
Leveraging Frequency Based Salient Spatial Sound Localization
to Improve 360◦ Video Saliency Prediction

Mert Cokelek
Hacettepe University

mert.cokelek0699@gmail.com

Nevrez Imamoglu
AIST Japan

nevrez.imamoglu@aist.go.jp

Cagri Ozcinar
Samsung Electronics

cagriozcinar@gmail.com

Erkut Erdem
Hacettepe University

erkut@cs.hacettepe.edu.tr

Aykut Erdem
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Abstract

Virtual and augmented reality (VR/AR) systems
have dramatically gained in popularity with various
application areas such as gaming, social media, and
communication. It is therefore a crucial task to have
the know-how to efficiently utilize, store or deliver
360◦ videos for end-users. Towards this aim, re-
searchers have been developing deep neural network
models for 360◦ multimedia processing and computer
vision fields. In this line of work, an important re-
search direction is to build models that can learn and
predict the observers’ attention on 360◦ videos to ob-
tain so-called saliency maps computationally. Although
there are a few saliency models proposed for this pur-
pose, these models generally consider only visual cues
in video frames by neglecting audio cues from sound
sources. In this study, an unsupervised frequency-based
saliency model is presented for predicting the strength
and location of saliency in spatial audio. The predic-
tion of salient audio cues is then used as audio bias on
the video saliency predictions of state-of-the-art mod-
els. Our experiments yield promising results and show
that integrating the proposed spatial audio bias into
the existing video saliency models consistently improves
their performances.

1 Introduction

Several studies [1–3], have shown that auditory in-
puts influence human attention mechanism, yet many
visual saliency estimation models neglect the effects
of auditory cues when estimating saliency maps. In
addition, from a computational perspective, some of
the earlier works [4–8] also demonstrated that visu-
ally salient cues are partly correlated with the audio
source location and semantics. In particular, Tavakoli
et al. [4] proposed an audio-visual deep learning model
(DAVE), which has an encoder-decoder architecture
for video saliency prediction. Min et al. [5] suggested
a novel multimodal saliency (MMS) model for audio-
visual attention, which is proposed to be combined with

the existing deep learning-based saliency models with
a late-fusion, and to promote their performance by an
average of 5%. Tsiami et al. [6] proposed a single mul-
timodal network (STAViS) for audio-visual saliency,
which learns to localize sound sources and to fuse the
audio and visual saliency maps. Chen et al. [7] pro-
posed a deep neural network architecture for feature
extraction, semantic interaction, and their fusion for
auditory and visual inputs.

On the other hand, to the best of our knowledge,
spatial audio information has just begun to be used for
saliency prediction in 360◦ videos [9]. Moreover, with
the advent of 360◦ videos, the saliency prediction task
has faced new challenges. Humans do not discover their
360° environments at a glance, but starting within a
narrower viewport, and then they continuously work
out the peripheries with their head/eye movements.
In contrast, 360◦ video sequences are represented as
fully observable to computers. This results in a con-
tradictory behavior for perception between computers
and humans. At this point, spatial audio cues, which
provide directional information in 360◦ space can be
incorporated alongside the visual cues to supply addi-
tional insight for localizing the saliency predictions in
360◦ videos.

In this paper, the 360◦ video saliency prediction
task is addressed by leveraging the spatial audio in-
formation to localize the audio saliency and enhance
the output of the existing (audio-)visual saliency pre-
diction models. For this purpose, we have adapted the
mel-cepstrum based spectral residual saliency detection
model (MCSR) proposed by Imamoglu et al. [10], to
spatial audio. Despite it was presented as an image
saliency model, it is highly adaptable to audio process-
ing since it consists of mel-frequency cepstral coeffi-
cients (MFCCs). The proposed audio saliency local-
ization model is built for first-order ambisonics (FOA)
in 4-channel B-format, which is widely used in VR ap-
plications for spatial audio experience. Each channel
(W,X, Y, Z) in FOA-encoded audio represents a differ-
ent directionality in the 360◦ space: center, forward-



Figure 1. System overview of the proposed approach.

backward, left-right and up-down, respectively [11].
The MCSR model is adapted to FOA by applying on
each channel to localize the salient sound in 360◦ space,
and also detect the strength of audio saliency in the
time domain. The produced audio saliency maps are
further combined with the existing five video saliency
models with a late-fusion. The contributions of our
work can be summarized as follows:

• We show that MFCC-based signal analysis can
provide information about audio saliency in the
time domain. This can be used in any audio
saliency model to improve its precision by weight-
ing (suppressing/boosting) the audio predictions
according to their saliency values for any instant.

• By extending the MFCC analysis for FOA, we
show that it is possible to localize salient sounds
in 360◦ audio.

• Combining the first two findings, we show that
integrating this lightweight unsupervised salient
spatial sound localization (SSSL) method as a bias
to the existing traditional/deep learning-based
(audio-)visual saliency models can improve their
performance by an average of 14%, on 360◦ videos.

The rest of the paper is organized as follows: Sec-
tion 2 describes our method. The dataset, experimen-
tal details, performance analysis, and comparison with
the state-of-the-art models are given in Section 3. Sec-
tion 4 covers the conclusion and future work.

2 Method

The framework of our proposed audio saliency model
is illustrated in Figure 1. The aim is to find the exact
location and strength of salient spatial audio in the
time domain, as a bias for the video saliency predic-
tion models. Firstly, the FOA waveforms have been
pre-processed for the MFCC-based saliency analysis.
Then, the saliency analysis has been performed on each
direction independently and the results have been com-
bined in a 3D space. Lastly, spatial audio saliency maps

have been produced and fused with the outputs of the
existing state-of-the-art (audio-)visual saliency predic-
tion models.

Preprocessing. The audio waveforms have been di-
vided into shorter clips. By considering shorter clips,
the model is expected to highlight the locally and per-
ceptually important sounds better. Otherwise, the en-
tire audio is given to the model and hence, the local
sounds may be overlooked. In our experiments, the
effects of different clip durations from half second to
original video length have been investigated. Addition-
ally, the performance of multi-scale saliency analysis in
the time domain has been observed to see the effect of
local and global perception of sound together. In this
approach, clips of different durations have been ana-
lyzed independently and combined in the time domain
(such that for a video, four Saliency-Time curves have
been obtained from clip duration of (1) one second, (2)
quarter of the total duration, (3) half of the total du-
ration, (4) total duration.). The best results have been
obtained with one second-clips, without a multi-scale
approach. Clip durations shorter than one second have
resulted in dense peaks and longer ones have resulted
in invariability to saliency in the time domain. In the
rest of the paper, the experimental analysis and per-
formance comparison are based on the pre-processing
of audio into one second-clips. Finally, to localize the
saliency in the 360◦ space, the FOA waveforms have
been decomposed to six directions (forward, backward,
left, right, up, down) by adapting the decoding formu-
las in [11] as:

P = (
√

2W + C) ∗ 2

N = (
√

2W − C) ∗ 2
(1)

where W is the center channel and P , N correspond to
positive and negative directions for a given channel C,
respectively.

Extending the MCSR model for 360◦ audio
saliency prediction. The MCSR saliency model is
applied to each channel independently. As shown in



Figure 2, the waveforms corresponding to the positive
and negative directions are given to the MCSR model
separately for saliency localization in one channel. The
resulting Saliency-Time curves are then subtracted
from each other and normalized into [0, 1] range. For
a given time t, a saliency value above 0.5 implies that
the salient sound for that channel is in the positive di-
rection, and vice versa. By applying this procedure on
all channels, we obtain a 3D vector for each audio sam-
ple, representing the direction of arrival of the salient
sound on the 360◦ space.

Saliency map generation and post-processing.
The sampling rate of the audios and the frame rates
of the videos are not equal, thus the audio predictions
are framed to have a one-to-one correspondence with
the video frames. The obtained 3D vectors for a given
audio frame are first converted to unit vectors, then
transformed to (u,v) image coordinates and the cor-
responding pixels in the output audio saliency map
have been highlighted. Then, a Gaussian filter with
a kernel size of h/2, where h denotes the height of the
map, is applied to the resulting attentive sound loca-
tion or fixation points. This procedure results in an
auditory saliency map, which is finally scaled to [0, 1]
range. The produced saliency maps refer to the most
salient sounds per frame in the 360◦ videos. However,
they do not provide information about the strength of
saliency. In MMS [5], the audio saliency predictions
have been weighted by their reliability before the fu-
sion. Motivated by this idea, we have weighted the lo-
calized saliency predictions based on the Saliency-Time
curves obtained by applying the MCSR saliency model
on channel W . This weighting operation is done in
a linear fashion, by normalizing the saliency values in
the curve into [0, 1] range and multiplying every audio
saliency map with the saliency value of that instant.
If the audio is worth attracting human attention, the
corresponding audio saliency map will have a higher
energy, and vice versa. Finally, we have utilized the
temporal information in audio saliency maps to ob-
tain smoother and more natural transitions between
the predictions. In our experiments, the best results
are obtained by averaging the last n audio frames where
n denotes the fps value of the video.

Audio-visual saliency fusion. As illustrated in Fig-
ure 1, the final step is to integrate the output of the au-
dio saliency predictions with the existing (audio-)visual
saliency models to generate the final prediction as:

S = f(Sa, Sv), (2)

where S is the final audio-visual saliency map, Sa is
the output of our audio saliency model, Sv is the out-
put of an existing (audio-)visual saliency model, and f
is the fusion operation. We have used an integration
scheme inspired by Itti-Koch’s quantization and aver-
aging based fusion strategy [12,13], as given below:

f(Sa, Sv) = 0.5 ∗N(Sa,M) + 0.5 ∗N(Sv,M), (3)

where N represents the quantizer which transforms the
saliency map into M discrete levels. In our experi-
ments, M is empirically selected as 8.

3 Experiments

Dataset. For testing, we have used the dataset pro-
vided by Chao et al. [8] which contains 12 omnidirec-
tional videos (ODVs) with FOA in 4-channel B-format
with a duration of 25 seconds. Each ODV has been
split into three categories: Conversation, Music, and
Environment. The fixation points have been collected
from a total number of 45 subjects, where each video
has been viewed by randomly selected 15 subjects and
each subject has viewed each ODV once. The frame
rate of videos varies from 25 fps to 60 fps and the au-
dio sampling rate of all videos is 48000 Hz.

Comparison with the state-of-the-art. For per-
formance criteria, we have employed the five commonly
used saliency evaluation metrics [14]: AUC-Judd, NSS,
CC, SIM, and KL Divergence. Table 1 shows the
performance comparison of five state-of-the-art models
with and without the proposed spatial audio saliency
fusion. For additional analysis, the performance of fu-
sion with the SSSL maps is compared with that of the
audio energy maps (AEMs). Audio energy maps for
FOA represent the direction of arrival of the 360◦ au-
dio, and we have obtained them by using the strategy
in [15]. For comparison, we have chosen CP360 [16]
as a visual saliency model for 360◦ videos, MMS and
STAViS as audio-visual saliency models and UNISAL
[17] as a visual saliency model for 2D videos. Lastly, we
have considered the recently proposed AVS360 model
[9], which performs 360◦ audio-visual saliency predic-
tion as an upper bound for the evaluated models as it
is trained on this dataset. To fuse audio information,
this model employs the extracted multi-channel AEMs.
Inspired by the evaluation in [9], we have included an
equator bias to every predicted saliency map before
performing the quantitative analysis on the videos. As
shown in Table 1, the proposed spatial audio saliency
fusion when applied to the results of the existing mod-
els gives rise to better predictions in terms of all metrics
other than AUC-J. For instance, we observe on average
24.9% and 25.5% performance gains for NSS and CC
metrics, respectively. It is important to note that, as
mentioned in [14], these metrics are considered as the
most reliable evaluation metrics for saliency prediction
on capturing the viewing behaviors. In Figure 3, we
also present some sample qualitative comparisons. As
seen from these sample frames, the proposed spatial
audio-driven post-processing better localizes the salient
regions in 360◦ videos and eliminates the false positives
for almost all of the samples. In the table, it can also
be seen that the SSSL results are better than the AEM
fusion results, which motivates us to build novel ar-
chitectures for SSSL fusion to outperform the existing
state-of-the-art.



Figure 2. Overview of the MCSR Saliency Model and salient spatial sound localization for one audio channel.

Figure 3. Qualitative evaluation of the (audio-)visual saliency models with the proposed audio saliency fusion.

4 Conclusion

In this paper, we have investigated the effect of spa-
tial audio cues alongside visual cues for 360◦ video
saliency prediction. We have proposed a spatial au-
dio saliency prediction model for localizing the salient
sounds in 360◦ space, finding the strength of saliencies
in the time domain, and producing audio saliency maps
for late-fusion to any (audio-)visual saliency model.
The results demonstrate that the proposed SSSL model
has more contribution than AEMs and the other audio
saliency models to 360◦ saliency prediction task, and
their fusion to the existing (audio-)visual saliency mod-
els improve their performance by an average of 14%.
Developing novel neural architectures for salient spa-

tial sound localization & fusion for 360◦ videos is left
as future research.
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