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Abstract

Correlation filters have recently attracted attention in visual tracking due to their ef-

ficiency and high performance. However, their application to long-term tracking is

somewhat limited since these trackers are not equipped with mechanisms to cope with

challenging cases like partial occlusion, deformation or scale changes. In this paper, we

propose a deformable part-based correlation filter tracking approach which depends on

coupled interactions between a global filter and several part filters. Specifically, local

filters provide an initial estimate, which is then used by the global filter as a reference to

determine the final result. Then, the global filter provides a feedback to the part filters

regarding their updates and the related deformation parameters. In this way, our pro-

posed collaborative model handles not only partial occlusion but also scale changes.

Experiments on two large public benchmark datasets demonstrate that our approach

gives significantly better results compared with the state-of-the-art trackers.

Keywords: visual tracking, correlation filter tracking, collaborative model,

deformable part-based model

1. Introduction

The main goal of object tracking is to determine the location of a given object, usu-

ally specified with a bounding box in the first frame, in the subsequent video frames.

Tracking has a wide range of applications including but not limited to visual surveil-
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lance, human computer interaction, robotics, automatic navigation and action recog-5

nition. Although recent studies have reported promising results, tracking is still con-

sidered as a difficult problem due to the challenges such as occlusion, illumination

variation, changes in scale, object deformations and in or out of plane rotations, etc.

Object tracking methods can be divided into two broad categories as generative and

discriminative. The first group of works learns a generic model from the given initial10

conditions and then defines tracking as a search problem where the image region that is

closest to the object of interest is determined within a neighborhood. On the other hand,

the second group, which is generally referred to as tracking-by-detection, formulates

tracking as a binary classification problem [1] [2] [3]. They mainly employ HoG[4],

Haar-like features [1] and region covariances [5] as the object representations and use15

SVM[2], Multiple Instance Learning [1], Random Forests [6], and Ada-boost [7] as the

visual classifiers. Recently, correlation filters [8, 9, 10, 4, 11, 12] give very promising

results while offering very low processing time. These trackers simply try to maximize

the correlation between a trained object template with the current frame in an online

fashion, and since the processing is usually done in the Fourier domain, they are very20

fast.

In this paper, we propose a robust generic object based tracking algorithm. In

particular, we suggest to combine recently proposed tracking-by-detection schema of

correlation filters with deformable part-based model within a unified framework of cou-

pled global and local filters. In our tracker, which we call deformable part-based cor-25

relation filter tracking (DPCF), the appearance model is implemented by a correlation

filter based on histogram-of-gradient (HoG) features and color, while the deformable

model is based on the relative arrangement of parts. The object is represented with

several local filters, which have a deformable structure, and an additional global ap-

pearance filter that has a coupled interaction with the part-based schema. Specifically,30

local filters help us to track a target object by focusing on specific object parts and

provide a rough solution for the target’s position. Global filter, however, is learned by

considering the whole object region and employs the approximate solution from the

local filters to determine the final solution. Moreover, it provides feedbacks to the local

filters regarding the utilized deformation model and the new parameters.35

2



Our contributions: We make four main contributions to the long-term online vi-

sual tracking problem: i) We propose a deformable part-based tracking framework

based on correlation filters. ii) We present a collaborative algorithm for tracking-by-

detection with coupled local and global filters. iii) We introduce a simple yet natural

model for handling scale changes, and a robust update scheme that addresses occlu-40

sion, scaling and fast motion issues while keeping the processing in real time. iv)

We improve the state-of-the-art tracking results in comparison to the recent successful

trackers on two large scale public benchmark datasets [13].

The rest of the paper is organized as follows. In Section 2, we review recent track-

ing algorithms. Section 3, we give a detailed description of correlation based tracking45

and the proposed coupled global and local model. In Section 4, we provide a thorough

experimental analysis by comparing our tracker against the state-of-the-art trackers. In

Section 5, we conclude with some discussions and directions for the future research.

2. Related work

There is a vast literature on visual object tracking, so here we briefly review some50

related approaches to the proposed tracking algorithm. For a comprehensive review of

the tracking methods, the readers can refer to [14, 15, 13, 16].

A significant number of recent trackers use learning-based formulations. For ex-

ample, MILTrack [1] tracking algorithm employs a multiple instance learning to keep

track of the target object. Struck [2] was proposed as an online SVM based tracker in55

which online learning, sample selection and search for the best match modules works

together to find the target object in a video frame. In TLD [3], tracking, learning

and detection components are employed simultaneously by additionally forcing some

structured constraints about the target object. TGPR [17] analyzes the probability of

Gaussian Processes Regression based on a semi-supervised learning framework. On60

the other hand, MEEM [18] employs an ensemble learning approach which keeps track

of the history of appearance changes based on a minimum entropy criterion.

Another group of algorithms employs specific object representations that have ad-

vantages for the underlying tracking process. For example, the trackers in [19, 20] use
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sparse representations while the recently proposed TLP [21] tracker employs And-Or65

graphs (AOG) to represent the target object. Deformable part-based model with dis-

criminatively trained parts is offered in [22] for object detection and used in SPOT [23]

as a tracker with SVM classifier. A coupled-layer model(LGT) is suggested in [24] to

support a constraint paradigm between the adaptation of the global and the local layer

that is based on visual properties such as color, shape and apparent local motion.70

All the aforementioned models, to a certain extent, suffer from challenging condi-

tions such as occlusions, changes in the illumination, etc. and do not keep up with real

time performance. LGT [24] is similar to our study, but it needs a large sets of parts

that leads to extra computational cost. Unlike this algorithm, our approach uses only a

few correlation filters and has an efficient update mechanism which also estimate scal-75

ing changes. In addition, our approach takes into account the structural preservation of

parts which is handled just like the graph structure in SPOT [23].

2.1. Correlation Filter Based Tracking

A recent trend in tracking is to employ correlation filter based formulations. A de-

tailed experimental survey can be found in [25]. These trackers model the appearance

of the target object with a specific filter that is trained from the initial or past frames,

and it serves as the appearance model for the new frame. Every frame is correlated

with the trained model and the maximum value of the correlation indicates the new

position of the object. To construct a robust and efficient tracker, the correlation is im-

plemented in the Fourier domain using Fast Fourier Transform (FFT). In particular, a

Fourier transform of the input image F (x) and the filter F (h) are estimated, and then

element-wise multiplication is carried out with the complex conjugate F (x)∗ as stated

by the correlation theorem:

y = F−1(F (h)� F (x)∗) . (1)

The correlation output y is then transformed into the spatial domain with inverse FFT.

Finally, the maximum response of the correlation gives the estimated object center.80

All the computations are done in the Fourier domain, and thus the resulting tracker is

highly efficient, reaching a 300 frames-per-second (fps).
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In MOSSE [8], a filter is trained to minimize the error between the actual and

predicted output of the correlation. Affine warped windows from the first frame are

used to construct a training set and an weighted average is used to quickly adapt the

filters to the appearances changes:

F (ht) = η · F (ht) + (1− η) · F (ht−1) , (2)

where ht is the current filter and ht−1 is the previous with η being the update rate.

MOSSE is extended in [12] to deal with the scaling problem which makes use of scale-

space pyramid representation.85

Another highly efficient solution was offered in CSK [9] in which circulant matrices

are employed, allowing correlation filters to be kernelized. In PBTLD[10], an exten-

sion to CSK was proposed, where the authors consider a part-based scheme to address

the partial occlusion problem within the online tracking-learning-detection framework.

In ACT [11], CSK tracker was extended with color attributes and an adaptive scheme90

to set the weights of these attributes. Similarly, another recently proposed KCF [4]

tracker employs multi-channel features based on HoG instead of a raw pixel based rep-

resentation. The HoG features further improve the performance of the kernelized filters

while still keep the running time on the level of hundreds frames-per-second. In [26],

the authors suggest an image pyramids-based framework for KCF, which integrates the95

HoG features with the color attributes, to tackle the scale problem.

Recently, another correlation filter based tracker (RTCF) was offered in [27], where

the authors also employ a multi-part structure as in our work. While they consider

adaptive weights for the filters corresponding to object parts, we consider a coupled

formulation where the part-based local filters and the object-based global filter work100

in a unified manner to keep track of the target object. More specifically, RTCF uses

the Bayesian inference framework to combine the tracking scores of different parts but

not mention about determining parts initial position. It is not, meanwhile, clear that

all parts represent the target entirely. This leads to missing some important parts and

needs to be known initial position of prominent parts that is not suitable for general105

object tracking. Unlike RTCF, our framework supports structural constraints between

parts using a deformation model and determines parts position according to a global fil-
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ter and a deformable model. Thus, our couple model handles drifting more effectively

and moreover, it provides scaling invariance in a straightforward way. In [28], a differ-

ent correlation filter is proposed in which tracking is decomposed into translation and110

scale estimation problems thus explicitly addressing the scale changes. Very recently,

a collaborative correlation [29] tracker is offered to deal with the scale variation by

embedding the scale factor into the kernelized matrix and a long-term filter is offered

for re-detection.

3. Proposed Tracker115

In this section, we first provide the motivation and formulation of the proposed

coupled global and local part based model. We then discuss the details of the model,

the update scheme, scaling and our implementation details.

3.1. Problem Formulation

Traditional correlation filter-based trackers [8, 11, 4, 9, 26] provide robustness120

against appearance changes, at the same time, offer very fast computation times. Most

of these trackers consider representation schemes which consist of global appearance

models based on different visual features such raw intensities [8, 4, 9], HoG [12, 4, 26]

or color [11, 26].

Employing a global appearance model for the target object makes the tracking vul-125

nerable to partial occlusions or appearance changes of the object. Yet, in most cases,

there remains some object parts that are less affected by these changes. Splitting an ob-

ject into parts and modelling their a spatial arrangement provide supplementary shape

knowledge and more importantly, individual tracking of parts introduces extra robust-

ness. The approaches in [10, 27] also employ a part-based local appearance model that130

depends on correlation filters. They showed that using such a strategy better handles

the partial occlusions, however their formulation lacks a proper mechanism to adapt

the part configurations.

In this study, we develop a tracking model which aims to leverage the collaborative

power of both representation schemes in which global and local correlation filters are135
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tied together by a unified framework (Figure 1). We describe both the target object

and its parts as rectangular patches for the global and local correlation filters, respec-

tively, and train them by using a combination of the HoG [30] and color features. We

denote a patch (m × n) located at l with x which is obtained by concatenating the

individual HoG channels as x = [x1, ..., xC ] with C = 31 representing the number of140

gradient orientation bins. Then, the 31 dimensional HOG vector is concatenated to 11

dimensional color attributes (CN ), giving us a 42 dimensional vector.

At the training step, we consider the dense sampling strategy introduced in [4],

and select the training samples automatically by using all the cyclic shifts of the input

patch. For the labels of these samples, we use a Gaussian function y with y = 1 near145

the target location (the location of the object or one of its parts) and which decays to

y = 0 as further away from it.

Parts are constructed as separate filters but they are connected with a deformable

spring model that keeps track of the length and direction between the parts and the

object center. Once these filter responses are computed, the target object location is150

updated according to the deformable model. This schema leads to keeping the shrink-

ing or stretching parts together in a robust way. The global filter is updated according

to the reliability scores of each part. We require at least one part to be reliable to use

their responses as a reference point. Additionally, part filters are updated if they are

considered as reliable. Otherwise, the previous state information of the collaborative155

model is kept fixed. Finally, compressing and stretching of parts are used as a simple

model to capture the scaling.

3.2. Global Tracking

As our global tracker, we employ Kernelized Correlation Filter (KCF) tracker [4].

The objective of KCF can be expressed in the spatial domain as finding the optimal

filter h by solving the following ridge regression problem,

min
h

n∑
i=1

(yi − hTxi)
2 + λ‖h‖22 , (3)

where hTx is the filter response, yi ∈ RD is the desired correlation response for the

i-th observation xi ∈ RD, typically constructed as a Gaussian function centered at the160

7



Figure 1: Deformable part-based schema with a unified framework of coupled-layer global and local filters.

location of the object to be tracked, and λ ≥ 0 is a regularization parameter.

In order to achieve a better performance, Henriques [4] utilized kernel ridge re-

gression to extend (3) to a nonlinear setting where the optimum filter is given by the

following closed form solution:

α = (K + λI)−1y , (4)

withα being the vector of coefficients αi, representing the filter h in the dual space, K

being the kernel matrix, with elements Kij = κ(xi,xj), I being the identity matrix,

and y being the vector of desired responses yi.

The key characteristics of KCF is that Eq. 4 can be efficiently solved for a kernel

matrix with a circulant structure, without building the kernel explicitly while consid-

ering all possible samples which correspond to patches around the object at different

translations. Given such a kernel matrix K = C(kxx), where kxx is called the kernel

correlation of x with itself, and C(·) is the circulant data matrix formed by concatenat-
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ing all possible cyclic shifts, then the solution is simply given by

α = F−1
(

F(y)

F(kxx) + λ

)
. (5)

In the experiments, we used HoG and color features, and the following multi-channel

version of the Gaussian kernel, which are both shown to perform well in [4]:

kxx′
= exp

(
− 1

σ2

(
‖x‖2 + ‖x′‖2 − 2F−1(

∑
c

x̂∗c � x̂′c)

))
, (6)

where x̂ = F(x), x̂∗ is the complex-conjugate of x̂, and � denote the element-wise165

product.

The same property can also be used in the detection step as follows. In a frame, a

patch is extracted at the previous object location and represented with HoG and color

features. Then, the response of the learned filter is computed as

y = F−1 (F(kxz)�F(α)) , (7)

where kxz is the kernel correlation of x and z, as defined in Eq. 6. Finally, the new

object location ` is estimated by finding the translation that maximizes the filter re-

sponse ỹ.

3.3. Local Tracking170

There are several different strategies to define the part-object relationships. One

category of approaches (e.g., [31]), which can be considered as domain-specific track-

ers, use explicit part structures, e.g. a human can be represented by parts corresponding

to head, limbs and torso. More generic trackers, on the other hand, consider arbitrary

patches to define these parts which do not depend on any predetermined object model.175

Representing the target by means of a star model (e.g., [23]) or a group of arbitrary rect-

angular patches (e.g., [32, 19]) are the most common part-object relations for generic

trackers.

Motivated by the effectiveness of the part-based trackers, we present here a generic

tracking framework that considers part-specific local correlation filters to keep track of180

the target. Specifically, for our local tracking framework, we employ a number local

correlation filters, one for each part of the object, and treat these filters as individual
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Figure 2: The initial part-object relations used in our experiments. The layout is selected according to aspect

ratio of the target object. Sequences are from blurCar2 and liquor [33], respectively.

trackers which are interconnected with each other through some structural constrains.

While the parts-based schema can offer a generic framework, in our experiments we

consider two different spatial layouts are found to be effective enough, one for the185

horizontally and one for the vertically aligned objects, as illustrated in Figure 2.

As in the global tracking, we employ the following closed form solution to learn

the optimum coefficients of our local filters:

αi = F−1
(

F(yi)

F(kxx
i ) + λ

)
, (8)

where αi denotes the coefficient vector of the local filter that keeps track of the part

i, Kpi
is the kernel matrix, and yi represents the vector of desired responses for the

part i. Once the filter coefficients αi are trained, then we use the following equation to

detect the defined object parts:

yi = F−1 (F(kxz
i )�F(αi)) , (9)

with kxz
i denoting the kernel correlation of the learned part appearance xi with the test

image feature zi. New location of each object part `i is then found by estimating the

translation that maximizes the response yi of the local filter αi.

Moreover, for every part, we also store a displacement vector ∆i that represents190

the length and direction of the vector between part i and the center of the target. Note

that these structural constraints between parts are updated at each time frame in collab-

oration with the global filter that keeps track of the object, which further enhances the

robustness of the whole tracking process as discussed in the next section.
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3.4. Collaborative Deformable Part-based Model195

We present a collaborative framework which employs a coupled system of global

and local correlation filters. The target is represented using a part-object relationship

as illustrated in Figure 2. A separate global and a number of local correlation filters

are respectively trained with the whole object patch and the related part patches in the

initial frame. While tracking, the filters contribute to a robust prediction of the target200

location by jointly aggregating their predictions through a common layer.

Specifically, each local filter αt−1
i is used to detect the corresponding object part.

These detections are then used to estimate an initial prediction for the target using the

current part-object model:

ˆ̀t =
1

Z
∑
i

ri ∗
(
`t−1i + ∆t−1

i

)
, (10)

where `i is the detected part location and ∆i is the deformation vector between the part

and the object center and the ri is the parts’ reliability with Z =
∑

i ri.

To avoid erroneous estimations, we only use new information from the reliable

parts. These parts are identified by comparing detection scores ri against a threshold

ψ. To normalize the scores between the parts, the likelihood of each part is modeled as

ri =
1

1 + exp(−yi)
. (11)

As a result, a part which is occluded or which has a large pose or appearance change

has no effect on the final detection at frame t when combined with the global filter.205

This coarse result is then used to define the search neighborhood and employed in

conjunction with the global filterα to estimate the final target location `t. In particular,

the local parts find the target according to the utilized deformable model, and then the

estimated target position is used as a rough solution for global filter on the condition

that at least one of the parts provides a reliable solution. Otherwise, the global filter210

takes into account the previous result of the global filter (from the preceding frame) for

detection. Afterwards, this final result of the global filter provides a feedback to the part

filters regarding the new reference location which is used within the deformable model.

This process is summarized in Algorithm 1 and Figure 1. Consequently, the global and
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Algorithm 1: Tracking

Tracking t > 1:

for each part i do

Perform part detection (Eq. 9)

end

Estimate the target location ˆ̀suggested by the reliable parts (Eq. 10)

Perform global detection over ˆ̀ (Eq. 7) to obtain ` (output of frame t)

Update the global model (Eq. 12-13) and the scale (Eq. 16)

if scaling is occured then

re-initialize the whole system according to scaling

end

for each part do
Update part location and deformation vector ∆i between part and object

centers

Update local model (Eq. 14-15)

end

end

the local filters play equally important roles in object tracking. For the reliable parts,215

an update mechanism is introduced as discussed in the next section.

3.5. Update Scheme

During tracking, the target object may become occluded by other objects, or its

pose or appearance may undergo significant changes. We address these situations with

an update scheme of the global and the local correlation filters. For the global filter,220

we train a new filter (αt,xt) at the new target location only if there exists at least one

reliable part by linearly interpolating the newly estimated filter coefficients α̂t−1 (Eq.

5) and the appearance features x̂t−1 with the ones from the previous frame t− 1. If all
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the parts are considered unreliable, we keep the previous filters:

αt =

 (1− γ)αt−1 + γα if ∃iri > ψ

αt−1 otherwise .
(12)

xt =

 (1− γ)xt−1 + γx if ∃iri > ψ

xt−1 otherwise ,
(13)

where γ is a learning rate parameter, which determines how fast the tracker adapts itself225

to the changes in the scenes.

For the local filters, we consider independent update mechanisms in which a new

filter (αt
i,x

t
i) is trained for each part i again by adapting the learned filter and the

appearance properties from the previous frame
(
αt−1

i ,xt−1
i

)
using the current obser-

vations xi and the estimated coefficients αi:230

αt
i =

 (1− γ)αt−1
i + γαi if ri > ψ

αt−1
i otherwise ,

(14)

xt
i =

 (1− γ)xt−1
i + γxi if ri > ψ

xt−1
i otherwise ,

(15)

with γ denoting the learning rate. As can be seen, these updates are performed as long

as the parts are reliable, i.e. the part detection scores in the current frame is larger than

a predefined threshold. Thus, for the unreliable parts we keep the previous filters. In

this way, the local filters become more robust against occlusions or other significant

changes. Moreover, we also update the part locations using the new target location235

and the part-object relation only if the part is considered reliable, which provides extra

robustness. In Figure 3, we show sample frames from a video sequence, where the

target object is occluded. As it can be seen, the collaborative model accurately tracks

the target even if parts of the objects are not always visible through the tracking process.

3.6. Scaling240

It is important to update the scale of filters to handle different sizes of the target

object for visual tracking and to eliminate the drifting problem. Most of the correlation

filter based trackers [28],[12],[26],[27] have tried to estimate the object size by using

13



Figure 3: Tracking under significant occlusions. Occluded parts are shown with dashed line which are not

updated due to low detection confidence.

a discriminative filter and a search pool that is based on pyramidal structure. Despite

offering remarkable results, these trackers can not estimate the current object size. To245

our knowledge all previous correlation filter-based trackers did not consider changing

the filter size in an adaptive way. The size of the target may change dramatically in most

of the time, and therefore employing a search strategy which considers fixed scales is

not enough to estimate the size accurately.

In our study, we explore adaptively changing the size of a filter using the proposed250

part-based schema for more accurate detection. In the suggested scheme, two reliable

parts moving further away from each other naturally lead to an increase in the scale of

the target object. Similarly, parts moving closer to each other indicate decreasing size

of the target. We found that this scale estimation scheme is robust in that it provides a

simple and efficient way to estimate the size of the target as shown in Figure 4.255

Changing the size in every step without considering the previous scale information

may lead inaccurate estimates. Hence, we change the original filter size m × n by a

scale factor s (ms×ns) only if scaling shows a constant increase or decrease trend. In
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Figure 4: Tracking under large scale changes. In a particular way, when parts compress or stretch the scaling

factor can be captured.

particular, if scaling is need to be updated, the system is re-initialized by changing the

filter sizes according to the estimated scale factor. In this step, the previous information260

(template and filter) is forgotten but correlation filter strategy can handle the situation

quite well. Specifically, we compute the change in the scale as follows:

st =
‖`ti − `tj‖
st−1

, (16)

with i and j denoting the parts. We store all these scaling factors since the (re)-

initialization and while changing the filter sizes, we use the mean of the scaling factors

η = avg(s0:t) rather than the scaling factor estimated at the current time step.265

We use η to decide the scaling is necessary or not by comparing the scaling ratio

with a threshold 1− δ or 1 + δ. Based on η, we have two options: update the sizes of

the local and global filters or no update. If η < 1 + δ or η > 1 − δ and all parts are

reliable, it indicates that the size of the target needs to be updated. Once the sizes are

updated, we start recalculating the s from scratch. This simple scaling strategy, which270

takes into account not all but the latest upward or downward trend, is proved effective
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empirically as discussed in the experiments.

3.7. Implementation Details: Features and Parameters

Our approach is implemented in Matlab/C++ and all the algorithmic parameters

are fixed throughout the experiments. Our parameters are similar to those in KCF [4]275

except our learning rate γ = 0.18 . Since HoG representation performs poorly at low

resolution (below 30x30 pixels), we use the cell size 2x2 rather than 4x4 for small

targets. The filter and search size are set to 2.4 times.

Although theoretically part reliability changes between 0.5 and 1, we experimen-

tally observed that reliability changes 0.5 and 0.75 and found that ri dropping around280

0.56 indicates heavy occlusion, abrupt motion, scaling or sudden pose change. We

therefore set the threshold ψ in Eq. 12 - 15 to 0.55. Several latest algorithms [12, 26]

use a pool of scale factors that covers 1% to 15% scale changes. Unlike these algo-

rithms, we change the filter size if scaling is decided to be needed. This means that the

more change the size, the more forget the previous information. Therefore, we set the285

scaling threshold δ is to 0.15.

The proposed approach results in a tracker processing videos with the speed of 20

frames per second. The correlation for individual parts takes up to 35% of computation

time, combining the scores and updating the deformation scores takes nearly 50% and

updating the parts models takes 15%.290

4. Experiments

In this section, we first introduce the experimental setup, then evaluate the perfor-

mance of our method by comparing it against different correlation based trackers as

well as other state-of-the-art approaches.

4.1. Experimental Setup295

To evaluate the robustness and accuracy of our approach, we carry out two compar-

ative experiments. We first focus on six closely related correlation based trackers, and

then compare to other five methods that recently produced state-of-the-art results on

challenging benchmarks. The results are reported on two visual tracking benchmark
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datasets, OOTB [13] and TB-100 [13]. Both of these datasets contain 11 different300

challenges such as illumination variation (IV), scale variation (SV), occlusion (OCC),

deformation (DEF), motion blur (MB), fast motion (FM), in-plane rotation (IPR), out-

of-plane rotation (OPR), out-of-view (OV), background clutter (BC), and low resolu-

tion (LR). The results are also reported for these benchmark subcategories.

In all the experiments, the performance is measured with two evaluation criteria305

which are Center Location Error (CLE) and the Pascal VOC overlap ratio (OP). For

the CLE, the pixel distance between the center of tracked bounding box and the ground

truth is averaged over all frames and sequences, i.e., the lower the better. In addi-

tion, OP is used which is the average success rate for 0.5 overlap of the tracker and

the ground truth bounding boxes. Given the tracking output bounding box rt and the310

ground truth bounding box gt, the overlap score o = |rt ∩ gt|/|rt ∪ gt| is used to mea-

sure tracking success per frame, where | · | denotes the area.

It is worth noting that CLE has to be considered with caution, as the detected and

the ground-truth bounding boxes vary in size. Furthermore, when a tracker drifts away

from the target, its actual distance to the object has less importance. In addition, we315

present success rate and precision plots over a range of thresholds. The success plots

for various methods result from [13] and represent the one pass evaluation scores while

varying the overlap threshold from 0 to 1.

Both, precision and success show the average scores over all the sequences. In

addition to quantitative results, we also illustrate our method strengths and weaknesses320

qualitatively.

4.2. Comparison to Correlation Based Trackers

To demonstrate the performance gain of our approach with the part based deforma-

tion model, we compare our tracker DPCF to the recent correlation filter based trackers

that include CSK [9], PBTLD [10], KCF [4], ACT [11] and DSST [12] on the OOTB325

dataset. The common part of all of these trackers is the use of correlation filters or their

kernelized versions.

It is apparent from the CLE and OP curves of Figure 5 that our DPCF tracker

outperforms the other methods. The results also suggest that methods that explicitly
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Figure 5: Comparison of the correlation filter based trackers in terms of localization error and overlap on the

OOTB dataset. The legend shows the ranking of methods which is largely consistent for the two measures.

address the scale change i.e., DPCF, DSST problem have an advantage. The results also330

support the intuition that the part-based schema (DPCF, PBTLD) and the collaboration

strategy play an important role in robust tracking. Specifically, DPCF compared with

the second best DSST, OP and CLE performance gains of our method are %12 and 10

pixels error, respectively. The result also demonstrates that DPCF outperforms KCF

nearly 16% for OP score and 9 pixels error for CLE score. The results in Table 1 for335

individual challenges also indicate that our tracker can better handle occlusion, scaling

and deformation than other methods while accurately estimating the size of object.

The recent RTCF [27] tracker also employs a part-based strategy. The authors

of [27], on the other hand, has performed experiments only on 16 videos from the

benchmark [13] dataset. We have compared our results against RTCF and found that340

our approach gives nearly 6 % better than those of RTCF on this limited set. More

recently, LCT is reported with the 76.9 % OP score. Our tracker also surpasses the

LCT 1% score of the OP without any learning or re-detection strategy. It is noteworthy

that LCT uses learning and re-detection which is proved by the authors of PBTLD [10]

that learning and re-detection adds nearly 10% gain.345

Moreover, we also compare our method with KCF and DSST on the TB-100 dataset.

The results given in Table 2 also illustrate that our tracker outperforms both KCF and
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Table 1: Tracking Benchmark Results on the OOTB dataset and its challenging subcategories for the top

twelve tracking algorithms including 6 correlation filter based (*). Our method outperforms all the state-of-

the-art algorithms according to overlap (OP) score (highest). Our algorithm has gained 8 the best and 2 the

second best out of 11 subcategories for OP score. The column headers indicate the challenge and its number

of sequences.
Tracker All IV-25 SV-28 OCC-29 DEF-19 MB-12 FM-17 IPR-31 OPR-39 OV-6 BC-21 LR-4

DPCF* 77.8 74.7 68.2 79.9 82.2 66.5 63.7 69.7 69.7 67.7 75.6 46.0

MEEM [18] 68.5 61.9 57.9 65.9 64.6 60.3 67.4 60.9 66.3 76.7 73.9 46.3

DSST* [12] 66.7 68.6 63.0 64.4 63.4 53.1 50.8 67.4 64.0 52.1 61.3 49.7

TGPR [17] 64.5 58.4 50.1 58.8 67.9 58.0 56.1 59.3 60.7 54.4 70.7 45.4

KCF*[4] 62.8 59.5 48.6 63.0 69.4 61.6 55.8 62.3 61.6 66.1 66.3 35.6

SCM [19] 61.6 56.8 63.5 59.9 56.5 33.9 33.5 56.0 57.5 44.9 55.0 30.8

PBTLD* [10] 57.8 50.7 45.8 56.3 55.9 55.0 52.5 52.9 54.7 49.3 52.4 41.4

Struck [2] 56.0 49.0 47.6 49.3 48.8 53.7 55.4 53.4 50.7 48.8 54.3 41.0

TLD [3] 52.1 46.0 49.4 46.8 45.6 48.2 47.3 47.6 49.7 51.6 38.8 32.7

ACT* [11] 51.4 46.8 42.7 49.6 55.3 49.5 43.2 55.6 51.6 47.0 53.5 39.7

ASLA [20] 51.1 50.3 54.4 45.1 45.6 28.1 26.0 48.8 49.4 35.9 46.8 16.3

CSK* [9] 45.3 41.1 37.1 42.3 39.9 38.4 38.2 47.5 45.3 41.1 49.3 39.6

LGT [24] 37.5 32.8 29.0 33.7 29.7 21.3 32.5 38.2 37.4 48.2 36.0 15.7

DSST, giving 15% and 9% better OP scores.

4.3. Comparison to State-of-the-art Trackers

In our next experiment, we have compared our approach with 36 different state-350

of-the-art trackers on the OOTB dataset. In addition to the 29 methods reported in the

benchmark experiment in [13] we include KCF [4], TGPR [17], ACT [11], PBTLD

[10], DSST [12], MEEM[18] and LGT[34].

Table 1 presents the overall scores in column (All) OP as well as individual scores

for 11 challenges on OOTB from [13]. Figure 6 shows detailed results for varying355

overlap scores. In Table 1, the best and the second best performing methods are given

in bold and italic typefaces, respectively. DPCF significantly improves upon all the

trackers with the average overlap score of 77.8%. We also tested our method without

the proposed deformation model, for which the score dropped by 6.5% which shows

that our deformation model leads to a significant gain. Moreover, our method obtained360

8 the best and 2 the second best score out of 11 subcategories according to OP score.
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Figure 6: Quantitative analysis of the proposed tracker against the top 9 performing state-of-art trackers

on the OOTB dataset. The plots are generated for OPE (threshold 0.5), OPE (AUC), precision plot and

Occlusion OPE (threshold 0.5). In all plots, our DPCF algorithm gives the highest success rate as listed in

the legend.

Struck [2] is reported to have shown the best performance in a recent evalua-

tion [13], as well as KCF [4], TGPR [17] and MEEM [18] have outperformed other

existing methods. Furthermore, DSST is reported to have surpassed all trackers ac-

cording to equally challenging VOT2014 [35] benchmark results. Our experiments365

with the sequences and protocols from [13] show that our DPCF tracker outperforms

Struck, KCF, TGPR, DSST and MEEM nearly 20%, 16%, 14%, 12% and 10% respec-

tively, while keeping the real time frame rate performance. DPCF ranks the first with

nearly 15%, 18% and 5% margin of OP score in 29 videos with occlusions, 19 videos

deformation and 28 videos scale variation respectively. Moreover, we compared our370

algorithm with LGT [24] that has a similar coupled framework to ours. The results

suggest that our algorithm nearly doubles the score of LGT on the OOTB dataset.
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While LGT is vulnerable to occlusion, clutter background, scaling, etc., our tracker

can handle the situations very well, and importantly in real time. In Figure 7, we pro-

vide sample results of the top five best performing methods. Additional results for375

visual tracking can be found in the supplementary video. These qualitative results also

illustrate the effectiveness of the proposed approach.

—DPCF —TGPR —KCF —MEEM —DSST

Figure 7: DPCF tracker compared with the top 5 methods that include TGPR [17], MEEM[18] , DSST [12]

and KCF [4] showed in challenging frames i.e., occlusions, deformation, illumination variations and scaling.

The sample sequences are from the Lemming, Singer1, Jogging-1, Girl2, BlurOwl and Biker [33] respec-

tively. Our method handles occlusion and scale changes more accurately than the other trackers.
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Table 2: Tracking benchmark results of TB-100 and challenge subcategories for top five tracking algorithms

including 3 correlation filter based (*). Our method outperforms all the state-of-the-art algorithms according

to overlap (OP) score (highest). Our algorithm has gained 10 best out of 11 subcategories for OP. The column

headers indicate the challenge and its number of sequences.
Tracker All IV-37 SV-64 OCC-49 DEF-44 MB-28 FM-38 IPR-52 OPR-63 OV-14 BC-31 LR-9

DPCF* 69.5 74.1 61.1 67.5 63.5 70.4 62.2 64.5 66.7 57.8 72.9 47.7

MEEM[18] 61.5 58.5 49.8 58.3 51.2 65.7 61.2 60.7 59.6 59.5 66.8 36.8

DSST*[12] 61.3 66.5 55.0 54.5 51.4 57.0 52.6 59.7 56.9 44.3 61.1 44.4

TGPR[17] 56.2 53.1 44.5 53.3 55.6 56.5 53.5 57.3 56.0 43.9 55.1 46.5

KCF*[4] 55.1 54.7 41.6 51.3 50.3 56.7 51.4 54.3 52.7 45.7 60.9 29.5

In addition to the experiments on the OOTB dataset, we have also compared our

method against the top 4 trackers on the TB-100 benchmark dataset [33]. We provide

these results in Table 2. Figure 8 shows detailed results for varying overlap scores. The380

OP and AUC scores indicate that our tracker has an advantage on the other methods

both overall and subcategories score. Our tracker is positioned first rank for overall

with the 8% gain and 10 best score out 11 subcategories. These margins are 12%

for deformation, 10% for occlusion, 8% for illumination variation and 6% for scale

variation.385

While most of the trackers suffer from significant occlusions (i.e lemming 345th,

girl 434th, coke 257th, skating 85th and jogging 70th frames in Figure 9), our tracker

can handle these cases successfully. In addition to better handling of occlusion and de-

formation cases, one of the main advantages of our method is more accurate estimation

of the size of object which is reflected in the overlap (OP) scores in Figure 10.390

Finally, the results obtained for the 28 scale varying sequences in the OOTB dataset

show that our tracker outperforms ASLA by 14% as well as SCM and DSST by 5%.

This margin is 6% for the 44 scaling varying sequences in the TB-100 dataset when

our method is compared with DSST. It is worth to mention that these algorithms were

specifically designed to deal with the scale change problem. In contrast, our approach395

estimates the size of object by measuring the shrinking or stretching amongst parts.

This margin is nearly 10% when considering the 49 videos with occluded scenarios for

TB-100 (cf. Figure 8). In addition, our method significantly boosts the score (i.e., by

nearly 8%) with respect to the second best model, TGPR, for the 44 sequences in the
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TB-100 dataset which include deformation.400

Figure 8: The success rate plots of the proposed tracker and the other top 5 best performing trackers on the

TB-100 dataset. The plots are generated for OPE (threshold 0.5), OPE (AUC), OPE (presicion plot) and

Occlusion OPE (threshold 0.5). In all plots our DPCF algorithm gives the highest success rate as listed in

the legend.
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Figure 9: The proposed tracker can detect partial or heavy occlusions using the part structures. Occluded

part or parts have shown with dashed lines. The sample results are from the carscale, faceocc1, coke, doll,

lemming, liquor, box, tiger2, jogging-1, jogging-2, girl2, and Skating-1 [33] sequences, respectively.

24



Figure 10: Shrinking or stretching of the object parts allows the tracker to cope with the changes in the

scale. The sample results are from the carScale, dog1, box, singer1, blurCar2 and clifBar [33] sequences,

respectively.

4.4. Discussion

Our tracking algorithm combines different visual features within a collaborative

deformable part-based model. In this section, we analyze the benefits of each feature

and each component to the overall performance. In Table 3, we report the performances

25



of both the proposed DPCF tracker and the baseline KCF tracker with different feature405

combinations. While color feature improved the score of KCF only 0.5%, our tracker

performance is improved nearly 3%. This simply illustrates that our tracker perfor-

mance does not mainly come from the feature that we used but the proposed coupled

deformable model. Secondly, we additionally analyze each component of the proposed

algorithm on the TB-100 dataset. The results in Table 4 show that our coupled model410

leads to a nearly 10% score gain. On the other hand, our adaptive scaling component

contributes nearly 1.5% to the overall performance. The advantage of this scaling strat-

egy is more visible for the results obtained on the 64 sequences which contains scale

variations (SV-64).

Table 3: Tracking results of the proposed DPCF algorithm and KCF on the TB-100 dataset with different

feature combinations.

DPCF (HoG+Color) DPCF (HoG) KCF (HoG+Color) KCF (HoG)

69.5 65.7 55.6 55.1

Table 4: Analysis of the components of the proposed tracking algorithm on the sequences from TB-100 and

SV-64 (64 scale variation sequences in the TB-100 dataset).

DPCF DPCF (No Scale) DPCF (No Coupled)

TB-100 69.5 68.2 59.3

SV-64 61.1 58.3 51.1

5. Conclusions415

We have introduced an effective tracker based on both correlation filters and a de-

formation part-based model. Our collaborative local-global model which is built up

on a deformable part-based tracker improves the performance of the existing results

especially under significant occlusions. In addition, our scale estimation scheme that

considers the part displacements successfully addresses the problem of scale change420

in videos. Moreover, the results for the deformation problem and other challenges in-

dicate that the proposed approach is more robust to such variations compared to other
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state-of-the-art trackers.

The overall evaluations results on the challenging benchmark datasets showed sig-

nificant improvement in both accuracy and robustness while the video processing cost425

is still within real time range of 20fps. Our tracker outperformed all the state-of-the-

art trackers, resulting in nearly 12% score gain on the OOTB dataset and 8% on the

TB-100 dataset.
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