

h
i )

ui(x(t))
(12)

The discrete-time replicator dynamics (12) has essentially the same dynamical prop-

erties as the continuous version (see, e.g., (Weibull, 1995) for a detailed analysis).

4.3 Computational Complexity

The computational complexity of finding a Nash equilibrium of a transduction game

using (12) can be given byO(kcn2), wheren is the number of players (data points),

c is the number of pure strategies (classes) andk is the number of iterations needed to

converge. In theory, it is difficult to predict the number of required iterations, but ex-

perimentally, we noticed that it typically grows linearly on the number of data points1.

Note that the complexity of popular graph transduction methods is also close toO(n3).

It is of interest that for two-player games, a fast evolutionary game dynamics has been

proposed recently, which exhibits linear space and time complexity per iteration (Rota

Bulò and Bomze, 2011). One can utilize this kind of dynamicsto increase the efficiency

of proposed approach.

5 Connection to graph-based approaches

Contrary to our derivation, the vast majority of graph-based SSL studies starts with

writing down an objective function that casts the transductive learning problem as an

1In the case of asymmetric similarities, we have no Lyapunov function for the dynamics so conver-

gence is not guaranteed. However, note that if the dynamics converges to a fixed point, it will definitely

be a Nash equilibrium (Theorem 1).
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energy minimization problem and most of the focus is on how tocompute the optima of

corresponding objective function. In general, all these methods attempt to estimate an

optimal classification function which is defined on the nodesof the graph by minimiz-

ing an objective function with two terms. One term penalizesthe mismatch between

the initial label assignments and the labels estimated by the classifier. The second term

is a regularization term that enforces the smoothness of theclassification function. Al-

though the game-theoretic perspective shifts the focus from optima of objective func-

tions to equilibria of the non-cooperative games, in this section we try to shed some

light on the connection between the proposed transduction game to the energy-based

graph transduction methods. It is important to note that this analysis only investigates a

special case in which the pairwise similarities are assumedto be symmetric and follows

from the following property of polymatrix games.

Consider a polymatrix game withA = (Aij) being the block matrix representation

of partial payoff matrices between players, the average payoff for the whole population

can be defined as:

E(x) =

n∑

i=1

xT
i

(
n∑

j=1

Aijxj

)
= xT Ax (13)

The following proposition establishes a link between localmaximizers ofxT Ax in

Θ and Nash equilibria of polymatrix games with symmetric payoff matrices.

Proposition 1. SupposeA is symmetric, that isAij = Aji for all i, j ∈ I. Then,

any local maximumx∗ ∈ Θ of (13) is a Nash equilibrium point of the polymatrix

game (Hummel and Zucker, 1983; Miller and Zucker, 1991).2

Now consider a special instance of the proposed transduction game where the given

pairwise similarities are symmetric,i.e. wij = wji, ∀i, j ∈ D. Recall that graph trans-

duction games belongs to the family of polymatrix games and its partial payoff matrices

are all in the formAij = wij × Ic. To compute Nash equilibria of a transduction game

with symmetric similarities, one can use the above proposition and come up with the

following constrained quadratic optimization problem by considering the special form

2Note, however, that this does not hold for the asymmetric case becausexT Ax is not a Lyapunov

function for the dynamics.
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of the partial payoff matrices:

maximizeE(X) = tr{XTWX}

subject toxi ∈ ∆i ∀i ∈ IU

xi = ek
i ∀i ∈ ID|k

(14)

whereX = [x1 · · ·xn]T is then×c matrix of mixed strategies. Clearly, there is no guar-

antee that the solution found by the replicator dynamics (12) will be a global maximizer

of (14). However, it was experimentally shown that, on a related problem, the basins

of attraction of optimal or near-optimal solutions are quite large and the dynamics of-

ten converges to one of them (Pelillo, 1999; Pelillo et al., 1999). Moreover, it should

be noted that even though globally optimal solutions are favorable as they yield the

largest consistency, unlike standard approaches, in our game-theoretic interpretation,

local optima have a meaningful interpretation and do indeedcorrespond to solutions of

our problem,i.e. Nash equilibria of the transduction game.

For the special case above, we can now investigate its relation to energy-based for-

mulations. To begin with, the functional in the above problem resembles the continuous

relaxation of thek-way normalized cutcriterion (Yu and Shi, 2003). However, note that

there is a key difference in the game-theoretic formulationin that each mixed strategy

xi is constrained to lie in thec-dimensional standard simplex∆i. This subtle differ-

ence is very important since it provides robustness againstnoise and outliers (Pavan

and Pelillo, 2007). Moreover, unlike the proposed approach, hard labeling constraints

cannot be embedded into the Normalized Cuts framework in an explicit way, such that

partial grouping constraints could be enforced by introducing extra linear equality con-

straints (Eriksson et al., 2007; Xu et al., 2009; Yu and Shi, 2004). The framework

suggested recently in (Ghanem and Ahuja, 2010) is an exception but it is inherently

a two-class clustering approach and requires a recursive strategy to solve multi-class

problems.

In Section 4.1, we have defined partial payoff matrices for the graph transduction

game asA = Ic ⊗ Ŵ whereŴ = D−1/2WD−1/2 is the normalized similarity matrix.

Suppose instead that they were specified asA = Ic ⊗−L, whereL = D − W is the

unnormalized graph Laplacian. Then the resulting optimization problem becomes the

15



following:

minimizeE(X) = tr{XT LX}

subject toxi ∈ ∆i ∀i ∈ IU

xi = ek
i ∀i ∈ ID|k

(15)

The above optimization problem is in fact equivalent to thatof the graph Laplacian

regularization used in (Zhu et al., 2003), which is known to be a special case of the

regularization in (Zhou et al., 2004) with the parameterµ = ∞ and the graph Lapla-

cian being unnormalized. In this way, one can argue that the method in (Zhu et al.,

2003) solves a special case of transduction games in which the pairwise similarities are

symmetric and the partial payoffs are specified in terms of negative graph Laplacian.

6 Experimental Results

In this section, we analyze the performance and effectiveness of the proposed approach

on some real-world classification problems. To highlight the property that the game-

theoretic formulation can naturally deal with both symmetric, asymmetric and nega-

tive similarity relations alike, three groups of experiments are carried out. In each

group of experiments, we compare our results against state-of-the-art graph-based semi-

supervised learning algorithms and have obtained reasonably good results. It is impor-

tant to note that none of the considered graph transduction methods can cope with all

the three types of similarities.

6.1 Experiments with symmetric similarities

In this section, experiments are conducted on four real-world data sets:USPS3, YaleB

(Georghiades et al., 2001),Scene(Oliva and Torralba, 2001) and20-news4. Here are

some details:

• USPScontains images of hand-written digits 0-9 down-sampled to16×16 pixels

and it has 7291 training and 2007 test examples. As in (Zhou etal., 2004), only

3http://www-stat.stanford.edu/ ˜ tibs/ElemStatLearn/

4http://people.csail.mit.edu/jrennie/20newsgroups/
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the digits 1 to 4 from the training and test sets are selected,which gives a total of

3874 data points.

• YaleBis composed of face images of 10 subjects captured under varying poses

and illumination conditions. As in (Breitenbach and Grudic, 2005), each image

is down-sampled to30 × 40 pixels and a subset of 1755 images are considered,

which corresponds to the images of individuals 2, 5 and 8.

• Sceneis a scene classification data set consisting of 2688 naturalscene images

classified into one of 8 classes. Each image is represented with a 512-dimensional

GIST descriptor (Oliva and Torralba, 2001) which combines the outputs of Gabor-

like filters specifically designed to capture the structuralproperties of a scene.

• 20-newsis the text classification data set used in (Zhou et al., 2004), which con-

tains 3970 newsgroup articles selected from the 20-newsgroups data set, all be-

longing to the topicrec which is composed of the subjectsautos, motorcycles,

sport.baseball and sport.hockey . As described in (Zhou et al., 2004),

each article is represented in 8014-dimensional space based on the TFIDF repre-

sentation scheme.

Table 2 shows the summary of the data sets. ForUSPSand YaleB, each image

pixel is treated as a single feature, thus each example is represented in 256-, and 1200-

dimensional space, respectively. The similarity between two examplesdi and dj is

computed using the Gaussian kernel aswij = exp(−
dist(di ,dj)

2

2σ2 ) wheredist(di, dj) is

the distance betweendi anddj andσ is the kernel width parameter. Among several

choices for the distance measuredist(·), the Euclidean distance‖di − dj‖ is evaluated

for USPS, YaleBandScene, and the cosine distancedist(di, dj) = 1 −
〈di,dj〉

‖di‖‖dj‖
is eval-

uated for20-news.

USPS YaleB Scene 20-news

# objects 3874 1755 2688 3970

# dimensions 256 1200 512 8014

# classes 4 3 8 4

Table 2: The data sets used in the experiments with symmetricsimilarities.
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In the experiments, the proposed approach (denoted here with GTG) is compared

against four well-known graph-based SSL algorithms, namely the Spectral Graph Trans-

ducer (SGT) (Joachims, 2003)5, the Gaussian fields and harmonic functions based

method (GFHF) (Zhu et al., 2003)6, the local and global consistency method (LGC) (Zhou

et al., 2004)7 and Laplacian Regularized Least Squares (LapRLS) (Belkin et al., 2006)8.

A crucial factor in the success of graph-based algorithms isthe construction of the

input graph as it represents the data manifold. As a result, graph construction for clas-

sification has become a subject of interest in recent years,e.g.(Jebara et al., 2009), but

the problem is still open. To be fair in the evaluation, for all the methods, a fixed set

of kernel widths is used and 9 different 20-NN graphs are generated by settingwij = 0

if xj is not amongst the 20-nearest neighbors ofxi. In particular, the kernel widthσ

ranges over the setlinspace(0.1r, r, 5) ∪ linspace(r, 10r, 5) with r being the average

distance from each example to its20th nearest neighbor andlinspace(a, b, n) denoting

the set ofn linearly spaced numbers between and includinga andb.

Figure 2 shows the mean test error rates and one standard deviation error bars over

100 trials with different sizes of labeled data9. As it can be seen, LapRLS method gives

the best results for the relatively small data sets,YaleBandScene. However, for the

other two, its performance is poor. In general, the proposedGTG algorithm is either

the best or the second best algorithm. While its success is almost identical to that of the

LGC method inUSPS, Yale-BandScene, it gives superior results for20-news.

6.2 Experiments with asymmetric similarities

In this section, several experiments are carried out on a real-world protein data set

derived fromSCOP(Structural Classification of Proteins) (Murzin et al., 1995)10, and

5The optimal value of the parameterc is selected as the one with the best mean performance from the

set{400, 800, 1600, 3200, 6400, 12800}.
6In obtaining the hard labels, theclass mass normalizationstep is employed as suggested in (Zhu

et al., 2003).
7As in (Zhou et al., 2004), the parameterα is set as 0.99.
8The optimal values of the extrinsic and intrinsic regularization parametersγA andγI is selected from

the set{10
−6, 10

−4, 10
−2, 1} for the best mean performance.

9We randomly select labeled samples such that each set contains at least one sample from each class.
10Version 1.59 with less than 95% identity.
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Figure 2: Performance comparisons on classification problems withsymmetricsimilar-

ities.

three document data sets –Cora, Citeseer(Sen et al., 2008)11, andWebKB12.

The details of these data sets are given below:

• SCOPcontains 7329 proteins which are hierarchically divided into seven classes

based on structural and evolutionary relationships. Each class is divided into

folds, and each fold is further divided into superfamilies.Similar to the setup

in (Meila and Pentney, 2007), only the proteins from the five largest folds of

all alpha class are selected, which give a total of 451 protein sequences to be

classified by fold.

• Cora contains 2708 machine learning publications classified into seven classes,

and there are 5429 citations between the publications.

11Both the two data sets are available athttp://www.cs.umd.edu/projects/linqs/

projects/lbc/

12Available athttp://www.nec-labs.com/ ˜ zsh/files/link-fact-data.zip
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SCOP Cora Citeseer Cornell Texas Washington Wisconsin

# objects 451 2708 3312 827 814 1166 1210

# classes 5 7 6 2 2 2 2

Table 3: The data sets used in the classification experimentswith asymmetric similari-

ties.

• Citeseerconsists of 3312 scientific publications, each of which belongs to one of

six classes, and there are a total of 4732 links.

• WebKBcontains webpages collected from computer science departments of four

universities (Cornell, Texas, WashingtonandWisconsin), and each classified into

seven categories. Following the setup in (Zhou et al., 2005), here we concentrate

on classifying student pages from the others. Each subset respectively contains

827, 814, 1166 and 1210 webpages and 1626, 1480, 2218 and 3200links.

The data sets are summarized in Table 3. ForSCOP, E-values of the PSI-BLAST

search calculated by (Weston et al., 2004)13 are considered as the dissimilarity scores.

These dissimilarity values arenot symmetric. Instead of constructing NN graphs, this

time the full similarity matrices are used where the kernel width σ was optimized for

each method with respect to the setlinspace(0.5, 2.5, 5) ∪ linspace(5, 20, 4) ∪ 40. For

Cora, CiteseerandWebKB, as in (Zhou et al., 2005), only the citation/link structureis

considered, even though one can also assign some weights by utilizing the textual con-

tent of the documents. Specifically, the experiments are performed on the link matrix

W = (wij), wherewij = 1 if documenti cites documentj andwij = 0 otherwise.

Unlike red the proposed game-theoretic approach, the standard methods mentioned

before, namely SGT, GFHF, LGC and LapRLS, are subject to symmetric similarities.

Hence, in this context, they can be applied only after rendering the similarities symmet-

ric but this could result in loss of relevant information in some cases. In the evaluation,

only the graph-based methods which can directly deal with asymmetric similarities are

considered. Specifically, the proposed game-theoretic approach is compared against

our implementation of the method in (Zhou et al., 2005), denoted here with LLUD.

13Available athttp://www.kyb.tuebingen.mpg.de/bs/people/weston/ra nkprot/

supplement.html

20

http://www.kyb.tuebingen.mpg.de/bs/people/weston/rankprot/supplement.html
http://www.kyb.tuebingen.mpg.de/bs/people/weston/rankprot/supplement.html


This algorithm is based on the notion of random walks on directed graphs and it is

equivalent to LGC in the case of symmetric similarities. It,however, assumes the input

similarity graph to be strongly connected, so in (Zhou et al., 2005) the authors con-

sider theteleporting random walk (trw)transition matrix as input, which is given by

P η = ηP + (1 − η)P u whereP = D−1W andP u is the uniform transition matrix.

This suggests a second variant for our framework, denoted with GTGtrw, where pay-

offs are defined in terms of this transition matrix. In the experiments, we fixη = 0.99

for both LLUD and GTGtrw. To provide a baseline, we also report the results of our

approach that works on the symmetrized similarity matrices, denoted with GTGsym.

For that case, we used the transformationW̃ = 0.5 × (W + W T ) for SCOP, and the

symmetrized link matrix̃W = (w̃ij) for the others, wherẽwij = 1 if either documenti

cites documentj or vice versa, and̃wij = 0 otherwise.

The test errors averaged over 100 trials are shown in Figure 3. Recall that the

replicator dynamics used to find a Nash equilibrium is not guaranteed to converge in

the case of asymmetric similarities. In fact, GTG succeededto find a solution only on

SCOPand failed on the others. However, we did not face any convergence problem

with GTGtrw. Hence, we suspect that the this might be relatedto high sparseness of

the data. Notice that the performances of GTGtrw and LLUD arequite similar on the

classification problems inWebKBdata sets. On the other hand, GTGtrw is superior

in the multi-class problems inSCOP, Cora andCiteseer. It is important to note that

symmetrization sometimes can provide good results. As shown in Figure 3(b)-(c), in

CoraandCiteseer, GTGsym performs better than the other two methods.

6.3 Experiments with negative similarities

The game-theoretic formulation can also handle negative similarity or dissimilarity in-

formation in two-class semi-supervised classification problems in a natural way. In

practice, such dissimilarity relationships could arise either in the computations, or they

can be provided explicitly in terms of a set of cannot link pairs where the objects in

each pair are expected to be assigned to different classes. The standard methods cannot

accept negative similarities as well, since the existence of negative similarities could

make their energy functions negatively unbounded. However, there are some graph-

21



5 10 15 20 25 30
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

number of labeled points

cl
as

si
fic

at
io

n 
er

rr
or

 r
at

e

 

 
GTG
GTGtrw
GTGsym
LLUD

7 10 20 30 40 50
0.3

0.4

0.5

0.6

0.7

0.8

number of labeled points

cl
as

si
fic

at
io

n 
er

ro
r 

ra
te

 

 
GTGtrw
GTGsym
LLUD

6 10 20 30 40 50
0.55

0.6

0.65

0.7

0.75

0.8

number of labeled points

cl
as

si
fic

at
io

n 
er

ro
r 

ra
te

 

 
GTGtrw
GTGsym
LLUD

(a)SCOP (b) Cora (c) Citeseer

2 4 6 8 10 12 14 16 18 20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

number of labeled points

cl
as

si
fic

at
io

n 
er

ro
r 

ra
te

 

 
GTGtrw
GTGsym
LLUD

2 4 6 8 10 12 14 16 18 20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

number of labeled points

cl
as

si
fic

at
io

n 
er

ro
r 

ra
te

 

 
GTGtrw
GTGsym
LLUD

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of labeled points

cl
as

si
fic

at
io

n 
er

ro
r 

ra
te

 

 
GTGtrw
GTGsym
LLUD

(d) Cornell (e) Texas (f) Washington

2 4 6 8 10 12 14 16 18 20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

number of labeled points

cl
as

si
fic

at
io

n 
er

ro
r 

ra
te

 

 
GTGtrw
GTGsym
LLUD

(g) Wisconsin

Figure 3: Performance comparisons on classification problems withasymmetricsimi-

larities.

based SSL methods specifically designed for dealing with dissimilarity information,

that is the mixed label propagation method (MLP) (Tong and Jin, 2007) and manifold

regularization with dissimilarity method (MRWD) (Goldberg et al., 2007)14, which is

adopted from (Belkin et al., 2006). In this section, the proposed method is compared

against these two algorithms.

The experiments are performed on 2 data sets from UCI repository15: Ionosphere

and Diabetes. These data sets are described in Table 4. Notice that the similari-

14In the absence of negative similarities, MRWD reduces to LapRLS. In the experiments, we used the

Regularized Least Squares (RLS) classifier and select the optimal values of the extrinsic and intrinsic

regularization parameters as described for LapRLS.
15http://archive.ics.uci.edu/ml/
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Ionosphere Diabetes

# objects 351 768

# dimensions 34 8

# classes 2 2

Table 4: The data sets used in the classification experimentswith negative similarities.

ties derived from the data sets do not originally contain anynegative values but we

adopted the procedure in (Goldberg et al., 2007) and introducedoracle dissimilarity

relations (cannot links) by randomly sampling pairs of examples having different la-

bels. These pairs do not contain any labeled samples and to enforce the maximum

degree of dissimilarity, the edge weights were set to the maximum similarity value exist

in the data. In the experiments, the size of the labeled data is fixed is as 50 and the

number of dissimilarity edges are varied between 3 and 12800. For all data sets, full

similarity matrices are used and the kernel widthσ is optimized with respect to the set

{0.01} ∪ linspace(0.05, 0.25, 5) ∪ linspace(0.25, 2.5, 10) ∪ {5, 10, 20, 25}.

The average test errors over 10 trials with randomly selected labeled examples and

dissimilarity edges are given in Figure 4. As the methods in consideration explore

both similarity and dissimilarity information, their accuracy improve as the size of the

dissimilarity edges increases. While there is no considerable difference in the perfor-

mances of the methods onDiabetes, GTG is clearly more successful onIonosphere.
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Figure 4: Performance comparisons on classification problems withnegativesimilari-

ties
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Conclusion

In this paper, a novel game-theoretic interpretation to graph transduction is introduced,

in which the problem is formulated in terms of a polymatrix game whereby any equi-

librium coincides with the notion of a consistent labeling of the data. As compared

to existing approaches, the main advantage of the proposed framework is that there is

no restriction on the pairwise relationships among data points; similarities and thus the

payoffs can be negative or asymmetric. Apart from that, our approach is easy to im-

plement and can be applied to multi-class problems. The experimental results show

that the game-theoretic approach is not only more general but also competitive with

standard approaches. As future work, we plan to focus on improving the efficiency. In

our current implementation, we use the standard replicatordynamics to reach an equi-

librium but we can study other selection dynamics that are much faster (Porter et al.,

2008; Rota Bulò and Bomze, 2011). Another possible direction for future research is

to generalize the presented approach to transductive learning in hypergraphs (Agarwal

et al., 2006; Zhou et al., 2007). This will require replacingthe pairwise interactions

with higher-order interactions in defining payoffs, along the lines proposed in (Rota

Bulò and Pelillo , 2009) for unsupervised learning. In thiscontext, it would be espe-

cially interesting to explore whether different classes ofgames such as action-graph

games (Jiang et al., 2011) will be more suitable or not.
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