Shape Scale: Representing Shapes at Their Absolute Scales

Sibel Tari, Cagri Aslan, Emre Baseski and **Aykut Erdem**

E-mail Correspondence: <u>stari@metu.edu.tr</u>

Middle East Technical University Department of Computer Engineering TURKEY

Blum's Morphological Skeleton

• Evolving fire front analogy

$$\frac{\partial C}{\partial t} = 1.\vec{N}$$

Instability of Minor Perturbations

Blum's morphological skeleton is instable

Pruning Morphological Skeleton

"*Pruning Medial Axes*", D. Shaked and A. M. Bruckstein, CVIU, 1998

Disconnected Skeleton

(Preliminary Work at ICCV'05)

- Compute the local symmetries only at the locations where it can be accurately determined.
- Select a shape dependent scale σ^* in which its representation is most stable.

Disconnected Skeleton

• Construct the distance surface φ as the solution of the following linear diffusion equation at a special scale σ^* :

$$\frac{\partial}{\partial \sigma} \phi(x, y, \sigma) = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) \phi(x, y, \sigma) \quad (1)$$
$$\phi(x, y, \sigma)|_{(x,y)\in\Gamma} = 1$$

• Related to the edge strength function *v* used in Tari, Shah and Pien, CVIU, 1997

The Edge Strength Function

• Solution of the following PDE:

$$\begin{pmatrix} \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \end{pmatrix} v(x,y) - \frac{v(x,y)}{\rho^2} = 0$$
equivalently:

$$\frac{\partial}{\partial \sigma} v(x,y,\sigma) = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) v(x,y,\sigma) - \frac{v(x,y,\sigma)}{\rho^2}$$
(3)

$$\frac{v(x,y)|_{(x,y)\in\Gamma} = 1}$$

 As *ρ*→0 *v* function becomes an approximation to the discontinuity locus of the Mumford-Shah segmentation model.

The Edge Strength Function

For larger values of *ρ v* function acts like a level set function

Symmetry Point Computation

- $\kappa \alpha |\nabla v|$
- Zero crossings of $\frac{d|\nabla v|}{ds}$

$$\frac{d|\nabla v|}{ds} = \frac{((v_y^2 - v_x^2)v_{xy} - v_x v_y (v_{yy} - v_{xx}))}{|\nabla v|^2}$$

Saddle Point Instability

y = 4

 $\rho = 8$

 $\rho = 16$

Saddle Point Instability

• Spurious symmetry points may arise due to insufficient diffusion

ho = 8

 $\rho = 16$

New Surface Computation

- Diffuse the surface until a single extremum exists
- As $\rho \rightarrow \infty$ edge strength function approaches to the steady state solution of (1):

$$\frac{\partial}{\partial \sigma} v(x, y, \sigma) = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) v(x, y, \sigma) - \frac{v(x, y, \sigma)}{\rho^2} \qquad (3)$$
$$v(x, y)|_{(x, y) \in \Gamma} = 1$$

$$\frac{\partial}{\partial \sigma} \phi(x, y, \sigma) = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) \phi(x, y, \sigma)$$
$$\phi(x, y, \sigma)|_{(x,y)\in\Gamma} = 1$$
(1)

• Steady state solution is identically equal to 1 which does not contain any shape information.

New Surface Computation

- Select a large amount of diffusion σ^* that will not produce a completely flat surface.
- Value of σ^* depends on the specific shape

From ø To Symmetry Axes

From ø To Symmetry Axes

- Each primitive is a local symmetry branch
 - starting at a local curvature extremum of the boundary and
 - ending at a disconnection point

Spatial Organization of Symmetry Branches

- Unique object center
- 1 level of hierarchy

Shape Matching

- Branch and Bound
 - Very fast due to small number of skeletal branches
- String-Edit

(morphing one skeletal string into another)

Some Matching Examples

Retrieval Results

• 180 shapes with 30 categories

- 91.2% correct retrieval rate in top 6 matches
- Precision is around 0.88 when recall is 1

Retrieval Results (1)

r	X	X	X	\rightarrow	Å	×	F	The	2	1	
	0.965	0.949	0.941	0.898	0.819	0.578	0.557	0.550	0.548	0.541	0.532
\mathbf{i}	¥	¥	\star	★	X	×	X	¥	¥	T	T
	0.869	0.844	0.840	0.819	0.811	0.800	0.784	0.774	0.721	0.718	0.708
	1		*	N.	*	4		A F	Ú.	*	\mathbf{X}
	0.882	0.863	0.823	0.762	0.738	0.569	0.566	0.530	0.524	0.516	0.515
×,	4	×.	*	¥	+	Ŕ	¥	✦	A	*	₩
	0.985	0.887	0.866	0.829	0.812	0.775	0.754	0.750	0.748	0.706	0.670
	A	×	K	¥	*	•	•	*	ŧ		*
	0.930	0.908	0.907	0.876	0.812	0.582	0.568	0.568	0.567	0.561	0.521
X	₩	*		~	74	2	K	*	¥	*	₹
	0.969	0.881	0.881	0.844	0.833	0.628	0.607	0.528	0.506	0.499	0.491
¥	*	*	*	*	Ŕ	¥	¥	*	×	\$ 7	4
	0.967	0.965	0.951	0.945	0.874	0.817	0.807	0.788	0.773	0.754	0.740
×	7	*	X	X	X	\mathbf{k}	\bigstar	×	\star	$\mathbf{\star}$	×
	0.997	0.995	0.894	0.889	0.887	0.691	0.687	0.670	0.660	0.643	0.642

Retrieval Results (2)

Extending 1-level of hierarchy

Coarse to fine representation

Additional Slides

References

- S. Tari, J. Shah, and H. Pien. A computationally efficient shape analysis via level sets. *MMBIA*, pages 234–243, 1996.
- S. Tari, J. Shah, and H. Pien. Extraction of shape skeletons from grayscale images. *CVIU*, 66(2):133–146, 1997.
- S. Tari and J. Shah. Local symmetries of shapes in arbitrary dimension. In *ICCV*, pages 1123–1128, 1998.
- C. Aslan and S. Tari. An axis-based representation for recognition. In *ICCV*, pages 1339–1346, 2005.

Symmetry Point Computation

$$\frac{d^2 \left|\nabla v\right|}{ds^2} = v_{\eta\xi\xi} + \frac{v_{\xi\xi} \left(v_{\xi\xi} - v_{\eta\eta}\right)}{\left|\nabla v\right|^2}$$

Handling Triple Junctions

- Breaks down 1-level of hierarchy
- Multiple descriptions

Pruning Major Positive Branches

Additional Slides(2)

"Shapes, shocks, and deformations" Kimia, Tannenbaum, and Zucker, IJCV, 1995.

$$\frac{\partial C}{\partial t} = \left(\beta_0 + \beta_1 \kappa\right) \vec{N}$$

- Serious computational difficulties in the implementation.
 - Highly nonlinear,
 - Requires a shock-capturing scheme,
 - When diffusion is introduced, first-order shocks (local curvature maxima of the evolving curve) becomes difficult to detect.
 - Large amount of diffusion is NOT possible

Stability vs. Sensitivity

"Canonical Skeletons for Shape Matching", M. van Eede, D. Macrini, A. Telea, C. Sminchisescu and S. Dickinson, ICPR, 2006