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Spatio-Temporal Saliency Networks
for Dynamic Saliency Prediction
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Abstract—Computational saliency models for still images have
gained significant popularity in recent years. Saliency prediction
from videos, on the other hand, has received relatively little
interest from the community. Motivated by this, in this work, we
study the use of deep learning for dynamic saliency prediction
and propose the so-called spatio-temporal saliency networks. The
key to our models is the architecture of two-stream networks
where we investigate different fusion mechanisms to integrate
spatial and temporal information. We evaluate our models on the
DIEM and UCF-Sports datasets and present highly competitive
results against the existing state-of-the-art models. We also carry
out some experiments on a number of still images from the
MIT300 dataset by exploiting the optical flow maps predicted
from these images. Our results show that considering inherent
motion information in this way can be helpful for static saliency
estimation.

Index Terms—dynamic saliency, deep learning

I. INTRODUCTION

As a key part of the human visual system, visual attention
mechanisms filter irrelevant visual stimuli in order to focus
more on the important parts. Computational models of atten-
tion try to mimic this process through the use of machines
and algorithms. These models have gained increasing attention
lately. The reason behind this growing interest lies in their
use in different computer vision and multimedia problems
including but not limited to image retrieval [1], visual quality
assessment [2], [3] video resizing/summarization [4], [5],
action recognition [6], event detection [7] either as a tool
for visual feature extraction or as a mechanism for selecting
features. These models are also important for generic appli-
cations such as advertisement and web design [8] as attention
plays a key role in both user interfaces and human-machine
interaction.

In the literature, the computational attention models devel-
oped so far generally aim to predict where humans fixate their
eyes in images [9]. Specifically, they produce the so-called
saliency maps from the visual data where a high saliency score
at an image location indicates that the point is more likely to be
fixated. These models are largely inspired by the hierarchical
processing of human visual system [10] and the theoretical
studies like Feature Integration Theory [11] or Guided Search
Model [12]. They consider low-level image features (color,
orientation, contrast, motion, etc.) and/or high-level features
(pedestrians, faces, text) while predicting saliency maps. In
this process, while low-level features are employed to examine
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how different an image point from its surroundings, high-
level features are employed as it is experimentally shown that
humans have a tendency to fixate on certain object classes
more than others.

Another current trend in the existing literature is to detect
salient objects [13], [14], [15], [16] from the images. These
models specifically aim at identifying the most prominent
objects in an image that attract attention under free-viewing
conditions and then segmenting them out from the background.
These computational models for visual attention can be further
grouped into two according to their inputs as static and dy-
namic saliency models. While static models work on images,
dynamic models take video sequences as input.

Saliency prediction from videos leads to great challenges
when it is compared to carrying out the same task in still
images. The reason is that the dynamic saliency frameworks
require taking into account both spatial and temporal char-
acteristics of the video sequences. Static saliency models use
features like color, intensity and orientation, however dynamic
models need to focus more on the moving objects or image
parts as it is shown that humans there is a tendency for humans
to look at them while viewing. Hence, the preliminary models
proposed for dynamic saliency prediction extend the existing
saliency models suggested for still images so that they consider
extra motion features [17], [18], [19], [20]. However, more
recent works approach the same task from a different point of
view and propose novel solutions [21], [22], [23].

A. Overview of our approach

Deep learning has been successfully applied to saliency
prediction in still images in the last few years, providing
state-of-the-art results [24], [25], [26], [27], [28], [29], [30].
The early models utilize pre-trained deep convolutional neural
networks (CNNs) proposed to classify images as generic
feature extractors and build classifiers on top of those features
to classify fixated image regions [27], [24]. Later models,
however, approach the problem from an end-to-end perspective
and either train networks from scratch or most of the time
fine-tune the weights of a pre-trained model [31], [30], [25].
The modifications in the network architectures are usually
about integrating multi-scale processing or using different loss
functions [32], [30]. It has been investigated that the power
of these deep models mainly comes from the property that
the features learned by these networks are semantically very
rich [29], capturing high-level factors important for saliency
detection. Motivated by the success of these works, in this
study, we explore the use of two-stream CNNs for saliency
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prediction from videos. To the best of our knowledge, our
work is the first deep model for dynamic saliency, which is
trained in an end-to-end manner, that learns to combine spatial
and temporal information in an optimal manner within a two-
stream network architecture.

B. Our contributions

The contributions of our work can be summarized as
follows:

1) We study two-stream convolutional neural networks
which mimic the visual pathways in the brain and com-
bine networks trained on temporal and spatial informa-
tion to predict saliency map of a given video frame. Al-
though these network architectures have been previously
investigated for some computer vision problems such
as video classification [33] and action recognition [34],
to our knowledge, we are the first to apply two-stream
deep models for saliency prediction from videos in the
literature. In particular, in our study, we investigate
two different fusion strategies, namely element-wise and
convolutional fusion strategies, to integrate spatial and
temporal streams.

2) We carry out extensive experiments on DIEM [35] and
UCF-Sports [36] datasets and compare our deep spatio-
temporal saliency networks against several state-of-the-
art dynamic saliency models. Our evaluation demon-
strates that the proposed STSConvNet model outper-
forms these models in nearly all of the evaluation metrics
on these datasets.

3) On a number of challenging still images, we also show
that our spatio-temporal saliency network can predict
the human fixations better than the state-of-the-art deep
static saliency models. The key idea that we follow is
to extract optical flow from these static images by using
a recently proposed method [37] and feed them to our
network along with the appearance image.

II. RELATED WORK

In this study, we focus on bottom-up modeling of dynamic
saliency. Below, we first summarize the existing dynamic
saliency models from the literature and then provide a brief
overview of the proposed deep-learning based static saliency
models which are related to ours.

A. Dynamic Saliency

Early examples of saliency models for dynamic scenes
extend the previously proposed static saliency models which
process images in a hierarchical manner by additionally con-
sidering features related to motion such as optical flow. For in-
stance, in [17], Harel et al. propose a graph-theoretic solution
to dynamic saliency by representing the extracted feature maps
in terms of fully connected graphs and by predicting the final
saliency map. In [19], Cui et al. extract salient parts of video
frames by performing spectral residual analysis on the Fourier
spectrum of these frames over the spatial and the temporal
domains. In [18], Guo et al. propose a similar spectral analysis

based formulation. In [38], Sultani and Saleemi extend Harel
et al. [17]’s model by using additional features such as color
and motion gradients and by post-processing the predicted
maps via a graphical model based on Markov Random Fields.
In [20], Seo and Milanfar employ self similarities of spatio-
temporal volumes to predict saliency. [39], Mauthner et al.
also present a video saliency detection method for using as a
prior information for activity recognition algorithms. Instead
of using a data driven approach they propose an unsupervised
algorithm for estimating salient regions of video sequences.
Following these early works, other researchers rather take
different perspectives and devise novel solutions for dynamic
saliency. For example, in [21], Hou and Zhang consider rarity
of visual features while extracting saliency maps from videos
and propose an entropy maximization-based model. In [40],
Rahtu et al extract saliency by estimating local contrast
between feature distributions. In [41], Ren et al. propose a
unified model with the temporal saliency being estimated by
sparse and low-rank decomposition and the spatial saliency
map being extracted by considering local-global contrast in-
formation. In [22], Mathe et al. devise saliency prediction from
videos as a classification task where they integrate several
visual cues through learning-based fusion strategies. In another
study, Rudoy et al. [23] propose another learning based model
for dynamic saliency. It differs from Mathe et al.’s model [22]
in that they take into account a sparse set of gaze locations
thorough which they predict conditional gaze transitions over
subsequent video frames. Zhou et al. [42] oversegment video
frames and use low-level features from the extracted regions to
estimate regional contrast values. Zhao et al. [43] learn a bank
of filters for fixations and use it to model saliency in a location-
dependent manner. Khatoonabadi et al. [44] propose a saliency
model that depends on compressibility principle. In a very
recent study, Leboran er al. [45], propose another dynamic
saliency model by using the idea that perceptual relevant
information is carried by high-order statistical structures.

B. Deep Static Saliency

In recent years, deep neural networks based models provide
state-of-the-art results in many computer vision problems such
as image classification [46], object detection [47], activity
recognition [42], semantic segmentation [48] and video clas-
sification [33]. These approaches perform hierarchical feature
learning specific to a task, and thus gives results better than the
engineered features. Motivated by the success of these models,
a number of researchers have recently proposed deep learning
based models for saliency prediction from images [24], [25],
[26], [27], [29], [30], [49].

Vig et al. [27] use an ensemble of CNNs which learns bio-
logically inspired hierarchical features for saliency prediction.
Kiimmerer et al. [24] employ deep features learned through
different layers of the AlexNet [50] and learn how to integrate
them for predicting saliency maps. Kruthiventi et al. [26] adopt
VGGNet [51] for saliency estimation where they introduce a
location-biased convolutional layer to model the center-bias,
and train the model on SALICON dataset using Euclidean
loss. Jetley et al. [30] also use the VGGNet architecture but
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they especially concentrate on investigating different kinds of
probability distance measures to define the loss function. Pan
et al. [25] very recently propose two CNN models having
different layer sizes by approaching saliency prediction as a
regression task. Li et al. [49] employ a fully convolutional
neural network within a multi-task learning framework to
jointly detect saliency and perform object class segmentation.
It is important to note that all these models are proposed
for predicting saliency in still images not videos. Bruce et
al. [29] propose yet another fully convolutional network to
predict saliency and they try to understand factors and learned
representations when training these type of networks for
saliency estimation.

Motivated by the deep static saliency models, in our paper
we investigate the use of two-stream CNNs for saliency pre-
diction from videos. In fact, investigating layered formulations
is not new for saliency prediction. As discussed earlier, most
of the traditional dynamic saliency models are inspired from
the hierarchical processing in the low-level human vision [10].
These models, however, employ hand-crafted features to en-
code appearance and motion contrast to predict where humans
look at in dynamic scenes. Since they depend on low-level
cues, they often fail to capture semantics of scenes at its
full extent, which is evidently important for gaze prediction.
More recent models, on the other hand, employ learning-
based formulations to integrate these low-level features with
the detection maps for faces, persons, and other objects.
This additional supervision boosts the prediction accuracies,
however, the performance is limited by the discrimination
capability of the considered features and the robustness of the
employed detectors.

As compared to the previous dynamic saliency models, our
deep spatio-temporal saliency networks are trained to predict
saliency in an end-to-end manner. This allows us to learn
hierarchical features, both low-, mid- and high-level, [52],
[53] that are specialized for the gaze prediction task. For
instance, while the early layers learn filters that are sensitive
to edges or feature contrasts, the filters in the top layers are
responsible from capturing more complex, semantic patterns
that are important for the task. In our case, our deep two-
stream saliency networks learn multiple layers of spatial and
temporal representations and ways to combine them to predict
saliency.

In particular, in our study we extract temporal information
via optical flow between consecutive video frames and in-
vestigate different ways to use this additional information in
saliency prediction within a deep two-stream spatio-temporal
network architecture [34]. These two-stream networks are
simple to implement and train, and to our interest, are in
line with the hierarchical organization of the human visual
system. Specifically, the biological motivation behind these
architectures is the so-called two-streams hypothesis [54]
which speculate that human visual cortex is comprised of two
distinct streams, namely ventral and the dorsal streams, which
are respectively specialized to process appearance and motion
information.

Here, an alternative deep architecture could be to stack two
or more frames together and feeding this input to a deep

single-stream CNN, which was investigated in several action
recognition networks [55], [56], [57], [58]. In this work, we do
not pursue this direction because of two reasons. Firstly, this
approach requires learning 3D convolutional filters [55], [56],
[57] in order to capture spatio-temporal regularities among
input video frames but using 3D filters highly increases the
complexity of the models and these 3D convolutional networks
are harder to train with limited training data [58] (which is the
case for the existing dynamic saliency datasets). Secondly, 3D
convolutional filters are mainly used for expressing long-range
motion patterns which could be important for recognizing an
action since they cannot easily be captured by optical-flow
based two-stream models. For dynamic saliency prediction
though, we believe that such long-range dependencies are
minimally important as human attention shifts continuously,
and optical flow information is sufficient to establish the link
between motion and saliency.

III. OUR MODELS

The aim of our study is to investigate the use of deep
architectures for predicting saliency from dynamic scenes.
Recently, CNNs provided drastically superior performance in
many classification and regression tasks in computer vision.
While the lower layers of these networks respond to primitive
image features such as edges, corners and shared common
patterns, the higher layers extract semantic information like
object parts, faces or text [29], [53]. As mentioned before, such
low and high-level features are shown to be both important
and complementary in estimating visual saliency. Towards
this end, we examine two baseline single stream networks
(spatial and temporal) given in Figure 1(a) and two two-stream
networks [34] shown in Figure 1(b), which combine spatial
and temporal cues via two different integration mechanisms:
element-wise max fusion and convolutional fusion, respec-
tively. We describe these models in detail below.

A. Spatial Saliency Network

For the basic single stream baseline model, we retrain the
recently proposed static saliency model in [25] for dynamic
saliency prediction by simply ignoring temporal information
and using the input video frame alone. Hence, this model
does not consider the inter-frame relationships while predicting
saliency for a given video. As shown in the top row of
Figure 1(a), this CNN resembles the VGG-M model [51] — the
main difference being that the final layer is a deconvolution
(fractionally strided convolution) layer to up sample to the
original image size. Note that it does not use any temporal
information and exploits only appearance information to pre-
dict saliency in still video frames. We refer to this network
architecture as SSNet.

B. Temporal Saliency Network

Saliency prediction from videos is inherently different than
estimating saliency from still images in that our attention is
highly affected by the local motion contrast of the foreground
objects. To understand the contribution of temporal informa-
tion to the saliency prediction, we develop a second single
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Fig. 1. (a) The baseline single stream saliency networks. While SSNet utilizes only spatial (appearance) information and accepts still video frames, TSNet
exploits only temporal information whose input is given in the form of optical flow images. (b) The proposed two-stream spatio-temporal saliency networks.
STSMaxNet performs fusion by using element-wise max fusion, whereas STSConvNet employs convolutional fusion after the fifth convolution layers.

stream baseline. As given in the bottom row of Figure 1(a),
this model is just a replica of the spatial stream net but the
input is provided in the form of optical flow images, as in [34],
computed from two subsequent frames. We refer to this single
stream network architecture as TSNet.

C. Spatio-Temporal Saliency Network with Direct Averaging

As a baseline model, we define a network model which
integrates the responses of the final layers of the spatial and
the temporal saliency networks by using direct averaging. Note
that this model does not consider a learning strategy on how
to combine these two-stream network and consider each one
of the single-stream networks equally reliable. We refer to this
two-stream network architecture as STSAvgNet.

D. Spatio-Temporal Saliency Network with Max Fusion

This network model accepts both a video frame and the
corresponding optical flow image as inputs and merges to-
gether the spatial and temporal single stream networks via
element-wise max fusion. That is, given two feature maps
x*,xt € REXWXD from the spatial and temporal streams,
with W, H, D denoting the width, height and the number of
channels (filters), max fusion takes the maximum of these two
feature maps at every spatial location ¢ and j, and channel d,

as:

maxr __ s t
Yi,j,a = Max (”i,j,dvxz‘,j,d) .

(D

The use of the max operation makes the ordering of the
channels in a convolutional layer arbitrary. Hence, this fusion
strategy assumes arbitrary correspondences between the spatial
and temporal streams. That said, this spatio-temporal model
seeks filters so that these arbitrary correspondences between
feature maps become as meaningful as possible according to

the joint loss. After this fusion step, it also uses a deconvolu-
tion layer to produce an up-sampled saliency map as the final
result as illustrated in the top row of Figure 1(b). We refer to
this two-stream network architecture as STSMaxNet.

E. Spatio-Temporal Saliency with Convolutional Fusion

This network model integrates spatial and temporal streams
by applying convolutional fusion. That is, the corresponding
feature maps x° and x' respectively from the spatial and
temporal streams are stacked together and then combined as
follows:

yerr=[x* x'|«f+b, )

where f € R1*1x2DXD denotes a bank of 1 x 1 filters, and
b € RP represents the bias term.

The main advantage of the convolutional fusion over the
element-wise max fusion is that the filterbank f learns the opti-
mal correspondences between the spatial and temporal streams
based on the loss function, and reduces the number of channels
by a factor of two through the weighted combinations of x*®
and x* with weights given by f at each spatial location. As
demonstrated in the bottom row of Figure 1(b), this is followed
by a number of convolutions and a final deconvolution layer to
produce the saliency map. We refer to this network architecture
as STSConvNet.

F. Spatio-Temporal Saliency Network with Direct Fusion

Finally, as another baseline model, we design a single
stream network in which the appearance and optical flow
images are stacked together and fed to the network as input.
This model implements an early fusion strategy at the very
beginning of the network architecture and can be seen as a
special case of STSConvNet. Here, each layer of the network
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learns a set of filters that directly acts on the given appearance
and motion frames. We refer to this model as STSDirectNet.

IV. IMPLEMENTATION DETAILS
A. Network Architectures

The architecture of our single stream models is the same
with that of the deep convolution network proposed in [25].
They take 320 x 240 x 3 pixels images and processes them
by the following operations: C(96,7,3) — LRN — P
— (C(256,5,2) - P — (C(512,3,1) — (C(512,5,2) —
C(512,5,2) — C(256,7,3) — C(128,11,5) — C(32,11,5)
— C(1,13,6) — D. Here, C(d, f,p) represents a convolu-
tional layer with d filters of size f x f applied to the input
with padding p and stride 1. LRN denotes a local response
normalization layer that carries out a kind of lateral inhibition,
and P indicates a max pooling layer over 3 x 3 regions with
stride 2. Finally, D is a deconvolution layer with filters of
size 8 X 8 x 1 with stride 4 and padding 2 which upscales the
final convolution results to the original size. All convolutional
layers except the last one are followed by a ReLU layer. Our
spatial and temporal stream models in particular differ from
each other in their inputs. While the first one processes still
images, the next one accepts optical flow images as input.

For the proposed spatio-temporal saliency networks shown
in Figure 1(b), we employ element-wise max and convolu-
tional fusion strategies to integrate the spatial and temporal
streams. Performing fusion after the fifth convolutional layer
gives the best results for both of these fusion strategies. In
STSMaxNet, the single stream networks are combined by
applying element-wise max operation, which is followed by
the same deconvolution layer in the single stream models. On
the other hand, STSConvNet performs fusion by stacking the
feature maps together and integrating them by a convolution
layer C'(512,1,0) whose weights are initialized with identity
matrices. The remaining layers are the same with those of the
single stream models.

B. Data Preprocessing

We employ three publicly available datasets, 1.DIEM (Dy-
namic Images and Eye Movements) [35], 2. UCF-Sports [36]
datasets and 3. MIT 300 dataset [59], which are described in
detail in Section V, in our experiments. Since our networks
accept inputs of size 320 x 240 x 3 pixels and outputs saliency
maps of the same size, all videos and ground truth fixation
density maps are rescaled to this size prior to training. We
use the publicly available implementation of DeepFlow [60]
and we additionally extract optical flow information from the
rescaled versions of subsequent video frames. Optical flow
images are then generated by stacking horizontal and vertical
flow components and the magnitude of the flow together. Some
example optical flow images are shown in Figure 2.

C. Data Augmentation

Data augmentation is a widely used approach to reduce the
effect of over-fitting and improve generalization of neural net-
works. For saliency prediction, however, classical techniques

Fig. 2. Sample optical flow images generated for some frames of a video
sequence from UCF-Sports dataset.

such as cropping, horizontal flipping, or RGB jittering are
not very suitable since they alter the visual stimuli used in
the eye tracking experiments in collecting the fixation data.
Having said that, horizontal flipping is used in [25] as a data
augmentation strategy although there is no theoretical basis
for why this helps to obtain better performance.

In our study, we propose to employ a new and empirically
grounded data augmentation strategy for specifically training
saliency networks. In [61], the authors performed a thorough
analysis on how image resolution affects the exploratory
behavior of humans through an eye-tracking experiment. Their
experiments revealed that humans are quite consistent about
where they look on high and low-resolution versions of the
same images. Motivated with this observation, we process all
video sequences and produce their low-resolution versions by
down-sampling them by a factor of 2 and 4, and use these
additional images with the fixations obtained from original
high-resolution images in training. We note that in reducing
the resolution of optical flow images the magnitude should also
be rescaled to match with the down-sampling rate. It is worth-
mentioning that this new data augmentation strategy can also
be used for boosting performances of deep models for static
saliency estimation.

D. Training

We employ the weights of the pretrained CNN model in [25]
to set the initial weights of our spatial and temporal stream
networks. In training the models, we use Caffe framework [62]
and employed Stochastic Gradient Descent with Euclidean
distance between the predicted saliency map and the ground
truth. The networks were trained over 200K iterations where
we used a batch size of 2 images, momentum of 0.9 and
weight decay of 0.0005, which is reduced by a factor of 0.1 at
every 10K iterations. Depending on the network architectures,
it takes between 1 day to 3 days to train our models on
the DIEM dataset by using a single 2GB GDDRS NVIDIA
GeForce GTX 775M GPU on a desktop PC equipped with
4-core Intel i5 (3.4 GHz) Processor and 16 GB memory. At
test time, it takes approximately 2 secs to extract the saliency
map of a single video frame.

V. EXPERIMENTAL RESULTS

In the following, we first review the datasets on which we
perform our experiments and provide the list of state-of-the-art
computational saliency models that we compared against our
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spatio-temporal saliency networks. We then provide the details
of the quantitative evaluation metrics that are used to assess
the model performances. Next, we discuss our experimental
results.

A. Datasets

To validate the effectiveness of the proposed deep dynamic
saliency networks, our first set of experiments is carried
out on the DIEM dataset [35]. This dataset is collected for
the purpose of investigating where people look at dynamic
scenes. It includes 84 high-definition natural videos including
movie trailers, advertisements, etc. Each video sequence has
eye fixation data collected from approximately 50 different
human subjects. In our experiments, we only used the right-
eye positions of the human subjects as done in [63].

We perform our second set of experiments on the UCF-
Sports [36]. This dataset is collected from broadcast television
channels such as the BBC and ESPN which consists of a
set of sport actions [36]. The video sequences are collected
from wide range of websites. This dataset contains 150 video
sequences with 720 x 480 resolution and cover a range of
scene and viewpoints. The dataset includes several actions
such as diving, golf swing, kicking and lifting, and is used
for action recognition. However, recently, additional human
gaze annotations were collected in [36]. These fixations are
collected over 16 human subjects under task specific and task-
independent free viewing conditions.

Lastly, for the experiments on predicting eye fixations on
still images, we choose a number of images from the MIT
300 dataset [59]. Selected images are the ones especially
depicting an action and including objects that are interpreted
as in motion. This dataset has eye fixation data collected from
39 subjects under free-viewing conditions for 3 secs for a total
of 300 natural images with longest dimension 1024 pixels and
the other dimension varied from 457 to 1024 pixels.

B. The compared computational saliency models

Through our experiments on DIEM and UCF-Sports
datasets, we compare our deep network models with
eight state-of-the-art dynamic saliency models: GVBS [17],
PQFT [18], SR [21], Seo and Milanfar [20], Rudoy et al. [23],
Fang et al. [64], Zhou et al. [42], and DWS [45] models. More-
over, we compare our two-stream deep models STSMaxNet
and STSConvNet to a certain extent with deep static saliency
model DeepSal [25] as the architectures of our TSNet and
SSNet models are adapted from this model.

C. Evaluation Measures

We employ Area Under Curve (AUC), shuffled AUC
(sAUC) [65], Pearson’s Correlation Coefficient (CC), Normal-
ized Scanpath Saliency (NSS) [66], Normalized Cross Corre-
lation (NCC) and x? distance throughout our experiments for
performance evaluation. We note that NCC and y? distance
are not widely-used measures but we report them as some
recent studies [23], [43], [39] employ them in their analysis.

AUC measure considers the saliency maps as a classification
map and uses the receiver operator characteristics curve to

estimate the effectiveness of the predicted saliency maps in
capturing the ground truth eye fixations. An AUC value of 1
indicates a perfect match with the ground truth while the
performance of chance is indicated by a value close to 0.5.
The AUC measure cannot account for the tendency of human
subjects to look at the image center of the screen, i.e. the
so-called center bias. Hence, we also report the results of
the shuffled version of AUC (sAUC) where the center bias
is compensated by selecting the set of fixations used as the
false positives from another randomly selected video frame
from the dataset instead of the processed frame.

CC treats the predicted saliency and the ground truth human
fixation density maps as random variables and measures the
strength of a linear relationship between two using a Gaussian
kernel density estimator. While a value close to 0 indicates no
correlation, a CC value close to +1/-1 demonstrates a good
linear relationship. NSS estimates the average normalized
saliency score value by examining the responses at the human
fixated locations on the predicted saliency map which has been
normalized to have zero mean and unit standard deviation.
While a NSS value of 0 indicates chance in predicting eye
fixtions, a non-negative NSS value, especially that of greater
than 1, denotes correspondence between maps above chance.

NCC is a general measure used for assessing image simi-
larity. It treats the ground truth fixation map and the predicted
saliency map as images and estimates a score with values close
to 1 implying high similarity and negative values indicating
low similarity. x? distance considers the saliency maps as a
probability distribution map and compares the predicted map
with the ground truth human fixation map accordingly. A
perfect prediction model needs to provide a distance close to 0
for the x? distance.

D. Experiments on DIEM

In our analysis, we first both qualitatively and quantita-
tively compare our proposed deep dynamic saliency networks,
SSNet, TSNet, STSDirectNet, STSAvgNet, STSMaxNet and
STSConvNet, with each other. Following the experimental
setup of [63], we split the dataset into a training set containing
64 video sequences and a testing set including the remaining
20 representative videos covering different concepts. Specifi-
cally, we use the same set of splits used in [23].

As our STSMaxNet and STSConvNet models integrate spa-
tial and temporal streams by respectively using element-wise
and convolutional fusion strategies, we perform an extensive
set of initial experiments to determine the optimum layers for
the fusion process to take place in these two-stream networks.
In particular, we train STSMaxNet and STSConvNet models
by considering different fusion layers, and test each one of
them on the test set by considering SAUC measure. In Table I,
we provide these performance comparisons at different fusion
layers. Interestingly, as can be seen from the table, fusing the
spatial and temporal streams after the fifth convolution layer
achieves the best results for both spatio-temporal networks. In
the remainder, we use these settings for our STSMaxNet and
STSConvNet models.

In Figure 3, for some sample video frames we provide the
outputs of the proposed networks along with the corresponding



TO APPEAR IN IEEE TRANSACTIONS ON MULTIMEDIA, 2017

Overlayed images  Ground Truth

TSNet

STSMaxNet

STSAvgNet STSConvNet

Fig. 3. Qualitative evaluation of the proposed saliency network architectures. For these sample frames from the DIEM dataset, our STSConvNet provides the

most accurate prediction as compared to the other network models.

TABLE I
PERFORMANCE COMPARISON OF OUR SPATIO-TEMPORAL SALIENCY
NETWORKS AT DIFFERENT FUSION LAYERS ON THE DIEM DATASET. THE
REPORTED VALUES ARE SAUC SCORES. BEST PERFORMANCE IS
ACHIEVED AFTER THE FIFTH CONVOLUTION LAYER.

[ Fusion Layers ~STSMaxNet STSConvNet ]
Conv2 0.52 0.71
Conv3 0.67 0.70
Conv4 0.76 0.83
Conv5 0.81 0.84
Conv6 0.80 0.79
Conv7 0.81 0.79

human fixation density maps (the ground truth). The input
frames are given as overlayed images by compositing them
with their consecutive frames to show the motion in the scenes.
Saliency maps are shown as heatmaps superimposed over the
original image for visualization purposes. As can be seen from
these results, SSNet, which does employ appearance but not
motion information, in general provides less accurate saliency
maps and misses the foreground objects or their parts that
are in motion. TSNet gives relatively better results, but as
shown in the second and the third row, it does not identify
all of the salient regions as it focuses more on the moving
parts of the images. Directly averaging the saliency maps of
these two single stream models, referred to as STSAvgNet,
does not produce very satisfactory results either. As expected,
STSMaxNet is slightly better since max fusion enforces to
learn more effective filters in order to combine the spatial and
temporal streams. Overall, STSConvNet is the best perform-
ing model. This can be rooted in the application of 1 x 1
convolutional filters that learn the optimal weights to combine
appearance and motion feature maps.

In Table II, we present the quantitative results averaged over
all video sequences and frames on the test split of the DIEM
dataset. Here, we compare and contrast our single- and two-
stream saliency networks with eight existing dynamic saliency
methods, namely GVBS [17], SR [21], PQFT [18], Seo and

TABLE 11
PERFORMANCE COMPARISONS ON THE DIEM DATASET.

AUC sAUC CC NSS x> NCC
SSNet 0.72 0.69 035 185 048 041
TSNet 0.79 0.77 0.41 198 040 043
STSDirectNet 0.71 0.60 0.37 1.53 049 0.28
STSAvgNet 0.68 0.62 037 1.67 049 037
STSMaxNet 0.83 0.81 046 2.01 031 0.45
STSConvNet 0.87 0.84 047 215 029 046
STSConvNet* 0.88 0.86 048 218 028 047
GBVS [17] 0.74 0.70 047 204 047 038
SR [21] 0.69 0.64 0.30 222 057 040
PQFT [18] 0.71 0.67 0.33 1.77 052  0.33
Seo-Milanfar [20] 0.59 0.51 0.10 0.12 0.75 0.28
Rudoy et al. [23] - 0.74 - - 0.31 -
Fang et al. [64] 0.71 0.48 0.21 0.55 087 040
Zhou et al. [42] 0.60 0.52 0.13 024 071 0.22
DWS [45] 0.81 0.79 032 297 040 039

Milanfar [20], Rudoy et al. [23]', Fang et al.
al. [42] and DWS [45] models.

Among our deep saliency networks, we empirically find
that STSDirectNet provides the worst quantitative results. This
is in line with our observation in Table I that delaying the
integration of appearance and motion streams to a certain
extent leads to more effective learning of mid and low level
features. Secondly, we see that SSNet performs considerably
lower than Temporal stream network, which demonstrates that
motion is more vital for dynamic saliency. STSMaxNet gives
results better than those of the single stream models but our
STSConvNet model performs even better. It can be argued that
STSConvNet learns more effective filters that combine spatial
and temporal streams in an optimal manner. In addition, when
we employ the data augmentation strategy proposed in the
previous section, it further improves the overall performance
of STSConvNet. In the remainder, we refer to this model

[64], Zhou et

I'Since the code provided by the authors is not working correctly, sSAUC
and %2 scores are directly taken from [23].
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Fig. 4. Qualitative comparison of our STSConvNet* model against some dynamic saliency models on DIEM dataset. Our model clearly produces better

results.

with data augmentation as STSConvNet*. When we compare
our proposed STSMaxNet, STSConvNet, and STSConvNet*
models to the previous dynamic saliency methods, our results
demonstrate the advantages of two-stream deep CNNs that
they consistently outperform all those approaches, including
the very recently proposed DWS model, according to five out
of six evaluation measures.

We present some qualitative results in Figure 4 where we
again provide the input frames as transparent overlayed images
showing the inherent motion. We observe that the proposed
STSConvNet* model localizes the salient regions more accu-
rately than the existing models. For example, for the frame
given in the first row, none of the compared models correctly
capture the fixations over the painting brush. Similarly, for the
second and the third frames, only our spatio-temporal saliency
network fixates to the text and the cellular phone in the frames,
respectively.

E. Experiments on UCF-Sports

Learning-based models might sometimes fail to provide
satisfactory results for a test sample due to a shift from the
training data domain. To validate generalization ability of our
best-performing STSConvNet* model, we perform additional
experiments on UCF-Sports dataset. In particular, we do not
carry out any training for our model from scratch or fine-tune
it on UCF-Sports but rather use the predictions of the model
trained only on DIEM dataset.

In Table III, we provide the performance of our model
compared to the previous dynamic saliency models which

TABLE III
PERFORMANCE COMPARISONS ON THE UCF-SPORTS DATASET.

\ AUC sAUC CC NSS X2 NCC
GBVS [17] 0.83 0.52 046 1.82 054 059
SR [21] 0.78 0.69 026 120 042 052
PQFT [18] 0.69 0.51 029 1.15 0.64 048
Seo-Milanfar [20] 0.80 0.72 031 137 056 036
Fang et al. [64] 0.85 0.70 044 195 052 033
Zhou et al. [42] 0.81 0.72 036 1.71 0.56 037
DWS [45] 0.76 0.70 028 201 040 049
STSConvNet* 0.82 0.75 048 213 039 054

are publicly available on the web. As can be seen, our
STSConvNet* model performs better than the state-of-the-art
models according to majority of the evaluation measures. It
especially outperforms the recently proposed DWS model in
terms of all measures. These results suggest that our two-
stream network generalizes well beyond the DIEM dataset.
In Figure 5, we present sample qualitative results of Fang et
al. [64] and DWS model [45] (two recently proposed models)
and our STSConvNet model on some video frames. For
instance, we observe that for the sample frame given in the first
row, our model fixates to both the runner and the crowd. For
the second and the third sample frames, the compared models
do not accurately localize the weight lifter and the cowboys
as salient, respectively. Similarly, the proposed STSConvNet*
model predicts the eye fixations better than the competing
models for the fourth image containing a guardian walking
in a corridor. For the last diving image, STSConvNet* and
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Fig. 5. Qualitative comparison of our STSConvNet* model against some previous dynamic saliency models on UCF-Sports dataset. Our spatio-temporal

saliency network outperforms the others.

Fang et al. give results fairly close to the ground truth, while
DWS output some spurious regions as salient.

FE. Experiments on Still Images from MIT300

Deep static saliency networks achieve excellent perfor-
mances on existing benchmark datasets for static saliency
estimation. These models, however, only exploit spatial in-
formation captured in still images, but sometimes an image,
despite being taken in an instant, might carry plenty of infor-
mation regarding the inherent motion exist in it. In a recent
study by Bylinski er al. [53], the authors demonstrate that
the areas showing these kind of activities are indeed evidently
important for saliency prediction since humans have tendency
to look at the objects that they think in motion or that are in
interaction with humans or some other objects. Motivated by
these observations, in this section, we present the failures or
the shortcomings of the current deep static saliency models
through some examples, and show how motion information
exist in still images can be utilized to fill in the semantic gap
exist in the current static saliency models.

Figure 6 presents sample images taken from [53] and which
are from the MIT 300 dataset [59] where highly fixated regions
(which cover the 95th percentile of the human fixation maps)
are highlighted with yellow curves. As can be clearly seen
from these examples, the state-of-the-art deep static models
generally fail to give high saliency values to regions where
an action occurs or which contains objects that are interpreted

as in motion. To capture those regions, we employ the deep
optical flow prediction model [37] which extracts optical flow
from static images. Once we estimate the motion map of a
still image, we can exploit this information together with the
RGB image as inputs to our spatio-temporal saliency network
(STSConvNet) to extract a saliency map. We observe that us-
ing these (possibly noisy) motion maps within our framework
provides more accurate predictions than the existing deep static
saliency models, and even captures the objects of gaze as
illustrated in the first two sample images. These experiments
reveal that the performances of static saliency networks can
be improved by additionally considering motion information
inherent in still images.

VI. CONCLUSION

In this work, we have investigated several deep architectures
for predicting saliency from dynamic scenes. Two of these
deep models are single-stream convolutional networks respec-
tively trained for processing spatial and temporal information.
Our proposed spatio-temporal saliency networks, on the other
hand, are built based on two-stream architecture and employ
different fusion strategies, namely direct averaging, max fusion
and convolutional fusion, to integrate appearance and motion
features, and they are all trainable in an end-to-end manner.
While training these saliency networks, we additionally em-
ploy an effective and well-founded data augmentation method
that utilizes low-resolution versions of the video frames and
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Fig. 6. Some experiments on still images. While the top performing deep
static saliency models fail to compute satisfactory results in these images
(results taken from [53]), our spatio-temporal saliency network (STSConvNet)
can produce better saliency maps using predicted optical flow maps.

the ground truth saliency maps, giving a significant boost in
performance. Our experimental results demonstrate that the
proposed STSConvNet model achieves superior performance
over the state-of-the-art methods on DIEM and UCF-Sports
datasets. Lastly, we provide some illustrative example results
on a number of challenging still images, which show that static
saliency estimation can also benefit from motion information.
This is left as an interesting topic for future research.
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