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Abstract

Graph transduction is a popular class of semi-supervisaahiley techniques which
aims to estimate a classification function defined over alyodpabeled and unlabeled
data points. The general idea is to propagate the provithedlitlsformation to unlabeled
nodes in a consistent way. In contrast to the traditionakyie which the process of
label propagation is defined as a graph Laplacian regutaigahis paper proposes a
radically different perspective that is based on games#teonotions. Within the pro-
posed framework, the transduction problem is formulatedrims of a non-cooperative
multi-player game whereby equilibria correspond to cdesidabelings of the data. An
attractive feature of this formulation is that it is inhetlgra multi-class approach and
imposes no constraint whatsoever on the structure of thevisai similarity matrix, be-

ing able to naturally deal with asymmetric and negative lgirities alike. Experiments



on a number of real-world problems demonstrate that theqs@g approach performs
well compared with state-of-the-art algorithms and it caaldeffectively with various

types of similarity relations.

1 Introduction

In the machine learning community, semi-supervised lear(SSL) has gained con-

siderable popularity over the last dec ;.Zhu| 2005) and within

the existing paradigms, graph-based approaches to SSlelyéme graph transduction
methods, constitute an important class of algorithms. & mesthods model the geom-
etry of the data as a graph with nodes corresponding to tleéddland unlabeled points
and edges being weighted by the similarity between the poamtd try to estimate the
labels of unlabeled points by propagating the coarse irdtion available at the labeled

nodes to the unlabeled ones. Performing this propagatiarcomsistent way relies on

a common a priori assumption, known as thester assumptioizhou et al., 2004;

Chapelle et &ll, 2006), which is reminiscent of the homgppiinciple used in social

network analysis (Easley and Kleinberg, 2010). The assiomgtmply states that (1)

points which are close to each other are expected to havathe sbel, and (2) points
in the same cluster (or on the same manifold) are expectecue the same label.

Building on this assumption, traditional graph-based appines formalize graph trans-

duction as a regularized function estimation problem onratirected graph (Joachims,
2003; Zhu et al., 2003; Zhou etlal., 2004).

This paper presents a novel game-theoretic perspectivieet@roblem of graph

transduction. Specifically, graph transduction is formedan terms of anulti-player
non-cooperative gamwhere the players are the data points that take part in the gam
to decide their class memberships. In this setting, whiéedinategies played by the
labeled points are already decided at the outset, as eadtewf knows which class

it belongs to, the possible strategies available to unébpbints are the whole set of
hypotheses of being a member of one of the available clasagthin this formula-
tion, the well-known Nash equilibrium concept for non-cecgtive games provides a
well-founded way of consistent labeling for the unlabeledtfs.

The game-theoretic interpretation presented in this papgwpealing for a number



of reasons. To begin with, it is intrinsically a multi-clasgproach. But more impor-

tantly, it can cope with both asymmetric and/or negativalanities. Since the seminal

work of [Tversky {(1977), a large body of psychological stgdseiggests that human

similarity judgments are non-metric (in particular, asyetric). Non-metric similari-

ties or dissimilarities also arise naturally in many preaitapplications, like comparing

shapes (Jacaobs et al., 2000) and protein seque ' Y, 2007). Common

J

examples include the directed Hausdorff distance betwets) the Kullback-Leiber

divergence between probability distributions, and Tvgsskontrast model (Tversky,

1977; Santini and Jain, 1999). Non-metricity has been lgnggarded as an artifact

of poor choice of features or algorithms. Note, howevert thhas been shown that

non-metricity is sometimes essential to the nature of tlublpm and rendering the

similarities metric may destroy relevant information (baet a .,LOdG).

The organization of the paper is as follows. Secfibn 2 shdwvastransduction on
an unweighted undirected graph can be formulated as a bawagtraint satisfaction
problem, which in turn provides the motivation for the prepd approach. Sectidh 3
briefly reviews some basic notions of non-cooperative gamery. Next, Sectiohl4
extends our analysis to the general case of transductioreaghted (directed) graphs,

where graph transduction is formalized as a non-coopergime using the connection

between so-called relaxation labeling processes and damoeyt (Miller and Zucker,

1991). Sectionl5 investigates the loose relation betweemtbposed game-theoretic

formulation and the traditional energy-based formulaioSectiorl 6 reports experi-

mental results on a number of real-world classification [@is.

2 Transductive learning on unweighted undirected graphs

The theoretical motivation for the proposed approach steams the analysis of the
simplest case of graph transduction where the graph expgethe similarity relation-
ships among the data points is anweighted undirected graphTo give an example,
the graph can be seen as a k-nearest neighbdiN) graph with 0/1 weights over
points in which the presence of an edge simply denotes tHegbeimilarity between
a pair of two data points, otherwise the points are completisisimilar. To illustrate

this toy problem, consider the graph shown in Figdre 1 in Wieidges are unweighted.
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Figure 1: Transductive learning on an unweighted undicegtaph. (a) An unweighted

undirected graph describing the similarity relationskapsong the points. Two nodes
of the graph are marked with different labels, respectivepresented by a square and
a triangle. (b) The consistent labeling of points satigfytine constraints based on the

cluster assumption of SSL.

The classification task is to estimate the labels of the whkabpoints based exclu-
sively on the information available at the two labeled pgjmtach of which is marked
with a different label. Recall the cluster assumption of issapervised learning that
neighboring objects and objects in the same cluster (or@®sdime manifold structure)
tend to belong to the same class. Clearly, in the unweightaphgsetting, the clus-
ter assumption is also valid and can be expressed as thehegothat every node in
a connected component of a binary similarity graph has theesaass label as each
connected component describes a manifold.

Following this observation, we can formulate this toy vensof graph transduction

as a(binary) constraint satisfaction proble(@SP) (Tsang, 1993; Marriott and Stuckey,

1998). CSPs are widely used to solve combinatorial problarayariety of application

domains, such as artificial intelligence and computer wnisitn the computer vision

literature, the problem is often known as #tensistent labeling probleifwaltz,[1975;
Haralick and Shapiro, 1979).
A binary CSP is defined by a setadriablesrepresenting the elements of the prob-

lem being modeled and a set of binagnstraintgepresenting the relationships among
variables. A solution of the problem is simply an assignnzémalues to the variables
which satisfies all the constraints. If there is no such assant, then the problem is un-
satisfiable. When each variable can take a value from a fiomeain abinary CSPcan

be described in a formal manner as atrigle D, R), whereV = {vy,...,v,} is a set of
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variables,D = {D,,,..., D, } is a set of domains of the variables, ede}) denoting
a finite set of possible values for variabigand R = {R;; | R;; € D,, x D,,} is a set
of binary constraints, eacR;; describing compatible pairs of values for the variables
v; andv;. If the cardinality of the domains of variables ar@ndg, respectively, then
R;; can be expressed by a 0/1 matrix of size ¢, whereR;;(\, \') = 1 if the assign-

mentv; = X is compatible with the assignment = \’. For a general CSP on a finite

domain, the problem of finding a solution is known to be NP-ptate (Haralick et &

1978). The simplest way to obtain an assignment satisfyiintdpe given constraints

or to report non-existence of such a solution is to perforcktvacking. However, it
is time consuming, so in practice, either a constraint pgafian technique or a local
search method is used to solve the probl\g;m_(lcang 993jdtaand Stuckey, 1998).

Returning back to the motivating problem of transductiaténg on an unweighted

undirected graph, suppose that we are given a dat®set {D,, D, } consisting of
labeled point®, = {d, ..., d,} and unlabeled point®, = {d/.1,...,d,} and a set

of labels® = {1,...,c} such that the labels provided for the fifdtabeled points are
givenby{¢s, ..., ¢} € ®. The task of transductive learning is to estimate the unknow
labels{¢¢.1, ..., ¢,} of unlabeled pointdd,,s,...,d,}. Now further suppose that
the relationships among the data points are given by an gmtexl undirected graph
G = (D, &), whereD is the set of nodes anfl is the set of edges such that an edge
e;; € £ shows that point$ andj are perfectly similar to each other. Ldt= (a;;)
denote the 0/1 adjacency matrix@f Reflecting the constraints imposed by the cluster
assumption of SSL, the problem of graph transduction on aveighted graph can be

formalized as a binary CSP as follows:

e The set of variablest’ = {vy,...,v,}

_ o}, foralll <i</
e Domains:D,, = {94

d forall/+1<i<n
e Binary constraints:Vij: if a;; = 1, thenv; = v; e.g. for a 2-class problem,
10
Rij — .
01
Each assignment of values to the variables satisfying alttmstraints is a solution of

the CSP, and provides a consistent labeling for the unldipaats.
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Classical CSPs such as the one given in this section assuspeonstraints, in the
sense that constraints are either completely satisfiedroplately violated. However,
for many real-world applications, such a formulation is testrictive to be practical.

A classical generalization to deal with soft constraintslescribed in (Hummel and

Zucker,[ 1983), in which each constraint is assigned a weigirtesenting a level of

confidence. Later, it was shown that the notion of consistgmoposed in (Hummel

and Zucker, 1983) is related to the Nash equilibrium congepbn-cooperative game

theory (Miller and Zucker, 1991). In this study, we build dristconnection to devise

agraph transduction gamehich serves as a generalization of the binary CSP for the

motivating problem. For the sake of completeness, we neitige an overview of

some basic notions from non-cooperative game theory ILI@L).

3 Non-cooperative games and Nash equilibria

Non-cooperative game theory deals with models of stratetgcactionsgame¥among
anonymous agentpl@yerg, where the goal of each player is to maximize its own utility
or payoff. Each player has a set of possible actignsd strategiesto play, called the
pure strategy setand receives a payoff based on its own choice and those ofthiee

players. In the definitions below, we restrict ourselvesitdti-player gamegxpressed

in normal form and follow the notations used lin (Wei 99

In normal form, a game with many players can be expressed d@pla & =
(Z,S,7), whereZ = {1,...,n}, withn > 2, is the set ofplayers S = X;c7S; is
thejoint strategy spaceefined as the Cartesian product of the individual pureeggat
setsS; = {1,...,m;},andr : S — R™is thecombined payoff functiomhich assigns a
real valued payoffr;(s) € R to eachpure strategy profile € S and playei € Z. In the
case of two players, payoff functions can be represented@s x m, matrices. To
illustrate, consider the well-knowrock-paper-scissorgame. It is a 2-player game in
which each player has three possible strategiess; = {rock, paper, scissors} for
eachi = 1, 2. Both players simultaneously choose a strategy and coesdgueceive
a payoff based on their actions with respect to the rulek‘bmats scissors”, “scissors
beats paper”, and “paper beats rock”. The payoff matrix efgame is given in Tablg 1

in which player 1 is the row player and player 2 is the columaypt. For example, if



player 1 plays-ock and player 2 playgaper, player 1 loses the gamee. receives a

payoff of -1, and player 2 wins the games. receives a payoff of 1.

rock paper scissors
rock 0,00 (-1,1) (1,-1)
paper (1,-1) (0,0) (-1,1)
scissors | (-1,1) (1,-1) (0,0)

Table 1: The payoff matrix of theock-paper-scissorgame.

A mixed strategpf playeri € 7 is a probability distribution over its pure strategy
setS;, which can be described as the vectpr= (x4, . . . ,ximi)T such that each com-
ponentz;;, denotes the probability that the player chooses to play‘itgure strategy
among all the available strategies. Mixed strategies fehgqdayer: € 7 are con-
strained to lie in thestandard simplewf the m;-dimensional Euclidean spat&:

A; = {9:2- ER™ Y ay, = 1, andzy, > 0 for all h} :
h=1

Accordingly, amixed strategy profile = (z1,...,z,) is defined as a vector of mixed
strategies, each; € A, representing the mixed strategy assigned to playef, and
each mixed strategy profile lives in th@xed strategy spaasaf the game, given by the
Cartesian product

O = Xierl. (1)

For the sake of simplicity, let = (z;,y_;) € © denote the strategy profile where
playeri plays strategy:; € A; whereas the other playefs= 7 \ {i} play based on the
strategy profiley € ©, that is to sayz; = z; andz; = y; for all j # i. The expected
value of the payoff that playerobtains can be determined by a weighted sum for any

i,j € Z (when all the other players’ strategies are kept fixed) as
ui(x) = Zx(s)ﬂi(s) = Zul (e;‘-”, T_j) Tjk (2)
ses k=1

whereu; (eﬁr’,x_j) denotes the payoff that playéreceives when player adopts its
k" pure strategy, aneg? € A, stands for thextreme mixed strategyprresponding the

vector of lengthn; whose components are all zero exceptitteone which is equal to
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one. Note that for playef, playing itsk*" pure strategy is probabilistically equivalent
to playing the extreme mixed strated;y.

The mixed best repliefor playeri against a mixed strategy € ©, denoted by
Bi(y), is the set of mixed strategies such that no other mixedestyabther than the
ones included in this set gives a higher payoff to playsgainst strategy:

Bi(y) = {z; € Ayt wi (z,y—i) > wi (2,y—:) Yz € A}

Subsequently, the combined mixed best replies is definedea€artesian product of

best replies of all the players(y) = x;ez5:(y) C O.

Definition 1. A mixed strategy* = (27, ..., ;) is said to be a Nash equilibrium if it

rn

is the best reply to itself;* € 5(x*), that is
ui(x;‘kv‘r*—i) > Ul(l‘z,l‘tl) (3)

foralli € Z,z; € A;, andz; # xf. Furthermore, a Nash equilibrium* is calledstrict

if eachz] is the unique best reply tef, 5(2*) = {z*}

Nash equilibrium constitutes the key concept of game thdbry motivated by the
idea that a theory of rational decision-making should ncd Belf-destroying prophecy
that creates an incentive to deviate for those who believadeed, the notion itself is
a stability condition which states that no player can ob&mgher payoff by changing
unilaterally its own strategy once such an equilibriumestatreached. Note that not all
games do have a Nash equilibrium in pure strategies (eegrptik-paper-scissors game
introduced above), but a fundamental result of game theatgsthat any normal-form
game has at least one mixed Nash equilibrium (\lLa_sm 1951) example, the rock-
paper-scissors game has a (unigue) mixed Nash equilibribichveorresponds to the

case where each player picks a strategy uniformly at randem;, = (1/3,1/3,1/3)
for eachi = 1,2. The algorithmic issue of computing a Nash equilibria wil @is-
cussed later in Sectidn 4.2.

4 The graph transduction game (GTG)

Consider the followinggraph transduction gameAssume each playere 7 partic-

ipating in the game corresponds to a particular point in a detD = {d,,...,d,}
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and can choose a strategy among the set of strat8gies{1, ..., ¢}, each expressing
a certain hypothesis about its membership to a class-dmang the total number of
classes. Hence, the mixed strategy profile of each plagef lies in thec-dimensional
simplexA;. By problem definition, the players of the game can be caieginto two
disjoint groups: those which already have knowledge ofrttr@mbership, referred to
adabeled playersand denoted with the symbdl}, and those which do not have any
idea about this at the beginning of the game, which are hesltedainlabeled players
and correspondingly denoted wifh.

The so-called labeled players of the game can further bimdisshed based on the
strategies they follow without hesitation, coming fromithmembership information.
In formal terms.Z, = {Z,, ..., Z,.}, where each disjoint subsgf, stands for the set
of players always playing thei'” pure strategies. It thus follows from this statement
that each playei € Z,; plays its extreme mixed strategy € A;. In other words,
z; is constrained to belong to the minimal face of the simplexspanned by{e#}. In
this regard, it can be argued that the labeled players dolagtipe game to maximize
their payoffs since they have already chosen their stradedn fact, the transduction
game can be easily reduced to a game with only unlabeledrglay&here the definite
strategies of labeled playefs act as bias over the choices of unlabeled players.

It is important to note that any instance of the proposedsttaation game will

always have a Nash equilibrium in mixed strateg\ie_s_(\l[asﬁ;l L9Recall that, for the
players, such an equilibrium corresponds to a steady siatethat each player plays a
strategy that could yield the highest payoff when the sfjiateof the remaining players
are kept fixed, and it provides us a globally consistent laedf the data set. Once an
equilibrium is reached, the label of a data point (playés)simply given by the strategy
with the highest probability in the equilibrium mixed stgy of player: as
¢; = arg max T, (4)
h=1...c

thereby yielding a crisp classification.

4.1 Payoff functions

In this paper, we assume that the proposed graph transdwgdioe is an instance of

a special subclass of multi-player games, knowrpalymatrix gamegJanovskaya,
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196 ;J:|DAALS.Q| ,1972), in which players are nodes of a graphesad/ edge denote a
two-player game between corresponding pair of players.therovords, we suppose

that only pairwise interactions are allowed in the game dmedptayoffs associated to
each player are additively separable so that the payoff df @tayer is given by the
sum of the payoffs gained from each game played with one afeighbor. Formally
speaking, for a pure strategy profile= (si,...,s,) € S, the payoff function of every

playeri € 7 is in the form:
mi(s) =Y Ai(sis;) (5)
j=1

whereA;; is thepartial payoff matrix between playersandj. It follows that, in terms
of a mixed strategy profile = (z1,...,,), the payoffs are computed as(e!!) =
> (Ayzy)n andu;(z) = 377, of Ay,

In an instance of the transduction game, since each labédgdrps restricted to
play a definite strategy of its own, all of these fixed choicas loe reflected directly in

the payoff function of a unlabeled playee 7, as follows:

wi(el) = Y (Ayzin+ > > Aylhk) (6)
JE€TYy k=1 jEID‘k
J€Ty k=1 j€Ip)

Now, what is left is how to specify partial payoff matricesween each pair of play-
ers. For doing so, the binary logical constraints for thettapsduction problem can be
simply replaced with their weighted versions. Let the geynef the data be modeled
with a weighted graply = (D, £, w) in which D is the set of nodes representing both
labeled and unlabeled points, and £ — R is a weight function assigning a similarity
value to each edge € £. Representing the graph with its weighted adjacency matrix
W = (w;;), the partial payoff matrix between two playénd; is setasd;; = w;; x I,
wherel. is the identity matrix of size. Note that when partial payoff matrices are rep-
resented in block form ad = (4,;), the matrixA is given by the Kronecker product
A = I, ® W. Notice that in the case of binary-valued similarity redas, the above
partial payoff matrices coincide with the compatibility mees defined for the binary
CSP given in Section] 2. Further, if only pure strategies Hosvad, then the transduc-

tion game reduces to the presented CSP. In a pure Nash eigmilibf such a game, the
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neighboring players all play the same pure strategy to getrthximum support from
their neighbors. Note that, however, when the data contaiise, then class manifolds
may be connected; hence a pure Nash equilibrium may not exist other words, the
CSP may be unsatisfiable.

Empirically, we observed that specifying payoffs in ternisnormalized similar-
ity matrix W = D~V/2W D~/2 with D = (d;;) being the diagonal degree matrix if
whose elements are given by = Zj w;; performs better than the case with the orig-
inal similarities. In that regard, we add that the use of radization is a common

practice in graph-based approaches because it can typacieve a better perfor-

mance. To give an example, while the GFHF method (Zhu Puses original
(unnormalized) similarities, the LGC methad (Zhou tLa&DQ_i) employs the normal-
ized similarity matrix in its formulation. Moreover, whileot directly related to graph

transduction, it has been shown that the use of normalizdtas nice convergence

properties in spectral clustering (von Luxburg et al., 200 terms of game the-

ory, however, it is interesting to note that both versiontheftransduction game (with

and without normalizing input similarities) belong to tre&alled class ohormalized

gamesi.e. games with payoffs in a unit-length interval (Daskal ), but the gap

in their classification performance requires further inigzdgion.

4.2 Computing Nash equilibria

In the recent years, there has been a growing interest incimputational aspects of
Nash equilibria. The general problem of computing a Nashlibgum is shown to be-

long to the complexity class PPAD-complete, a newly defindatkass of NP (Daskalakis

et al.,.2009| Daskalakis, 2011). Nevertheless, there argy melinements and exten-

sions of Nash equilibria which can be computed efficientlgl exoreover, the former

result does not apply to certain classes of games (Nisat 2_@). This paper utilizes

the well-establishe@volutionary approachi{Weibull, [1995; Hofbauer and Sigmund,

1998), initiated by Maynard Smith (1982) to find a Nash eguilim in a multi-player

game, but we mention that other options do exist such asxmple, the simplicial

subdivision method (van der Laan et al., 1987), continmatieethods (Govindan and
Wilson,[2003) and enumeration-of-support meth )_ds_(M@mL 1964; Dickhaut and
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Kaplan , 1991/, Porter et 08).
The dynamic interpretation of Nash equilibria through tkieletionary approach

imagines that the game is played repeatedly, generatiengdheration, during which
a selection process acts on the multi-population of streseghereby resulting in the
evolution of the fittest strategies. The selection dynansicommonly modeled by the

following set of ordinary differential equations:
Tip = gih(x)xih (8)

where a dot signifies derivative with respect to time, atd) = (g1(x), ..., g.(2z)) IS
the growth rate function with open domain containfdg= x;.z4;, each component
g;(x) being a vector-valued growth rate function for playeHence,g;, specifies the

growth rate at which playeis pure strategy: replicates. Itis generally required that the

function g beregular (Weibull,|1995),i.e. (1) g is Lipschitz continuous and (2)(x) -

x; = 0 for all z € © and players € Z. While the first condition guarantees that the
system[(8) has a unique solution through every initial stateconditiory;(z) - x; = 0
ensures that the simplée; is invariant under.(8).

The class of regular selection dynamics includes a widelagb&nown apayoff
monotonic dynamig¢sn which the ratio of strategies with a higher payoff in@eat a

higher rate. Formally, a regular selection dynandi¢s (8id o be payoff monotonic if
u; (e?,x_i) > (ef, x_i) < gin(x) > gu(2) (9)

forall x € ©,7 € 7 and pure strategidgs k € S;.
A particular subclass of payoff monotonic dynamics, whistused to model the

evolution of behavior by imitation processes, is given by
Tin = Tin [Z Tl <¢i [Uz (6? - eéu x—z)} — ¢ [Uz (eﬁ - 6?7 x—z)} )] (10)
l€S;

whereg;(u;) is a strictly increasing function af;. The multi-population version of the
replicator dynamics is obtained whenis taken as the identity functione. ¢;(u;) = u;,
as:

Tin = Tip, (ui(e?, T_;) — u(x)) (12)

The following theorem states that the fixed pointdof (11)Nash equilibria.
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Theorem 1. A pointx € O is the limit of a trajectory off(1l1) starting from the interio
of © if and only if z is a Nash equilibrium. Further, if point € © is a strict Nash
equilibrium then it is asymptotically stable, additionalmplying that the trajectories

starting from all nearby states convergeito

Proof. See QALeib_u‘II 1995). O

In the experiments, the discrete-time counterpar{of (it@rgbelow is utilized,

where the mixed strategies of each unlabeled player isliziéid to uniform probabili-

ties,i.e. the barycenter of the simple;:

ui(ezh)

ui(2(t))

The discrete-time replicator dynami€s12) has esseptladi same dynamical prop-

erties as the continuous version (see, elg., (Weibull,1f#9% detailed analysis).

4.3 Computational Complexity

The computational complexity of finding a Nash equilibriufmactransduction game
using [I2) can be given b§(kcn?), wheren is the number of players (data points),
c is the number of pure strategies (classes) faiglthe number of iterations needed to
converge. In theory, it is difficult to predict the number efjuired iterations, but ex-
perimentally, we noticed that it typically grows linearly the number of data poiri'ts
Note that the complexity of popular graph transduction réshis also close t®(n?).

It is of interest that for two-player games, a fast evolutighgame dynamics has been
proposed recently, which exhibits linear space and timeptexity per iteration (Rota

Buld and Bomze, 2011). One can utilize this kind of dynanadscrease the efficiency

of proposed approach.

5 Connection to graph-based approaches

Contrary to our derivation, the vast majority of graph-lBh&SL studies starts with

writing down an objective function that casts the transshediearning problem as an

1In the case of asymmetric similarities, we have no Lyapunmefion for the dynamics so conver-
gence is not guaranteed. However, note that if the dynamiogrges to a fixed point, it will definitely
be a Nash equilibrium (Theordm 1).
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energy minimization problem and most of the focus is on howotmpute the optima of
corresponding objective function. In general, all thes¢hods attempt to estimate an
optimal classification function which is defined on the nodethe graph by minimiz-
ing an objective function with two terms. One term penalitess mismatch between
the initial label assignments and the labels estimated éyldssifier. The second term
is a regularization term that enforces the smoothness afléissification function. Al-
though the game-theoretic perspective shifts the focua fsptima of objective func-
tions to equilibria of the non-cooperative games, in thictisa we try to shed some
light on the connection between the proposed transductomegto the energy-based
graph transduction methods. It is important to note thatahialysis only investigates a
special case in which the pairwise similarities are assuimbd symmetric and follows
from the following property of polymatrix games.

Consider a polymatrix game with = (4;;) being the block matrix representation
of partial payoff matrices between players, the averagefb&y the whole population

can be defined as:
E(z) = Z x! (Z Aiij) =27 Ax (13)
i=1 j=1

The following proposition establishes a link between lanakimizers ofr” Az in

© and Nash equilibria of polymatrix games with symmetric gaywatrices.

Proposition 1. SupposeA is symmetric, that is4;;, = A;; for all 7,7 € Z. Then,
any local maximume* € © of (I3) is a Nash equilibrium point of the polymatrix

game (Hummel and Zucker, 1983; Miller and Zucker, 9%)1).

Now consider a special instance of the proposed transaugéime where the given
pairwise similarities are symmetrice. w;; = wj;, Vi, 7 € D. Recall that graph trans-
duction games belongs to the family of polymatrix games &npdrtial payoff matrices
are all in the formA4,; = w;; x I.. To compute Nash equilibria of a transduction game
with symmetric similarities, one can use the above propmsind come up with the

following constrained quadratic optimization problem lmnsidering the special form

2Note, however, that this does not hold for the asymmetrie tesause:” Az is not a Lyapunov

function for the dynamics.
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of the partial payoff matrices:

maximizeE(X) = tr{ XTW X}
subject tar; € A; Vi € Iy, (14)

X, = ef Vi € Ip‘k

whereX = [z; - -- xn]T is then x ¢ matrix of mixed strategies. Clearly, there is no guar-
antee that the solution found by the replicator dynanhick\{@2be a global maximizer

of (14). However, it was experimentally shown that, on ateslgproblem, the basins
of attraction of optimal or near-optimal solutions are gudrge and the dynamics of-
ten converges to one of them (Pe iIII_o_,_19 9; Pelillo et/ &@99). Moreover, it should

be noted that even though globally optimal solutions arer@vle as they yield the
largest consistency, unlike standard approaches, in auegheoretic interpretation,
local optima have a meaningful interpretation and do indeetespond to solutions of
our problemj.e. Nash equilibria of the transduction game.

For the special case above, we can now investigate itsorladienergy-based for-

mulations. To begin with, the functional in the above problkesembles the continuous

relaxation of the:-way normalized cutriterion (Yu and Shi, 2003). However, note that
there is a key difference in the game-theoretic formulaiiothat each mixed strategy
x; IS constrained to lie in the-dimensional standard simple¥;. This subtle differ-

ence is very important since it provides robustness agaivise and outliers (Pavan

and Pelillo, 2007). Moreover, unlike the proposed approaelnd labeling constraints

cannot be embedded into the Normalized Cuts framework irxplicé way, such that
partial grouping constraints could be enforced by intradgextra linear equality con-
straints |[(Eriksson et al., 2007; Xu et al., 2009; Yu and SA0D4). The framework

suggested recently in_(Ghanem and Ahuja, 2010) is an exteptit it is inherently

a two-class clustering approach and requires a recursiggegy to solve multi-class
problems.

In Section 4.11, we have defined partial payoff matrices ferghaph transduction
game asd = [, ® W wherel = D2 D~1/2 is the normalized similarity matrix.
Suppose instead that they were specifiedlas I. ® —L, whereL, = D — W is the
unnormalized graph Laplacian. Then the resulting optitiongproblem becomes the
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following:

minimize £(X) = tr{ X" LX}
subject tar; € A; Vi € Iy, (15)

€r; = 6? Vi e Ip|k

The above optimization problem is in fact equivalent to thfathe graph Laplacian

regularization used in_(Zhu et )03), which is known #oabspecial case of the

regularization inl(Zhou et al., 2004) with the parameter oo and the graph Lapla-

cian being unnormalized. In this way, one can argue that tethod in (Zhu et al.,

2003) solves a special case of transduction games in whichainwise similarities are

symmetric and the partial payoffs are specified in terms ghtiee graph Laplacian.

6 Experimental Results

In this section, we analyze the performance and effects®néthe proposed approach
on some real-world classification problems. To highlighg groperty that the game-
theoretic formulation can naturally deal with both symnogtasymmetric and nega-
tive similarity relations alike, three groups of experirteeare carried out. In each
group of experiments, we compare our results against efétee-art graph-based semi-
supervised learning algorithms and have obtained reagpogabd results. It is impor-

tant to note that none of the considered graph transduct&thads can cope with all

the three types of similarities.

6.1 Experiments with symmetric similarities

In this section, experiments are conducted on four realehdmta setsUSP§, YaleB
Georghiades et al., 20013cengOliva and Torralba, 2001) argD-newé. Here are

some details:

e USPScontains images of hand-written digits 0-9 down-sampleidite 16 pixels

and it has 7291 training and 2007 test examples. As i ,62004), only

3‘http://www-stat.stanford.ed u/ ~tibs/ElemStatLearn/

4'http://people.csail.mit.edu/jrennie/20newsgroups/
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the digits 1 to 4 from the training and test sets are selevikith gives a total of
3874 data points.

e YaleBis composed of face images of 10 subjects captured undeingappses

and illumination conditions. As in (Breitenbach and Gridi605), each image

is down-sampled t80 x 40 pixels and a subset of 1755 images are considered,

which corresponds to the images of individuals 2, 5 and 8.

e Scends a scene classification data set consisting of 2688 natuegsle images

classified into one of 8 classes. Each image is represente@®il2-dimensional

GIST descriptor(Qliva and Torralba, 2001) which combimesdutputs of Gabor-
like filters specifically designed to capture the structpraperties of a scene.

e 20-newsds the text classification data set used.in (Zhou et al., [200Hich con-

tains 3970 newsgroup articles selected from the 20-newpgrdata set, all be-

longing to the topicec which is composed of the subjeeistos, motorcycles,

sport.baseball andsport.hockey . As described in.(Zhou et al., 2004),

each article is represented in 8014-dimensional spacelloasthe TFIDF repre-

sentation scheme.

Table[2 shows the summary of the data sets. F8PSand YaleB each image
pixel is treated as a single feature, thus each exampletiegepted in 256-, and 1200-
dimensional space, respectively. The similarity between éxamples!; andd; is
computed using the Gaussian kernekas = exp(—%) wheredist(d;, d;) is
the distance betweedy andd; ando is the kernel width parameter. Among several
choices for the distance measuligt(-), the Euclidean distandgl; — d;|| is evaluated
for USPS YaleBandSceneand the cosine distandgst(d;, d;) = 1 — ”Eszﬁé:H is eval-

uated for20-news

USPS YaleB Scene 20-news
# objects 3874 1755 2688 3970
#dimensions 256 1200 512 8014
# classes 4 3 8 4

Table 2: The data sets used in the experiments with symnsatnitarities.
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In the experiments, the proposed approach (denoted heneGaAliG) is compared
against four well-known graph-based SSL algorithms, ngtiel Spectral Graph Trans-

ducer (SGT) [(Joachims, 2 &’;)the Gaussian fields and harmonic functions based
method (GFHF) (Zhu et al.. 200%)the local and global consistency methoc (LGC) (Zhou
et aI.,;O_QId and Laplacian Regularized Least Squares (LapRLS) (Betkh, f‘

A crucial factor in the success of graph-based algorithniseonstruction of the

input graph as it represents the data manifold. As a resapgconstruction for clas-

sification has become a subject of interest in recent yeagqJebara et al., 2009), but

the problem is still open. To be fair in the evaluation, fdrtaé methods, a fixed set
of kernel widths is used and 9 different 20-NN graphs are gead by settingy;; = 0

if x; is not amongst the 20-nearest neighbors of In particular, the kernel widtlr
ranges over the sétnspace(0.1r,r,5) U linspace(r, 10r, 5) with r being the average
distance from each example to #§"* nearest neighbor aridnspace(a, b, n) denoting
the set ofn linearly spaced numbers between and includirandb.

Figure[2 shows the mean test error rates and one standaatidewérror bars over
100 trials with different sizes of labeled dftaAs it can be seen, LapRLS method gives
the best results for the relatively small data s&&seBand Scene However, for the
other two, its performance is poor. In general, the propdS€&& algorithm is either
the best or the second best algorithm. While its succesmisstlidentical to that of the
LGC method inUSPS Yale-BandSceneit gives superior results f&0-news

6.2 Experiments with asymmetric similarities

In this section, several experiments are carried out on lawedd protein data set
derived fromSCOP(Structural Classification of Proteins) (Murzin et al., 9@ and

5The optimal value of the parameteis selected as the one with the best mean performance from the
set{400, 800, 1600, 3200, 6400, 12800}.

6In obtaining the hard labels, thdass mass normalizatiostep is employed as suggested in (Zhu

etal., .
7As in @.@4% the parameteis set as 0.99.

8The optimal values of the extrinsic and intrinsic regulatian parameterg, andy; is selected from

the set{1075,1074,102, 1} for the best mean performance.
9We randomly select labeled samples such that each setes@atdeast one sample from each class.
10Version 1.59 with less than 95% identity.
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Figure 2: Performance comparisons on classification pnoblgithsymmetricsimilar-

ities.

three document data set$era, Citeseern(Sen et all , 20 é)l, andWebKB2.

The details of these data sets are given below:

e SCOPcontains 7329 proteins which are hierarchically dividgd seven classes

based on structural and evolutionary relationships. Edabsds divided into

folds, and each fold is further divided into superfamiliimilar to the setup

in (Meila_ and Pentn

a)

y, 20

07), only the proteins from the famgést folds of

all alpha class are selected, which give a total of 451 protein secpseta be

classified by fold.

e Coracontains 2708 machine learning publications classifienl seven classes,

and there are 5429 citations between the publications.

1lBoth the two data sets are available latp://www.cs.umd.edu/projects/lings/

projects/lbc/

12Available athttp://www.nec-labs.com/ ~ zsh/files/link-fact-data.zip
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SCOP Cora Citeseer Cornell Texas Washington Wisconsin
#objects 451 2708 3312 827 814 1166 1210
#classes 5 7 6 2 2 2 2

Table 3: The data sets used in the classification experimétitasymmetric similari-

ties.

¢ Citeseerconsists of 3312 scientific publications, each of which bg#oto one of

six classes, and there are a total of 4732 links.

e WebKBcontains webpages collected from computer science deeatrsnof four

universities Cornell, Texas WashingtorandWisconsif, and each classified into

seven categories. Following the setup.in (Zhou et al., 208&5e we concentrate

on classifying student pages from the others. Each subseéctvely contains
827,814, 1166 and 1210 webpages and 1626, 1480, 2218 andird0

The data sets are summarized in Table 3. FOOP E-values of the PSI-BLAST

search calculated by (Weston el al., dé’llare considered as the dissimilarity scores.

These dissimilarity values areot symmetric Instead of constructing NN graphs, this
time the full similarity matrices are used where the kerneltivo was optimized for
each method with respect to the &etspace(0.5,2.5,5) U linspace(5, 20, 4) U 40. For

Cora, CiteseeandWebKB as in (Zhou et al., 2005), only the citation/link structige

considered, even though one can also assign some weightsibing the textual con-
tent of the documents. Specifically, the experiments arfopeed on the link matrix
W = (w;;), wherew;; = 1 if document; cites documeni andw;; = 0 otherwise.
Unlike red the proposed game-theoretic approach, the atdmdethods mentioned
before, namely SGT, GFHF, LGC and LapRLS, are subject to sgtmersimilarities.
Hence, in this context, they can be applied only after randehe similarities symmet-
ric but this could result in loss of relevant information onge cases. In the evaluation,
only the graph-based methods which can directly deal wigimasetric similarities are
considered. Specifically, the proposed game-theoreticoaph is compared against
our implementation of the method in (Zhou et al., 2005), deddere with LLUD.

13Available ahttp://www.kyb.tuebingen.mpg.de/bs/people/weston/ra nkprot/

supplement.html
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This algorithm is based on the notion of random walks on ti@graphs and it is

equivalent to LGC in the case of symmetric similaritieshtiyvever, assumes the input

similarity graph to be strongly connected, solin (Zhou et2005) the authors con-

sider theteleporting random walk (trwjransition matrix as input, which is given by
P" = nP + (1 — n)P* whereP = D~'W and P is the uniform transition matrix.
This suggests a second variant for our framework, denotéd @&T Gtrw, where pay-
offs are defined in terms of this transition matrix. In the @xments, we fix; = 0.99
for both LLUD and GTGtrw. To provide a baseline, we also réploe results of our
approach that works on the symmetrized similarity matrickesoted with GTGsym.
For that case, we used the transformatibn= 0.5 x (W + WT) for SCOR and the
symmetrized link matrixy’ = (w;;) for the others, where);; = 1 if either document
cites document or vice versa, and;; = 0 otherwise.

The test errors averaged over 100 trials are shown in Figur&&call that the
replicator dynamics used to find a Nash equilibrium is notrgogeed to converge in
the case of asymmetric similarities. In fact, GTG succedadduhd a solution only on
SCOPand failed on the others. However, we did not face any comvexg problem
with GTGtrw. Hence, we suspect that the this might be relédetigh sparseness of
the data. Notice that the performances of GTGtrw and LLUDcaige similar on the
classification problems iVebKBdata sets. On the other hand, GTGtrw is superior
in the multi-class problems iBCOR Cora and Citeseer It is important to note that
symmetrization sometimes can provide good results. As showigure[3(b)-(c), in

CoraandCiteseer GTGsym performs better than the other two methods.

6.3 Experiments with negative similarities

The game-theoretic formulation can also handle negatiméagiity or dissimilarity in-
formation in two-class semi-supervised classificationbfgms in a natural way. In
practice, such dissimilarity relationships could aridberi in the computations, or they
can be provided explicitly in terms of a set of cannot linkrpavhere the objects in
each pair are expected to be assigned to different claskesstandard methods cannot
accept negative similarities as well, since the existeriagegative similarities could

make their energy functions negatively unbounded. Howedhere are some graph-

21



0.
o :gg ~e-GTGuw ~e-GTGuw
*GTGlsr;Vm —A-GTGsym —A-GTGsym
0.
~4-LLUD 07 ~4-LLUD 0. ~4-LLUD
gou N g & s
5 bt So.
£ 04 % 0.6| %
g — 2 A NG N e
s S § 07
503 3 3 R \
S S o g \ \
: I
©ozs © © — T
————4 0.4 0
02 B
0.15 0. 0.
5 10 15 20 25 30 7 10 20 30 40 50 %6 10 20 30 40 50
number of labeled points number of labeled points number of labeled points
- GTGtw 08 4
08 A CTO -8-GTGtw -8-GTGtw
il DSV’“ 07 —A-GTGsym 0. —A-GTGsym
0.7 ) ~4-LLUD o ~4-LLUD
e |4 o 06/ o
T0 © 07|
s 5 5
So5 £ 0. £ 0.
o0 3 \ 3 \\
£ \ S04 A 5 0. M
g 04 g A H
g 4 S 8
7 \ \. £ L\n\ £ 04
g0 80 0 .
g N 3 N . i ~
—y ——4 b —
0.2 0. 0. g
0.1 0.1] 0.1
o
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
number of labeled points number of labeled points number of labeled points
0
-o-GTGtrw
0.8 —A-GTGsym
—~4-LLUD
o 07H
£
506 \
205
£\
Soa4 M
2 \
£, N
Gl =
4
0.2
0.1
2 4 18 20

8 10 12 14
number of labeled points
(g) Wisconsin

Figure 3: Performance comparisons on classification pnobMith asymmetricsimi-

larities.

based SSL methods specifically designed for dealing witkirdiarity information,
that is the mixed label propagation method (MLP) (Tong_amld[Z@_O_‘b) and manifold
regularization with dissimilarity method (MRWD) (Goldlgeet al., 200744, which is
,.2006). In this section, the @wgd method is compared

against these two algorithms.

adopted from|(Belkin et ¢

The experiments are performed on 2 data sets from UCI repy%ﬁ lonosphere

and Diabetes These data sets are described in Table 4. Notice that thi&asim

14In the absence of negative similarities, MRWD reduces toRlef. In the experiments, we used the
Regularized Least Squares (RLS) classifier and select ttimalpvalues of the extrinsic and intrinsic
regularization parameters as described for LapRLS.

1http:/rarchive.ics.uci.edu/ml/
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lonosphere Diabetes

# objects 351 768
# dimensions 34 8
# classes 2 2

Table 4: The data sets used in the classification experimétitsiegative similarities.

ties derived from the data sets do not originally contain aegative values but we

adopted the procedure in (Goldberg et ial., 2007) and intedaracle dissimilarity

relations (cannot links) by randomly sampling pairs of egéea having different la-
bels. These pairs do not contain any labeled samples andfdocerthe maximum
degree of dissimilarity, the edge weights were set to themaix similarity value exist
in the data. In the experiments, the size of the labeled datiaad is as 50 and the
number of dissimilarity edges are varied between 3 and 12800 all data sets, full
similarity matrices are used and the kernel widtls optimized with respect to the set
{0.01} U linspace(0.05,0.25, 5) U linspace(0.25, 2.5, 10) U {5, 10, 20, 25}.

The average test errors over 10 trials with randomly seleletieeled examples and
dissimilarity edges are given in Figuré 4. As the methodsadnsaeration explore
both similarity and dissimilarity information, their acgaey improve as the size of the
dissimilarity edges increases. While there is no conshierdifference in the perfor-
mances of the methods @nhabetes GTG is clearly more successful tmnosphere
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Figure 4: Performance comparisons on classification pnedMith negativesimilari-

ties
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Conclusion

In this paper, a novel game-theoretic interpretation tplytaansduction is introduced,
in which the problem is formulated in terms of a polymatrixxgawhereby any equi-
librium coincides with the notion of a consistent labelinigtive data. As compared
to existing approaches, the main advantage of the propoaeteivork is that there is
no restriction on the pairwise relationships among datatgpsimilarities and thus the
payoffs can be negative or asymmetric. Apart from that, guoreach is easy to im-
plement and can be applied to multi-class problems. Therewpatal results show
that the game-theoretic approach is not only more genetahlsa competitive with

standard approaches. As future work, we plan to focus onadwipg the efficiency. In

our current implementation, we use the standard repliacitoamics to reach an equi-

librium but we can study other selection dynamics that aremfaster|(Porter et

2008;/ Rota Bulo and Bomze, 2011). Another possible dioactor future research is

to generalize the presented approach to transductivemgaimhypergraphs (Agarwal

et al., 2006} Zhou et al., 2007). This will require replacthg pairwise interactions

with higher-order interactions in defining payoffs, alomg tines proposed in (Rota

Bulo and Pelillo | 2009) for unsupervised learning. In tbistext, it would be espe-

cially interesting to explore whether different classegames such as action-graph

games|(Jiang et al., 2011) will be more suitable or not.
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