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Abstract

Predicting where human looks in images has gained a
significant popularity in recent years. Compared to the
vast number of saliency methods for static images, dynamic
saliency estimation remains relatively unexplored. In this
work, we propose deep saliency networks based on the two-
stream architecture that processes both spatial and tempo-
ral information to predict saliency in videos. In particular,
we investigate several fusion strategies to combine informa-
tion coming from spatial and temporal streams and analyze
their effectiveness for dynamic saliency prediction. More-
over, to improve the generalization of the saliency networks,
we introduce a novel and cognitively grounded data aug-
mentation technique. Experimental results on the DIEM,
UCF-Sports datasets show that the proposed approach is
able to model human attention mechanism behavior better
than the competing methods, achieving state-of-the-art re-
sults.

1. Introduction
Humans developed a selective visual attention mecha-

nism that provides an ability to filter out the irrelevant in-
formation from a scene and to process a part of a scene
instead of the whole. Predicting attention grabbing re-
gions is one of the major problems in computer vision
and in that regard computational models for saliency de-
tection have gained increasing popularity lately because of
the use in different computer vision problems including im-
age retrieval [9], visual quality assessment [5] video resiz-
ing/summarization [2], action recognition [20] and more.

Most of the computational models in the literature are
developed to predict salient regions in the static scenes. The
previously proposed models aim to detect the regions that
are different from their surroundings based on low-level
cues like color, orientation, texture, intensity, etc. and/or
high-level cues like pedestrians, faces, text, etc. While the
low-level features are employed to determine how differ-
ent a point from its neighborhood, high-level features are
employed to guide the saliency detection based on the em-
pirical studies that like humans have a tendency to fixate on

certain object classes more than others.

Predicting saliency in videos has more challenges com-
pared to saliency prediction in static images. Since hu-
mans have a tendency to focus on moving objects or part
of the scenes, the temporal characteristics of the videos
have to be considered alongside the spatial characteristics.
The first generation of models for video saliency predic-
tion are the extensions of the static saliency models, such
as [7, 6, 1, 18]. However, more recent works approach the
task from a different point of view and propose much novel
solutions [8, 12, 17].

The aim of this study is to investigate saliency for dy-
namic scenes with deep CNN networks. Our goal is to
find an effective model to represent human visual atten-
tion mechanism on videos and examine the contributions
of the appearance and motion information. In parallel with
this aim, we propose a spatio-temporal network to detect
saliency in videos. We also propose a new data augmenta-
tion technique to boost saliency detection performance for
deep models.

2. The Approach

Our spatio-temporal saliency networks for dynamic
saliency prediction are based on the so-called two-stream
CNNs [19]. Our two-stream models, given in Figure 1(b),
integrates both appearance and motion cues with three dif-
ferent methods: by direct averaging, convolution and ele-
mentwise max operation. But we first describe our single
stream baselines, which are shown in Figure 1(a), that use
either appearance or motion information.

2.1. Spatial Saliency Network

The first baseline model is based on finetuning the deep
architecture proposed in [15] video. This model uses only
appearance cues by considering the RGB video frames as
input. The aim is to understand the effect of the spatial in-
formation for dynamic saliency. This model is referred as
SSNet rest of this paper.
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(a) Single stream saliency networks (b) Two-stream saliency networks
Figure 1. (a) The baseline single stream saliency networks. (b) The proposed two-stream spatio-temporal saliency networks.

2.2. Temporal Saliency Network

As mentioned before, human tends to focus on moving
local parts (objects, part of an object, etc.) of the scenes and
our second baseline is trained to analyze this by using only
motion cues for dynamic saliency. The proposed model is
same as the SSNet except the input which is optical flow
images computed as in [19] from two subsequent frames.
We refer this model as TSNet rest of this paper.

2.3. Spatio-Temporal Saliency Networks

Our two-stream network models integrate the spatial and
temporal information as shown in Figure 1(b). The biologi-
cal motivation behind these architectures is the two-streams
hypothesis [4] which speculate that human visual cortex is
comprised of two distinct streams, namely ventral (what
pathway) and the dorsal (where pathway) streams, which
are respectively specialized to process appearance and mo-
tion information. Some studies argue that dorsal and ven-
tral streams are not strictly independent, but do interact with
each other during visual processing. For this reason, we pre-
fer to develop a two-stream model and analyze the effects
of interactions between the streams.

In our both of two-stream models, while one stream takes
RGB video frames as input, the second one uses corre-
sponding optical flow images. We used different fusion
strategies to find the most effective architecture for dynamic
saliency prediction:
Fusion via Direct Averaging. This fusion strategy com-
bines spatial and motion information by direct averaging the
response maps of the layers before merging. We refer this
model as STSAvgNet rest of this paper.
Max Fusion. This model merges two single-stream net-
work via elementwise max fusion. That is, given two fea-
ture maps from the spatial and temporal streams, max fusion
takes the maximum of these two feature maps at every spa-

tial location. We refer this model as STSMaxNet rest of this
paper.
Convolutional Fusion. Our last model fuses spatial and
motion streams via a convolution layer. That is, the cor-
responding feature maps from the spatial and temporal
streams are concatenated and then combined with a bank
of 1 × 1 filters. We refer to this network architecture as
STSConvNet.

3. Implementation Details
As mentioned before, our single-stream architecture is

based on the model that proposed in [15]. The model takes
320×240×3 pixels images as input and processes them by
the operations mentioned in the reference method.

The proposed spatio-temporal architecture consists of
two input streams followed by a fusion layer and con-
volution, deconvolution layers. As shown in Figure 1(b)
the single-stream networks resemble each other till fusion
layer, which are then combined. We used inputs of size
320 × 240 × 3 pixels for all of our experiments. The op-
tical flow information is extracted via [21] and optical flow
images for temporal stream are generated by stacking hor-
izontal and vertical flow components and the magnitude of
the flow together.

In our study, we used a different data augmentation strat-
egy instead of the traditional ones like cropping, horizontal
flipping or RGB jittering since they alter the visual stim-
uli used in the eye tracking experiments in collecting the
fixation data and we argue that they are not cognitively
grounded. In [10], the effects of the resolution on the ex-
ploratory behavior of humans are analyzed with an eye-
tracking experiment and one of the outcomes of that study
is humans are consistent about where they look on low-
resolution and high-resolution versions of the same images.
Based on this observation, we add our training set the low-
resolution versions of the video frames downsampled by
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factor 2 and 4. The optical flow images are rescaled to
match the down-sampling rate and also we used the fixa-
tions obtained from original images as ground truth infor-
mation.

4. Experimental Results

We employ three different datasets: DIEM (Dynamic
Images and Eye Movements) [14], UCF-Sports [13], in our
experiments. DIEM dataset consists of eye fixation data
of approximately 50 different human subjects for 84 high-
definition natural videos including movie trailers, advertise-
ment etc. UCF-Sports dataset consists of 150 videos ob-
tained from 13 different action classes. It is originally used
for action recognition but since the eye fixation data is col-
lected for this dataset by Mathe and Sminchisescu [13].

We show the performance of our deep models by com-
paring state-of-the-art dynamic saliency models, which
can be seen in Table 2 and 3. We used several met-
rics to compare mentioned models with ours: Area Under
Curve (AUC), shuffled AUC (sAUC) [22], Pearson’s Cor-
relation Coefficient (CC), Normalized Scanpath Saliency
(NSS) [16], Normalized Cross Correlation (NCC) and χ2

distance.

Table 1. sAUC scores of our spatio-temporal saliency networks at
different fusion layers on the DIEM dataset.

Fusion Layers STSMaxNet STSConvNet
Conv2 0.52 0.71
Conv3 0.67 0.70
Conv4 0.76 0.83
Conv5 0.81 0.84
Conv6 0.80 0.79
Conv7 0.81 0.79

For DIEM dataset, we split the dataset into a training
set containing 64 video sequences and a testing set includ-
ing the remaining 20 representative videos covering differ-
ent concepts. Specifically, we use the same set of splits
used in [17]. As mentioned before, our two-stream net-
works both have a fusion layer that applies different op-
erations to combine spatial and temporal streams. One of
our experiments aims to determine the optimum layers for
the fusion process. According to the given sAUC metric
results in Table 1, fusing the spatial and temporal streams
after the fifth convolution layer achieves the best results
for both STSMaxNet and STSConvNet networks. In Fig-
ure 2, presents some sample saliency maps extracted with
the proposed spatio-temporal saliency networks and the sin-
gle stream baseline. As can be seen, STSConvNet is the
best performing model compared to others. Besides the
qualitative results, quantitative results in Table 2 prove that
STSConvNet, especially STSConvNet* which is the ver-
sion of STSConvNet that employs proposed data augmen-
tation performs better compared to other mentioned models
and previous dynamic saliency prediction methods. We can

Table 2. Performance comparisons on the DIEM dataset.
AUC sAUC CC NSS χ2 NCC

SSNet 0.72 0.69 0.35 1.85 0.48 0.41
TSNet 0.79 0.77 0.41 1.98 0.40 0.43
STSAvgNet 0.68 0.62 0.37 1.67 0.49 0.37
STSMaxNet 0.83 0.81 0.46 2.01 0.31 0.45
STSConvNet 0.87 0.84 0.47 2.15 0.29 0.46
STSConvNet* 0.88 0.86 0.48 2.18 0.28 0.47
GBVS [7] 0.74 0.70 0.47 2.04 0.47 0.38
SR [8] 0.69 0.64 0.30 2.22 0.57 0.40
PQFT [6] 0.71 0.67 0.33 1.77 0.52 0.33
Seo-Milanfar [18] 0.59 0.51 0.10 0.12 0.75 0.28
Rudoy et al. [17] – 0.74 – – 0.31 –
Fang et al. [3] 0.71 0.48 0.21 0.55 0.87 0.40
Zhou et al. [23] 0.60 0.52 0.13 0.24 0.71 0.22
DWS [11] 0.81 0.79 0.32 2.97 0.40 0.39

conclude that applying 1× 1 convolutional filters learns the
optimal weights to combine appearance and motion feature
maps. As shown in Figure 2, our model generates more ac-
curate saliency maps compared to other successful dynamic
saliency models, namely GBVS [7], PQFT [6], SR [8], Seo
and Milanfar [18], Rudoy et al. [17], Fang et al. [3], Zhou
et al. [23], and DWS [11].

Overlayed images Ground Truth SSNet TSNet STSAvgNet STSMaxNet STSConvNet

Figure 2. Qualitative evaluation of the proposed saliency network
architectures. STSConvNet provides the most accurate prediction
as compared to the other network models.

Overlayed frames Ground Truth STSConvNet* GBVS [7] PQFT [6] SR [8] DWS [11]

Figure 3. Qualitative comparison of our STSConvNet* model
against some dynamic saliency models on DIEM dataset.

To validate generalization ability of our best-performing
STSConvNet* model, we perform additional experiments
on UCF-Sports dataset. In particular, we do not carry out
any training for our model from scratch or finetune it on
UCF-Sports but rather use the predictions of the model
trained only on DIEM dataset. In Table 3, we provide the
performance of our model compared to the previous dy-
namic saliency models which are publicly available on the
web. As can be seen, our STSConvNet* model performs
better than the state-of-the-art models according to majority
of the evaluation measures. In Figure 4, we can compare
our model’s results with other dynamic saliency methods.
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Table 3. Performance comparisons on the UCF-SPORTS dataset.
AUC sAUC CC NSS χ2 NCC

GBVS [7] 0.83 0.52 0.46 1.82 0.54 0.59
SR [8] 0.78 0.69 0.26 1.20 0.42 0.52
PQFT [6] 0.69 0.51 0.29 1.15 0.64 0.48
Seo-Milanfar [18] 0.80 0.72 0.31 1.37 0.56 0.36
Fang et al. [3] 0.85 0.70 0.44 1.95 0.52 0.33
Zhou et al. [23] 0.81 0.72 0.36 1.71 0.56 0.37
DWS [11] 0.76 0.70 0.28 2.01 0.40 0.49
STSConvNet* 0.82 0.75 0.48 2.13 0.39 0.54

Input frames Ground Truth STSConvNet* Fang et al. [3] DWS [11]

Figure 4. Qualitative comparison of our STSConvNet* model
against some previous dynamic saliency models on UCF-Sports
dataset. Our spatio-temporal saliency network outperforms the
others.

5. Conclusion
In this work, we have investigated several deep architec-

tures for predicting saliency in dynamic scenes. Our pro-
posed spatio-temporal saliency networks are built based on
two-stream architecture and employ different fusion strate-
gies, namely direct averaging, max fusion and convolutional
fusion, to integrate appearance and motion features, and
they are all trainable in an end-to-end manner. To train these
saliency networks more effectively, we also propose an
task-specific and cognitively grounded data augmentation
strategy that utilizes low-resolution versions of the video
frames and the ground truth saliency maps. Our experi-
mental results demonstrate that the proposed STSConvNet
model achieves superior performance over the state-of-the-
art methods on DIEM and UCF-Sports datasets.
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