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Abstract

Skeletal trees are commonly used in order to express geometric properties of the

shape. Accordingly, tree edit distance is used to compute a dissimilarity between two

given shapes. We present a new tree edit based shape matching method which uses

a recent coarse skeleton representation. The coarse skeleton representation allows

us to represent both shapes and shape categories in the form of depth-1 trees.

Consequently, we can easily integrate the influence of the categories into shape

dissimilarity measurements. The new dissimilarity measure gives a better within

group versus between group separation, and it mimics the asymmetric nature of

human similarity judgements.
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1 Introduction

There is a growing interest within both pattern recognition and computer

vision communities on characterizing shapes by their relations to other shapes

rather than by using features or templates, e.g. [6–8,13,14,25,26,31]. In these

works, the concept of (dis)similarity takes the center stage. Dissimilarity can

be related to some shape distance in some metric space and may be used for

retrieval from shape databases.

Typically, the geometric similarity between two shapes is a measure of how well

the primitives forming the shapes and/or their spatial organizations agree [10,

19,21,23,32,34,38,39,41,44,46]. Tree data structure has been widely used for

describing shapes, as it provides a natural representation of the inclusion rela-

tions of the primitives. When a shape (primitives and their inclusion relations)

is represented by a tree, the best correspondence between two given shapes

can be expressed as the best partial match between their trees. Accordingly,

the shape dissimilarity is computed as the edit distance which is defined as the

cost of transforming the first tree into the second one by using node removal,

node insertion and attribute change operations [48]. In the shape literature, it

is an accepted practice to form tree or graph descriptions using shape skele-

tons, and to match these descriptions using edit distance [12, 23, 32, 38, 39].

Typically, these works are generic and they ignore contextual effects, despite

the observation that human dissimilarity judgements are biased by the other
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shapes [14, 17, 25, 31, 35, 49]. In applied problems, e.g. shape retrieval from a

database, compatibility of the similarity measure with human judgements is

desired [36]. How similar things appear depends on whether they are in the

same or in the different categories. As an example, consider the following ex-

periment. Place a pair of eyeglasses and an eyeglass case on an empty desk.

How similar are these two objects? Add a pair of sunglasses and judge the

similarity again. Then add a pencil and a pencil holder. Try to judge the

similarity between the first two objects by varying the other objects that you

add.

Motivated by the importance of context in the similarity judgements and the

widespread use of the skeletal edit operations in shape matching, we propose

a new skeletal tree based representation in which contextual effects are in-

corporated. Following the definition in [50], we interpret the context as any

information relevant to the dissimilarity computation task without being di-

rectly related to the geometric properties of the compared shapes. In the

literature, the context, typically refers to a collection of neighboring entities

e.g. neighboring objects for a given object [17, 25], local neighborhood of a

given pixel [40], or prior knowledge and expectations [24]. The context, in

our work, refers to a collection of neighboring shapes or shapes of the same

category. We define the dissimilarity between two shapes by respecting the

asymmetric roles played by the query shape and the database shape (memory

benchmark) [14,25]. That is, a query shape A is compared to a database shape

B whose category is known. Shapes in the category of B form a context which

biases dissimilarity computation by modifying the importance of primitives

and distances between attributes, as in the philosophy of recent works such

as [27, 30].
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An interesting feature of our method is that we use rooted-depth-1 tree as

the main data structure to represent both individual shapes and categories.

We are able to parse shapes into depth-1 trees in a stable and reliable way

with the help of Aslan’s skeletal representation [1–3]. Aslan skeleton is ex-

tracted from a special surface whose level curves are extensively smoothed

versions of the initial shape boundary (Fig. 1 (a)). This surface has a single

extremum point catching the center of a blob-like representation of the shape.

The skeleton branches (Fig. 1 (b)) can be extracted and classified as positive

or negative by using the method in [42]. Positive branches are analogous to

the Blum skeleton [9] and they emanate from a positive curvature maxima of

the boundary (protrusion). Negative branches emanate from a negative curva-

ture minima (indentation) or a positive curvature minima, and they resemble

Leyton’s PISA [22]. Unlike PISA branches, both types of branches in Aslan

skeleton grow inside the shape towards the shape center. If the symmetry at

the center is n-fold, there are n positive and n negative branches that meet

at the shape center. These type of branches are called major branches. The

remaining branches terminate at a disconnection point. Disconnection points

are the locations where a positive branch and a negative branch meet. Aslan’s

skeletal representation trades detail with the numerical stability and provides

a description at the coarsest scale which permits skeletal analysis.

In our representation, each primitive is the disconnection point [1–3] of a sim-

ple skeletal branch. Note that a skeleton is a shrinkage of a shape boundary.

In this sense, each point on a positive (negative) branch explains two locally

symmetric boundary points. At the point of disconnection, the skeleton branch

collapses into a single point which explains a segment on the boundary. This

segment is bounded by two negative (positive) branches neighboring the pos-
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Fig. 1. The method of Aslan. (a) Level curves of the Aslan surface. (b) Skeleton
branches. Notice that each positive branch merges with a negative branch at the
branch termination or disconnection point. Positive skeleton branches are shown in
blue whereas the negative ones are shown in red.

itive (negative) branch. Therefore, we can imagine unfolding each branch to

a segment of the shape boundary. These segments are equivalent to the prim-

itive sequences of Nishida [28, 29] or to the contour fragments of Grandidier,

Saborin and Suen [18]. This is clearly visible in a later figure (Fig. 6). Many

developments by Nishida [28,29] such as primitive generation by continuously

transforming the collection of boundary fragments can be adopted to enrich

our method. Rather than modifying the importance of contour fragments as

in [18], we modify the importance of disconnection points in a context.

An interesting argument in favor of context dependence in pattern recognition

comes from the Ugly Duckling Theorem [49] which asserts that in the absence

of any bias, any two shapes are equally similar. An important implication of

the theorem is that there are no privileged primitives. One idea is to start with

many primitives each of which provides a rough representation, and then to

select the best ones in a given context [33,47]. Our approach is in the opposite

direction. We start with a very coarse scale description in which only the

numerically stable primitives are kept. The scale is automatically determined

by the shape and it is the coarsest scale which permits skeletal analysis [2].
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The context utilized in a certain shape comparison is the category tree of the

database shape. A category tree is a depth-1 tree which collectively holds all

the shapes in that category. Forming a union of tree representations has been

previously addressed by Torsello and Hancock [43]. Unlike Torsello and Han-

cock’s construction, our construction naturally produces a tree which is also

depth-1. Representing both individual shapes and categories using the same

data structure makes the necessary constructions and computations trivial

and allows us to define a flexible mechanism for updating categories as new

shapes are observed and categorized. Furthermore, the depth-1 nature of our

trees reduces tree edit computations to string-edit computations which we

implement by adopting an algorithm of Zhang and Shasha [51].

We test our constructions on a shape retrieval problem by performing two sep-

arate experiments. In the first experiment, we compute dissimilarities between

every pair in the database, and retrieve the closest shapes to any given shape.

In very large shape databases, a single retrieval task becomes computation-

ally intractable when an exhaustive search strategy is used, i.e. by comparing

the query shape with all the database shapes. Comparing the query shape

to a group of shapes, at once, can speed up the process. Accordingly, in the

second experiment, we exploit structural equivalence of the shape and the

category trees, in order to use our constructions for comparing a shape to a

category. Experiments are conducted on two different data sets consisting of

180 and 1000 shapes, respectively. The first data set (Fig. 2) is identical to

the one used in [1,2], in order to facilitate a comparison. The second data set

(Fig. 3) is formed by extending the first set with shapes collected from various

sources [21, 37].

Our results demonstrate both qualitative and quantitative improvements in
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dissimilarity measurement and shape matching. The new measure gives better

within group versus between group separation and it reflects human dissimi-

larity judgements better.

Fig. 2. The small shape database used in the experiments. It contains 180 highly
varying shapes from 30 categories.

The paper is organized as follows. Section 2 is on parsing skeleton descriptions

into depth-1 trees. In Section 3, the process of matching two given shape

trees using edit distance is described. In Section 4, the limitations of the

constructions developed in Section 3 are discussed, in order to motivate context

guided matching. In Section 5, the constructions for forming a category tree

and for comparing two given shapes in a given context are developed. Finally,

in Section 6, results are presented and discussed.

2 From Aslan Skeleton to Shape Tree

In Aslan skeleton, relative organization of disconnected skeleton branches can

be captured by the location of their disconnection points. The termination con-

cept is artificially extended to the major positive branches(Fig. 4(a)). Discon-

nection points can be expressed with reference to a shape dependent global co-

ordinate frame that is constructed from the negative local symmetry branches
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Fig. 3. The extended shape database used in the experiments. It contains 1000
shapes from 50 categories.
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meeting at the shape center (Fig. 4(b)). Alternative coordinate frame con-

structions are possible depending on the choice of major branch. Quantifiable

properties of the disconnected axes such as the termination location (r, θ) and

the length l are measured in the same shape dependent coordinate system.

These properties serve as attributes.

Fig. 4. (a) Sample shapes and their skeletons. Notice that disconnection locations
and branch lengths are robust with respect to articulations. (b) Spatial organization
of the disconnected skeleton branches (taken from [3]).

Aslan skeletons can be expressed as a tree straightforwardly. For each shape

description obtained by using an alternative coordinate frame, we construct a

rooted-depth-1 tree (Fig. 5). The root of the tree holds necessary and sufficient

information to construct the coordinate system. This information includes the

location of the center and the direction and the length normalization factor

(based on total branch length). The leaf nodes correspond to the skeleton

branches and they hold

• the location of a termination point in polar coordinates (r, θ);

• the normalized length l;
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• the branch type as negative or positive.

Fig. 5. Sample shape trees. We remark that each disconnection point (except the
ones due to major branches) gives rise to two separate nodes in the tree. However
for illustration purposes, only one node is drawn.

We remark that branches come in pairs each (one positive and one negative)

and a single disconnection point is a termination point for two branches. We

include both branches as separate nodes. There may be two exceptions. First,

the disconnection point for major branch is an artificially defined point since

major branches do not terminate. Second, an extremely short branch may get

pruned leaving the branch of opposite type unpaired. The nodes are labeled

according to an ordering of branches in order to perform matching in a more

efficient way. The ordering may be started from either one of the major neg-

ative branches. Thus, we form multiple descriptions of a shape for each such

possible choice (Fig. 6). Note that for a shape having n-fold symmetry, there

are n possible major negative branches [4].
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Fig. 6. Multiple descriptions are obtained using two different orderings of the skele-
ton branches. Notice that the symmetry is two-fold at the center.

3 Matching Shapes with Tree Edit

We define the dissimilarity between two shapes as the minimum cost of trans-

forming one shape tree into another using tree edit operations [51]. The focus

of this section is to define editing costs which depend on nodal attributes.

Let T1 and T2 denote the shape trees to be matched. Since both T1 and T2 are

rooted-ordered-depth-1 trees, each of them can be expressed as a list of nodes

(excluding the root):

T1 =
{

ui = (ur
i , u

θ
i , u

l
i, u

type

i ) | ui∈N1

}

T2 =
{

vj = (vr
j , v

θ
j , v

l
j , v

type

j ) | vj∈N2

}

(1)

where i, j denote the order of nodes, (r, θ) is the normalized location of the

disconnection point in polar coordinates, type denotes the branch type and l

is the normalized length of the corresponding skeleton branch. N1 and N2 are

the set of leaf nodes of T1 and T2, respectively.

The edit operations are rem(ove), ins(ert) and ch(ange). Let Λ denote the

set of nodes removed from T1, ∆ denote the set of nodes inserted to T1 from

T2 and Ω denote the set of matched nodes. The matching cost is the minimum
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cost of a sequence of edit operations S:

d (T1, T2) = min
S





∑

u∈Λ

rem (u) +
∑

v∈∆

ins (v) +
∑

(u,v)∈Ω

ch (u, v)



 (2)

The cost functions are described below. Each of them returns a value in the

range [0, 1].

• rem. This operation removes a node from T1. The corresponding cost func-

tion quantitatively measures how well the removed skeleton branch charac-

terizes the shape. Disconnection location of a branch is quite a good measure

of significance. While the major branches do not terminate and reach to the

shape center, boundary details terminate quite early. As argued in [1–3] dis-

connected branch length is a good measure of significance. Thus, we define

the cost of removing a given node u of T1 as follows,

rem (u) =

(

ul

lmax (T1)

)

(1 − ur) (3)

where ul is the length of the branch, ur is the distance from the shape center

and lmax (T1)) is the length of the longest branch of T1. See Fig. 7.

Fig. 7. rem cost function on two examples. (a) Since ul
1 > ul

5, rem(u1) > rem(u5).
(b) Since ur

6 > ur
2, rem(u6) > rem(u2).

• ins. This operation is the dual operator of rem. It inserts a node from T2

to T1 (or equivalently deletes the corresponding node from T2). Hence, the
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cost function given below is the same with rem except that the length is

normalized with respect to lmax (T2).

ins (v) =

(

vl

lmax (T2)

)

(1 − vr) (4)

• ch. This operation computes the closeness of two nodes u and v based on

the differences between their attributes. The cost function resembles the one

in [32]. However, an additional constraint forces that the matched branch

types are identical. If they differ, the cost is set to 1.

ch (u, v) = β1
|ul − vl|

max (ul, vl)
+β2

|ur − vr|

max(ur, vr)
+β3

|uθ − vθ|

max(uθ, vθ)
(5)

Note that |uθ−vθ| indicates the acute angle as a consequence of retaining the

counter-clockwise ordering of the branches in all alternative representations.

In the experiments, we give more weight to the similarity of lengths by setting

β1 = 0.5 and β2 = β3 = 0.25. That is, the contribution of the length to the

overall attribute change cost is doubled. There is no excuse other than there

is a single length variable whereas there are two location variables.

The time complexity for matching two depth-1 trees using Zhang and Shasha [51]

is O(mn), where m and n denote the number of leaves in respective trees. A

critical issue in tree edit based shape comparison is how the cost of each edit

operation is computed. This cost may dominate over the cost of tree matching

as in [38]. In this respect, our approach has two advantages. First, the edit cost

computations are negligible. Second, the number of leaf nodes are significantly

small as a consequence of our excessively smooth representation.

Matching results for sample shapes are shown in Fig. 8. Correct correspon-

dences are found despite significant articulations (Fig. 8(a) and (b)) and miss-
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ing sections (Fig. 8(c) and (d)). Each matching induces a cost of converting

one shape tree into another. This cost determines the symmetric distance

(dissimilarity) between two shapes.

Fig. 8. Some skeletal matching results. Matching costs are 0.683, 1.459, 2.725 and
1.550, respectively. For illustration purposes, matchings are shown only for positive
branches.

4 Shape Retrieval Based on Tree Edit Distance

After computing the dissimilarities between shape pairs (total of 180 × 180),

each one of the 180 shapes is selected as a query shape and top twelve shapes

in the increasing order of dissimilarity are retrieved. Due to space limitations,
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some query results are displayed in Fig. 9 and 10. Number of wrong shapes

in the top 5 retrievals are 1, 6, 13, 21, 41 respectively. Average precision-recall

curve is given in Fig. 11(a). These results are comparable to the results re-

ported in [2]. The precision is around 87% even when the recall is 100%.

Generally speaking, skeletons parsed into depth-1 trees is a good candidate

for describing shapes.

The horse and the sea turtle categories have the worst retrieval performance.

The average precision-recall curves for them are presented in Fig. 11(b). Typ-

ically, mismatches can be organized in four groups discussed below.

4.1 Structurally Different Shapes with Similar Shape Trees

In Fig. 12, one can observe the resemblance between the trees of an elephant

and a kangaroo when branches 4 and 5 are deleted from the shape tree of the

former. Branches 4 and 5 of the elephant are short. Hence, their deletion costs

are small. This small cost gives rise to a shape dissimilarity measure (1.657)

which falls in the range of the dissimilarities within the elephant category.

The top 8 retrievals for 6 elephant shapes are displayed in Fig. 13. It is very

difficult to distinguish the cost of editing an elephant to a kangaroo from the

cost of editing an elephant to another elephant.

4.2 Structurally Similar Shapes

Structurally similar shapes have similar shape trees. Notice that the cat and

the horse shapes in Fig. 14 have the same number of branches with simi-
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Fig. 9. Some query results.

lar characteristics. Therefore, the dissimilarity between a cat and a horse is

comparable to the dissimilarities among cats (Fig. 14).
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Fig. 10. Some query results.

4.3 Shapes with Spurious Branches

Spurious branches may be observed due to within category variability or they

may be an artifact of extreme articulations. These erroneous branches increase
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Fig. 11. Average precision-recall graphs (a) All shapes (b) The horse and the sea
turtle categories.

Fig. 12. Structurally different shapes with similar shape trees.

the dissimilarity due to extra removal costs. An example is given in Fig. 15.

4.4 Shapes with a Significantly Dominant Branch

In removal and insertion costs, the length of each branch is normalized with re-

spect to the maximum branch length. If there is a branch which is significantly

longer than the remaining ones, all the other branches lose their importance.

In a key shape shown in Fig. 16, with one exception, all of the branches have

comparable lengths. Consequently, relative to the outlier branch, all the re-

18



Fig. 13. The top 8 retrievals for 6 elephants. The dissimilarity between an elephant
and a kangaroo is comparable to the dissimilarities among elephants.

Fig. 14. Structurally similar shapes.

maining branches become insignificant. When this shape is compared to the

shape shown in the right, the dissimilarity (1.824) is much lower than our

expectation.
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Fig. 15. Computing edit-distance between two artificially generated shapes of the
same category. The shape dissimilarity is found to be 1.337 due to erroneous
branches.

Fig. 16. Shapes with a significantly dominant branch. The dissimilarity between two
shapes (1.824) is much lower than our expectation.

5 Matching with Tree Edit in a Context

Assigning a fixed significance to shape forming primitives and their attributes

is the primary source of misleading edit distance computations introduced in

Section 3. In this section, we modify the importance of primitives by consid-

ering them in a context defined for each query. The context is the collection

of shapes that are in the category of the database object to be compared with

a query shape. The rest of the section is divided into two subsections. First,

we present category tree construction. Second, we develop an algorithm for

category influenced matching.
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5.1 Construction of Category Tree

A category tree is a union of shape trees. Each of its nodes holds a list of

attributes collected from the members included in the context of a certain

query. Two types of constructions are possible. We refer to them as static and

dynamic, respectively.

In the static formation, the shapes to be united are given in advance. For

simplicity, the shape tree with the maximum number of nodes is designated

as a base tree. All the remaining trees are matched to the base tree and

the category tree is formed based on these correspondences between a given

tree and the base tree. This procedure has two major drawbacks. First, the

structure of the category tree is fixed, consequently, addition of a new shape

may require a re-formation from a scratch. Second, the procedure does not

guarantee the inclusion of all the available information. An illustration is given

in Fig. 17.

Dynamic formation procedure (Fig. 18) resembles T ree-Unions which has been

proposed by Torsello et. al. [43]. Tree unions have been used in learning shape-

classes [45] from shock trees [37]. Merging two shock trees may produce a

graph. Therefore, certain checks are introduced in order to force a tree struc-

ture for the union. In our case, such a control is not necessary. For details, see

the technical reports [4, 15].
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Fig. 17. Static formation of a category tree. T3 is the base tree. Matched nodes are
labeled with identical letters. Node e4 in T4 is eliminated since it matches with none
of the nodes of the base tree.

Fig. 18. Dynamic formation of a category tree. The category tree TC is enlarged
sequentially with the shape trees T1, T2, T3 and T4.

5.2 Category Influenced Matching

Let T1 denote the tree of a query shape A which is being compared to the tree

T2 of a database shape B as defined in (1). Each leaf node of a category tree
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corresponds to a skeletal branch and holds a list of attributes collected from

m category members (m≤M , where M is the total number of shapes in the

category). These attributes are:

• the observed ranges for r, θ and l of the branch (rmin, rmax, θmin, θmax, lmin, lmax)

• the frequency of the branch (freq(Bk) = m/M)).

Thus, a leaf node Bk has the following structure

Bk =
(

Brmin

k ,Brmax

k ,Bθmin

k ,Bθmax

k ,Blmin

k ,Blmax

k ,Btype

k , freq(Bk)
)

(6)

In order to calculate the costs, we define a generic function f(x|y, [min, max])

(Fig. 19). In the experiments, we take φ1 = π
4

and φ2 = 4π
9

. x is defined on

the horizontal axis. The function is fixed for a given y value and [min, max].

Notice that f value depends not only on the difference x − y but also on the

range [min, max]. On one hand, when x is within the range, x − y difference

is taken as it is. On the other hand, when x falls out of the range, x−y differ-

ence is boosted. That is, numerically equal differences are perceived smaller

within categories and larger between categories, giving a distance weighted in

a context. The idea is not so different than the Mahalanobis distance or the

distance defined in [36].

Fig. 19. The generic cost function f(x|y, [min,max]).
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The modified cost function for ch (u, v,B) operation is

f(ur|vr,B) + f(uθ|vθ,B) + 3f(ul|vl,B)

5
× freq(B)

Similarly, the cost functions for rem and ins operations are defined as

rem (u) =

(

ul

lmax (T1)

)

(1 − ur) (7)

ins (v) =

(

vl

lmax (T2)

)

(1 − vr) × freq (B) (8)

Since the category of the shape B is known, the insertion cost of a node

is multiplied by a factor of a significance associated with the corresponding

skeleton branch.

6 Results and Discussions

We perform our experiments on two different shape sets which were shown in

Section 1. In order to utilize the shape sets as best as we can, we perform N

(where N is the number of shapes) independent queries by selecting one of the

shapes as a query shape and excluding it from the context of the query. Due

to space limitations, only sample retrieval results (Fig. 20, 21) and precision-

recall graphs (Fig 22, Fig 23) are given.

For the small set, the precision values are above 99.4% for all the recall levels.

Notice that there is a significant improvement in the problematic categories

(such as the horse and the sea turtle) which were discussed in Section 4. Fur-

ther notice that the dissimilarities at the 6th retrievals are significantly above

the dissimilarities at the 5th retrievals, yielding a very good within group ver-
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sus between group separation. The new dissimilarity measure is more intuitive

than the measure obtained without considering the context. Compare Fig. 24

with Fig. 13. The elephant shape shown in Fig. 25(b) has two more branches

than the other elephant shapes in the shape set. The ordinary dissimilarity be-

tween this shape and the elephant shape shown in Fig. 25(a)(the query shape)

is 1.459 due to these extra branches. Yet, in the category-influenced match-

ing, less attention is paid to these additional branches since corresponding

primitives occur rarely in the elephant category. Therefore, the dissimilarity

measure decreases to 0.693. When the elephant shape shown in Fig. 25(b) is

selected as the query shape, the cost is higher (1.004), as expected.

When the experiment is conducted on the larger set, the importance of con-

text becomes more visible at high recall levels (Fig 23). At 100% recall, the

improvement obtained by context information is more striking in the enlarged

shape set (50% improvement in the precision) compared to the improvement in

the small shape set. However, at the lowest recall levels, context information

may even be harmful. This is due to the existence of categories with quite

high within group variability. If we compare Bull’s eye scores for matching

results without and with context, we see that in the former case, 243 of the

categories lead to 100% Bull’s eye score, whereas this number increases to 499

in the former case. At the same time, the number of categories with less than

6% Bull’s eye score also increases from 7 to 22.

In our second experiment, we exploit structural equivalence between the shape

and the category trees in order to facilitate shape to category comparison. We

simply replace vector valued attributes of the category tree with the ordinary

averages of the components, forming a naive mean shape tree. Since a mean

shape tree is undistinguishable from a shape tree, we can apply the matching
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algorithm given in Section 5.2 in order to determine the dissimilarity between

a query shape and a collection of shapes forming a category. We make two re-

marks. First, the mean tree is uniquely defined as an ordinary average. Hence,

it differs from a mean or median structure which has equal edit distances to

all the contributing shapes as in [11,20]. Second, a comparison of a shape tree

with a mean tree is steered by the category tree from which the mean tree is

calculated. Even though the mean tree does not capture within group variabil-

ity, the category tree does. When shape to category comparison experiment is

conducted on the smaller set, for 178 shapes, the correct category is retrieved

at the first retrieval. For only one shape (squirrel), the correct category can

not be retrieved in the top two or in the top three retrievals. When shape to

category comparison experiment is conducted on the larger set, for 824 shapes,

the correct category is retrieved at the first retrieval. For 898 shape, the cor-

rect category is retrieved at the first or at the second retrieval. For 77 shapes,

the correct category can not be retrieved in the top t three retrievals. That is

a retrieval rate around 82− 93% is obtained when our constructions are used

for categorization on the larger set. Due to space limitations, the results are

given as a Supplementary Material [5].

Asymmetry is an important characteristic of our dissimilarity measure. The

asymmetry is also observed in shape to category comparisons (Supplementary

Material [5]). The second retrieved category for all of the twenty human shapes

is the tulip. However, for non of the tulip shapes, the human is among the

top three retrievals. We notice that pairwise similarities within the human

category is lower than pairwise similarities within the tulip category. Hence,

the human category, having a smaller range and variation, will be less tolerant

than the tulip category. Consequently, it will be more difficult to fit a query

26



shape into this less tolerant category.

Note that we consider a shape only in a group of shapes. The grouping (which

is performed externally) is the source of bias. One should be cautious about the

fact that dissimilarity calculation is biased by the underlying categorization,

yet it is at the same time used in order to assign a category. This is an

interesting interplay and may be very valuable in designing adaptive retrieval

scenarios where the database is enlarged with the addition of newly categorized

shapes. This is an open issue we are currently investigating.

One might be concerned about the fact that the representation is too coarse,

thus, it lacks sensitivity. It appears that multiple level representation schemes

are necessary to satisfy the opposing goals of sensitivity and stability. It is

better to start out with a stable scheme than a sensitive one and add subtle

details gradually. Currently, we are exploring a robust scheme for integrating

boundary details in a layered computation and performing perturbation anal-

ysis on the boundary fragments captured by disconnection points. Rather than

adding new cost terms to tree-edit cost function, the influence of secondary

terms can be added at higher layers of computation in the line of our previous

work [16].
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Fig. 20. Some query results for category influenced matching.
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