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Abstract

Making sense of ever-growing amount of visual data available on the web is

difficult, especially when considered in an unsupervised manner. As a step to-

wards this goal, this study tackles a relatively less explored topic of generating

structured summaries of large photo collections. Our framework relies on the

notion of a story graph which captures the main narratives in the data and

their relationships based on their visual, textual and spatio-temporal features.

Its output is a directed graph with a set of possibly intersecting paths. Our pro-

posed approach identifies coherent visual storylines and exploits sub-modularity

to select a subset of these lines which covers the general narrative at most. Our

experimental analysis reveals that extracted story graphs allow for obtaining

better results when utilized as priors for photo album summarization. More-

over, our user studies show that our approach delivers better performance on

next image prediction and coverage tasks than the state-of-the-art.
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1. Introduction

When we are planning a trip to a place we have never been before, we usually

buy a guidebook or a travel app or visit websites such as tripadvisor.com
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or wikitravel.org to choose which places to visit and what to do in that

destination. City guides which were prepared by professional travelers typically5

include essential information about the attractions, museums or parks in that

city. Hence, each traveler, in a way, joins a collaborative act of living and

enjoying the city and its culture. This joint act is clearly visible when we look at

related travel photo albums shared on the web. Of course, the individual details

can vary across trips, but common elements manifest themselves, providing10

collaborative stories about a city. Same landmark locations and attractions are

visited regularly by tourists, and are being photographed again and again.

In this study, we propose a novel approach to automatically generate an

informative visual summary of a specific city directly from a large set of travel

photo albums related about that city. We formulate this task as a sub-modular15

optimization problem in which the structured summary is represented in terms

of a story graph, providing information about different characteristics of a city.

In general, a story graph allows to illustrate the common relationships between

data samples in an informative manner, and has been a topic of interest in the

scientific community lately. For instance, story graphs have been used to create20

summarizes of news articles [1], scientific papers [2], ego-centric videos [3] and

the interactions among different characters in a movie or TV series [4].

Given tens of thousands of images of a city, in our work, we aim to identify

a few storylines that (1) are coherent, i.e. each tells a coherent but different

story, (2) cover most of the interesting attractions, i.e. they provide collective25

information regarding important and salient characteristics of the city, and (3)

are connected, i.e. they effectively capture the hidden interconnections. Fig. 1

demonstrates an example story graph for the city of Istanbul, reconstructed au-

tomatically with our framework by analyzing lots of related travel photo albums.

The main contributions of our work are as follows:30

• We develop a collaborative summarization approach which exploits visual

and textual data as well as geospatial and timestamp information to au-

tomatically extract a visual story graph for a large collection of photo
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Figure 1: A story graph generated automatically by our approach for the city of Istanbul. On

the left, we show the density map of the geo-tagged images collected from trips to the city of

Istanbul. In the middle, we provide some sample storylines which cover coherent and distinct

stories. On the right, we draw the story graph on the city map. For illustrative purposes,

here we only show four storylines.

albums. Our formulation enforces maximum degrees of coherency, cover-

age and connectivity over the extracted storylines, and as it depends on35

sub-modularity, it is efficient and scalable.

• We introduce YFCC100M-CITIES dataset which includes images of six

different cities, annotated with GPS, timestamp tags and textual key-

words. It contains in total 132,346 images over 1566 photo albums from

323 users for 6 popular travel destinations in the world.40

• We utilize the story graphs generated with our approach as structured ab-

stractions of important concepts, landmarks and events within the photo

collections, and demonstrate that they can be employed as a prior in photo

album summarization to obtain state-of-the-art results.

• We further demonstrate the effectiveness of our framework with two user45

studies on next image prediction and tag coverage tasks. Our experimental

results show that our model provides better results than the state-of-the-

art.

Our code and data are publicly available at the project website: hucvl.

github.io/visual-storygraphs/.50
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2. Related Work

We can group the related work on mining large photo collections into three

different categories. First group of works focuses on data visualization aspect to

allow a user to quickly explore large photo albums [5, 6, 7, 8, 9, 10, 11]. Second

group addresses summarization of large photo collections by selecting a relatively55

small set of images based on some desired properties [12, 13, 3, 14, 15]. Last

group of works, on the other hand, summarizes big visual data in a structured

manner by means of story graphs [16, 4]. Instead of selecting a representative

set of images, these works aim at reconstructing a narrative where each storyline

in the graph reflects a major story arc in the image collections.60

2.1. Exploratory Data Analysis and Visualization

Recently, there has been much interest in exploratory analysis of big visual

data using visualization techniques. Platt et al. proposed a method to automat-

ically create an overview of a collection based on clustering and then selecting

the representative images from each cluster [5]. Cooper et al. suggested a similar65

framework that depends on clustering of photo collections based on similarities

over appearance and temporal characteristics [6]. Kim et al. introduced a data-

driven method to model and analyze the temporal evolution of the topics of the

web images by constructing a large similarity graph of these images through a

sequential Monte Carlo based method [8]. Berg and Berg developed an object-70

centric model to identify canonical images in a set of images collected for a

specific object category [7]. Doersch et al. proposed a discriminative clustering

approach to learn common and distinctive visual elements from large number of

photos from a city [9]. Zhu et al. introduced a method which employs average

images to let the users browse a large photo collection at ease [10]. More re-75

cently, Kleiman et al. suggested an approach to search, find and browse similar

images on massively large image datasets by projecting their nearest neighbors

in a high-dimensional feature space into a 2D layout [11].
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2.2. Summarization of Visual Data

A large body of works aims at analyzing big visual data by selecting the80

most representative images among a given set of images by eliminating the re-

dundant ones. The selection process amounts to capturing the most salient

or interesting visual information depending on the task or motivation at hand.

For instance, Simon et al. developed a photo collection summarization tech-

nique which extract the most interesting images over the collection by using85

a SIFT co-occurrences based clustering framework with a RANSAC loop [12].

Obrador et al. approached the summarization process from a supervised learn-

ing perspective in which the information from users’ online social networks are

used as cues [13]. Lu and Grauman proposed a summarization method for ego-

centric video which relies on segmenting the video into shots and identifying90

important objects in each shot and then extracts the summary by enforcing

coherency based on common objects shared in consecutive shots [3]. Sadeghi et

al. suggested a method for automatically creating a photo album from a large,

unordered collection images, which can be also regarded as an unstructured

summarization [14]. The authors, in particular, employ a discriminative struc-95

tured model to capture compelling visual narratives through features encoding

faces, scene context and certain visual attributes. More recently, Sigurdsson et

al. have used recurrent neural networks to model long-term temporal relations

among photo albums to extract visual storylines and summaries [15]. Similarly,

Yu et al. [17] utilized recurrent neural networks to encode photos and select100

representative images that form a summary. They achieved improved results on

summarization, story generation and album retrieval. Kim et al. [18] proposed

an automatic summarization method that depends on scoring photos by their

aesthetics, interestingness and memorability scores. Finally, Iyer et al. [19]

developed an open-source library for video and album summarization covering105

data subset selection methods based on sub-modular functions. Specifically, this

work allows for the use several summarization methods that employ either sim-

ple visual features such as color histograms or more complex semantic features

extracted by deep neural networks.
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2.3. Visual Story Graphs110

Compared to the aforementioned groups of works, visual story graphs have

been one of the least investigated topics in the computer vision literature. They

serve as means for discovering hidden patterns and structures in large sets of

images or videos while summarizing events and activities in the visual data.

Xiong et al. [20] utilized story graphs to model egocentric videos in terms of115

story elements. They defined four sets of elements which correspond to actors,

locations, supporting objects and events, respectively. Based on these elements,

they proposed an inference algorithm to visualize the story on a timeline. In

their pioneering work [16], Kim and Xing formulated generating visual story

graphs as inferring a sparse time-varying directed graph from multiple photo120

albums which are collected on a single topic. Tapaswi et al. developed a similar

graph based summary of videos over the interactions among different charac-

ters [4]. Like these studies, our approach also differs from the conventional

summarization approaches in the sense that it outputs a structured summary

depicting different aspects of the photo collections in the form of a story graph.125

In that regard, the most similar related work to our approach is the method of

Kim and Xing [16]. However, our method is fundamentally different from this

work in several aspects. Most notably, the approach in [16] does not explicitly

try to maximize coverage and connectivity of the story graphs, whereas our pro-

posed approach is built around these two fundamental concepts, together with130

the common notion of coherency. While the coverage leads to diversity of the

images in the story graph, connectivity allows to extract the common aspects

that are essential for photo album summarization. Moreover, our proposed

framework employs a general formulation so that we can incorporate others

modalities such as textual or GPS information to the story graph generation135

process. Lastly, while the story graphs in [16] are constructed with the nodes

as the visual elements, the nodes of our story graphs correspond to individual

images.

The story graphs generated from large photo collections can be also inter-

preted as a prior graph collaboratively constructed for a particular interest.140
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This property makes the proposed approach a convenient tool for photo album

summarization since the generated story graphs both provide diverse informa-

tion regarding the image collections but also encode particular aspects of the

visual data that are shared among many users.

3. Approach145

Here we introduce our approach to extract visual story graphs from image

collections. We start with constructing dictionaries for visual and textual el-

ements from the given sets of images. These elements serve as fundamental

building blocks in finding coherent and intersecting storylines. In the rest of

this section, we give the details of these steps, starting with a formal definition150

of story graphs.

3.1. Definition of a Story Graph

A story graph is a pair S = (G,P) where G = (V,E) represents a directed

graph, P denotes a set of chains (paths) which includes the storylines in G,

the nodes of G correspond to the representative images from a large photo155

collection and its edges symbolize the connections among them. In an ideal

case, a story graph, as a whole, should provide a visual collaborative summary

of the photo collection from which it is extracted. This goal can be achieved by

constructing it by considering three key properties, namely coherence, coverage

and connectivity [21].160

3.1.1. Coherence

Intuitively, we want our story graphs to tell coherent stories. Hence, we

need a mechanism to measure the consistency across each storyline of our story

graph. We employ visual and textual elements as means for forming coherent

visual stories through these storylines. Specifically, we connect the images with

the visual and textual elements shared among them. We define the overall

coherence gained by a storyline Pi = (p1, ..., pn) ∈ P by the following equation:
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Coherence(Pi) = min
k=1..n−1

∑
e

1(e is active in pk and pk+1) (1)

where {e} denotes the set of elements, pk represents the kth photo in the sto-

ryline. We consider an element e as active if its importance is above a certain

pre-defined threshold for both pk and pk+1. We determined the threshold values

by using grid search where we empirically sweep over a range of values and select165

the ones which lead to the best coherence and coverage scores. Accordingly, we

set the threshold values as 0.22 for visual elements and 0.4 for textual elements.

In particular, here, we ensure that all the consecutive pairs of photos on the

storyline share at least an element e which can either be a visual or a textual

element. The function 1 is an indicator function which enforces that the element170

should be active among the photos pk and pk+1. The final coherence value is

then determined by the weakest pair among the whole storyline. Hence, for a

coherent chain, the behavior of all of the elements should provide a transition

as smooth as possible throughout the storyline. Refer to 3.2.1 and Section 3.2.2

for the details of how we construct the visual and textual elements and decide175

whether an element is active or not for an image.

In Fig. 2, we show some sample coherent and incoherent chains based on

visual and textual elements shared among the images in the chain and plots. As

can be seen, the characteristics of the images change rapidly in an incoherent

chain without producing consistent stories, which is valid for both visual and180

textual domains. In the figure, the active elements are demonstrated with blue

bars spanning at least one photo among the chain. For the chains given on

the left, the consecutive photos share some visual and textual elements. These

elements give rise to more coherent transitions among the photos in the chain.

On the other hand, most of the consecutive photos given on the right do not185

share any visual or textual element. Depending on our definition of coherence in

Eqn. 1, this affects the consistency of the visual or the textual elements among

the chains, creating incoherent stories.
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(a)

(b)

Figure 2: Coherent and incoherent chain examples in terms of (a) visual elements and (b)

textual elements. For each case, we show a number of images composing a story. The bars

indicate the elements that are active on the images. The coherent chain given on the left tells

a consistent story through smooth transitions over the active elements. On the other hand,

within the incoherent chain shown on the right, the active elements change very rapidly over

the images, which result in inconsistencies in the story told.

3.1.2. Coverage

Coverage property ensures that the photos among the storyline cover a di-

verse set of elements. That is, if a storyline sufficiently covers an element, there

is no need to add it to the story graph. This brings the so-called diminishing

return property that tells as new storylines are added to the graph, if the new

storyline covers an element that has already been covered, it should contribute

very little to the total coverage. With this property in mind, each element’s
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coverage through a story graph S is given by the following equation:

CoverageS(e) = 1−
∏

p∈photos(S)

(1− Coveragep(e)) (2)

where Coveragep(e) ∈ [0, 1] denotes how important that element is for describ-190

ing the photo p, defined differently for visual and textual elements. If the story

graph S has photos covering the element e well, the coverage of the whole map

on element e, CoverageS(e), will be close to 1 which means there is no need

to select any other photos covering the same element e. If a new storyline has

been added to the graph, it should cover different elements, resulting in a more195

diverse chains of photos. In our framework, visual elements connects photos

via visual patches whereas textual ones creates semantic connections through

textual keywords. However, of course, not all elements are equally important.

Some visual elements such as the sky regions are so common among the images

that it is not feasible to use them to form storylines. Similarly, specific textual200

keywords such as White House which shows a singular location should have

higher importance than generic location names like garden or museum.

Total coverage of a story graph is then computed as the summation of the

coverage of both visual and textual elements as given below:

Coverage(S) = α
∑
v∈V

CoverageS(v) + (1− α)
∑
t∈T

CoverageS(t) (3)

where v ∈ V denotes a visual element, t ∈ T represents a textual element,

and α ∈ (0, 1) is a scalar representing relative significance of textual and visual

elements. In our experiments, we empirically set the value of α to 0.1.205

3.1.3. Connectivity

Connectivity enforces that the storylines should share some photos which

amounts to the crossing points between the chains. This is a unique property

that gives a story graph a nonlinear story structure as compared to the simple

linear story model. The story graph is more informative when it shows hidden210

connections between diverse paths. In other words, without connectivity, the

output will be linear summaries of individual photo collections. Although it

10



seems contradicting with the coverage property, we look for minor connections

between storylines after selecting a diverse set, preserving diversity together

with a few individual photo similarities. Formally, the connectivity of a graph215

can be defined in terms of a value denoting the sum of the number of lines that

intersect in story graph S:

Connectivity(S) =
∑
i<j

1(Pi ∩ Pj 6= ∅) (4)

with Pi and Pj denoting the ith and jth storylines in the story graph S.

3.2. Constructing the Story Graph

We cast the story graph construction as an optimization task defined over220

extracted coherent storylines S = (Pi, ..,Pn). That is, we compute the optimal

story graph S∗ by first extracting most coherent storylines and then selecting

a diverse set of important ones which intersect with each other to a certain

extent by considering the following equation that is built upon Coverage, and

Connectivity characteristics:225

S∗ = argmaxS Connectivity(S)

s.t. Coverage(S) ≥ C (5)

where C denotes a coverage score that is smaller than the highest coverage score

that can be obtained without considering the connectivity property. Note that

Coherency(S) does not appear here as we already start with the coherent story-

lines extracted from the constructed coherence graph. Moreover, Coverage(S)

appears as a constraint since we first try to maximize the coverage score and then230

maximize the connectivity accordingly in the final stage, as explained below.

An optimum approach to find S∗ is not trivial, hence, instead, we use a

greedy approach by exploiting the sub-modular structure that exist in our prob-

lem. That is, we first maximize coverage and then try to maximize connectivity

over storylines by allowing some decrease in the maximum possible coverage235

score (please refer to Section 3.2.4 for the details about how the maximal cov-

erage can be defined. The whole algorithm is summarized in Algorithm 1.
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Algorithm 1 Steps of finding the optimal story graph S∗ from a large collection

of images denoted by I
1: for each image pi in the input photo collection I do

2: Estimate the importance weights for the visual elements (Section 3.2.1)

3: Estimate the importance weights for the textual elements (Section 3.2.2)

4: Compute the coherence graph G based on the transitions over elements

(Section 3.2.3)

5: Extract a set of high coverage chains from G (Section 3.2.4)

6: Perform a local search to improve the connectivity (Section 3.2.5)

3.2.1. Visual representation

Our visual representations are based on bag of visual elements. In particular,

we approach the extraction of the visual elements from a dictionary learning

perspective. In particular, we employ a recently proposed deep feature called

Regional Maximum Activation of Convolutions (RMAC) [22] which achieves

the state-of-the-art performance for the image retrieval task. Specifically, the

RMAC representation that we use in our work depends on the VGG-16 [23]

model pre-trained on ImageNet. It is extracted from the last pooling layer,

resulting in a 3D tensor having 7 × 7 × 512 dimensions where the scalar 512

denotes the number of filters. Then, from these response maps they sample R

uniform square regions at L different scales with 40% overlap. In our case, we

set L = 4 in order to get finer scale visual elements. It is important to note

that increasing the value of L might allow us to capture more finer scale visual

elements, albeit with an increase in computational cost. For each region r ∈ R

max-pooling is performed on each channel and obtained a feature vector of 512-

dimensions as shown in Eqn. 6. The last step is the L2-normalization to get a

single region vector.

fr∈R = [fr,1 . . . fr,i . . . fr,K ]T (6)

In our work, we cluster these region features with K-Means clustering al-

gorithm and form the visual dictionary for a city accordingly. We set the size240
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Figure 3: Sample visual elements from the visual dictionary constructed from the Paris va-

cation photo albums. These elements are visualized by finding the image patches having the

closest RMAC representations [22]. While some of them captures the details from touristic

attractions (left), some correspond to very ordinary regions such as trees, clouds, and sky

(right).

of this dictionary as 1024. This approach captures various structures that per-

sistently exist in the image collections, reflecting the visual characteristics of a

city and the popular landmarks within. In Fig. 3, we demonstrate sample image

regions which are close to some of the visual elements from the Paris dataset.

As can be seen, some of these regions correspond to the details from the touris-245

tic attractions such as Eiffel Tower, Arc de Triomphe, Notre Dame and Louvre

Museum as given on the left. However, since our dictionary learning procedure

does not use any prior knowledge about the cities, some of the extracted visual

elements might correspond to very common image regions such as sky, trees, etc.

as shown on the right. Hence, for each image pi we assign a certain importance250

weight to each visual element v, which is defined inversely proportional to the

number of occurrences of this visual element in the whole image collection.

Each image is decomposed into a set of local image regions, each encoded via

a RMAC feature. Then, Locality-constrained Linear Coding (LLC) [24] is ap-

plied over these regions to obtain the final representation by max pooling of each255

region’s code vector over the extracted visual elements. LLC encoding yields a

sparse representation where only the most prominent visual elements are consid-

ered in the final representation. Importances of visual elements (CoverageS(v))

are then defined in terms of this LLC encoding scheme.

13



In Eqn. 1, the coherence score is estimated through the active visual elements260

over a storyline. The decision about whether a visual element is active or not is

made by inspecting the weights of this visual element within the LLC encodings

of the image pairs. If they are above a certain threshold, we assume the element

is shared between the images and considered as active.

3.2.2. Textual Representation265

In our work, we represent the images in the photo-collections in a multi-

modal manner. As we mentioned earlier, representing images visually is carried

out by first learning a visual dictionary from the training images and then by

extracting visual elements from each image. Apart from this, we also consider

a semantic representation of images that depends on textual information. In270

particular, each image can be tagged by a list of words by employing a pre-

trained set of image classifiers that identify the visual characteristics of the

image. In our work, we alternatively assume that each image has been already

associated with a set of keywords. By this way, we can utilize a dictionary of

words extracted from all of the images in the collections and then represent275

each image in terms of these keywords. To determine the importance of textual

elements, we employ a tf-idf weighting scheme.

Similar to the visual elements, the coherence score due from the textual ele-

ments is computed by taking into account the textual elements that are shared

over a storyline. While deciding these shared textual elements, we utilize their280

importance scores (CoverageS(t)) as indicated by their tf-idf weights. We as-

sume that a textual element is active if its score is above a pre-defined threshold

value.

3.2.3. Finding Coherent Storylines

We start with modeling storylines by the transitions of the extracted visual285

and textual elements. The brute-force solution to optimize the energy function

in Eqn. 5 inspects every pair of images for the occurrence of all elements, and

thus it takes time proportional to N2 × D where N is the number of images
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and D is the total number of elements. Since this is intractable for large image

collections, we use a divide-and-conquer approach to build storylines. First,290

we extract short chains of images with smooth transitions being observed over

some visual and/or textual elements. Then, we combine these short chains

which overlap through some common images to obtain longer storylines that

constitute our coherence graph G.

Our algorithm starts with a RANSAC [25] loop where at each iteration we295

randomly choose two images from the collection, which share at least a visual

or textual element to satisfy the coherence property and which correspond to

the end points of a short chain. Hence, to determine the images in between

these two, for each shared element we search for images that also share the

same element. Specifically, we enforce a smooth transition across the storyline300

as in [16]. For each shared visual element of the end point images, we fit a

line over the activation scores coming from the LLC encoding [24] and validate

the consistency of a candidate image by analyzing how well it fits to this linear

activation transition function [21] by its corresponding element. For each shared

textual element of the end point images, we check whether the element is active305

in the candidate image or not.

In our framework, we also utilize additional meta-data about the photos,

namely the time-stamps and GPS location information to enforce additional

constraints to improve the quality of the transitions. First, each image over

a storyline should be captured after the time the photo preceding it is taken.310

This eliminates the possibility of ambiguous ordering of images such that a night

time image follows a day time. Second, an image should be close to its previous

image in geospatial terms. This enhances both the structure and the overall

visual appearance of the storyline in that nearby locations are more likely to

share similar visual structures. In our experiments, we empirically set the length315

of the short chains as 3. Larger values, in general, fail to find sufficient number

of high quality chains.

Once we extract the coherent short chains, the next step is to construct

a coherence graph G. We combine the shorter chains by the common images
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that they share and accordingly obtain longer chains, each of which denotes a320

coherent storyline.

3.2.4. Finding Storylines with High Coverage

In the previous subsection, we show how to extract all coherent storylines

on a coherence graph G we build based on short chains. Finding storylines with

high coverage corresponds to selecting a subset of those from G that maximize325

the coverage as Eqn. 3 indicates. This can be formulated as an orienteering prob-

lem, aka prize-collecting TSP [26, 21], in which the goal is to maximize rewards

collected while walking on the graph subject to a budget on the tour length and

given two endpoints. The reward function is given by f : 2V → R+, which re-

turns a non-negative value to every subset of nodes. Exhaustively searching for330

an optimum solution is infeasible but we can exploit the submodularity of our

coverage function (Eqn. 2) where greedy algorithms with good approximation

guarantees exist in the literature [26].

A set function f : 2V → R is submodular if f(A∪a)−f(A) ≥ f(B∪a)−f(B)

and for all A ⊆ B ⊆ V . This property is referred to as the diminishing returns,335

meaning that adding a new item to a smaller set provides a larger gain than

adding it to a larger set.

After we extract our coherent storylines, we define the following incremental

coverage notion to measure the gain in the coverage score when we add the

storyline to our story graph S for each storyline Pi as follows:

IncCoverage(Pi|S) = Coverage(Pi ∪ S)− Coverage(S) (7)

To sum up, in order to find the set of storylines that have the highest coverage

over the visual elements, we follow an incremental search strategy. Starting with

the storyline having the highest coverage value, we gradually enlarge the story340

graph by analyze each not included storyline by its contribution to the current

coverage (Eqn. 7) and add the one that contributes the most. This procedure

is repeated until there is no additional gain.
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3.2.5. Increasing Connectivity

Increasing the connectivity is important to discover nonlinear story struc-345

tures. We perform a local search operation on the extracted coherence graph

G by using the story graph S+ with the highest coverage as an initial point.

In particular, we fix the storyline having the highest individual coverage and

perform a search among all of the other storylines forming the coherence graph

G. Our aim is to find storylines alternative to the ones in S+, which increases350

the connectivity by allowing a reasonable amount of degradation in the total

coverage value. Of course, the key question here is how much coverage drop can

be tolerated. Allowing too much drop in the coverage results in story graphs

with low coverage whereas limiting it to a low value prevents finding an appro-

priate chains for the replacements. In our work, we empirically observe that355

a 7% drop in the total coverage score generally gives satisfactory results. In

Fig. 4, we provide the story graphs for the cities of Istanbul and Paris, which

are automatically constructed by our approach from large sets of travel photo

albums collected from the web.

3.3. Story-Graph Guided Photo Album Summarization360

In the previous sections, we develop a method to generate visual story graphs

from a large collection for photo albums. These story graphs are collabora-

tive structured summaries containing coherent visual storylines and providing

a comprehensive overview of specific topics of interest. With these character-

istics, story graphs can be interpreted as prior graphs representing important365

concepts, landmarks and events within the photo collections.

In that regard, in this section, we demonstrate a way to obtain more effective

summaries of photo albums and albums that cover the topics encoded in the

story graphs generated by our approach.

Given a photo album X, our goal is to extract a small number of images370

from X that represents the whole set. We additionally assume that another

set of images are given in the form of a story graph Y. Here, we formulate

the summarization task as a subset selection task. For this purpose, we par-

17



(a)

(b)

Figure 4: The story graphs of (a) Istanbul and (b) Paris, which are based on travel photo

albums collected from the web. The nodes (images) of the graphs are arranged based on the

available timestamp information.

ticularly employ the DS3 algorithm [27] which formulates subset selection as a

row-sparsity regularized trace minimization problem which can be easily solved375

via convex optimization.
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In short, the DS3 algorithm solves a special subset selection problem when

side information is available in the form of dissimilarities between the source set

X and a target set Y, defined as:

min
{zij}

λ
∑M

i=1 ‖zi‖p +
∑N

j=1

∑M
i=1 dijzij (8)

s.t.
∑M

i=1 zij = 1, ∀j; zij ≥ 0, ∀i, j

where zij is the indicator of the source item xi ∈ X representing the target380

item yj ∈ Y and dij denotes the dissimilarity between xi and yj . In our experi-

ments, we use the KL-divergence as our dissimilarity measure. The parameter

λ provides a trade-off between the number of representative samples and the en-

coding quality with smaller values of λ causing more number of samples selected

as representative. Here, the first term penalizes the size of the representative385

subset and the second term is the encoding cost. In [27], the authors show

that an optimal solution can be found using an Alternating Direction Method

of Multipliers (ADMM) approach in an effective manner.

Notice that here we suggest to let Y denote the set of images available in the

input story graph. Hence, while extracting a summary from the given photo390

album denoted by X, the representative samples of X in the generated summary

cover the themes available in Y. Alternatively, we can let Y = X by selecting

the target set same as the source set. If this is the case, it becomes a self-

summarization problem [27].

4. YFCC100M-CITIES Dataset395

To evaluate our proposed approach for story graph generation, we need

a large scale multi-modal dataset containing several different photo albums

about a city. As far as we know, no large-scale dataset, which consists of im-

ages with textual tags, timestamps and GPS information, is freely available

in the literature. Hence, we curated a new dataset by selecting and anno-400

tating images from the publicly available YFCC100M dataset [28]. In short,

YFCC100M dataset [28] contains 99.2M photos and associated metadata such
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Amsterdam Istanbul New York Paris Tokyo Venice

Figure 5: The distribution of photos in our YFCC100M-CITIES dataset. The area of a circle

is proportional to the density of the photos in that location.

as time stamps, geolocation information and keywords from Flickr. However,

most of the time, the user generated keywords are noisy, and since the users are

from different countries, they use different languages while providing them, and405

thus YFCC100M dataset cannot directly be used within a multimodal summa-

rization task in its current form.

In our work, we particularly collected vacation photographs from 6 different

cities, namely Amsterdam, Istanbul, New York, Paris, Tokyo, Venice which are

among the most visited cities around the world. We eliminated the photo albums410

that consist of only close-up pictures of humans or cover just one topic such as

flowers in a garden. For user generated keywords, we filtered out highly generic

words or words that are unrelated to the topic of interest. We then grouped

similar and synonym words into common concepts by taking into account non-

English words as well. In total, we have collected 132K geotagged images from415

323 users and 1.5K photo albums. Fig. 5 and Table 1 show the basic statistics

of our dataset, which we named as YFCC100M-CITIES dataset.

5. Experiments

An extensive application that make use of a story graph is photo album

summarization task. We performed an extrinsic evaluation of our story graphs420

in which we leverage them as a prior to guide photo album summarization

(Section 5.1). Another common approach to the visual evaluation task is per-

forming user studies. Based on our formalism, a good story graph must first
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Table 1: Statistics of YFCC100M-CITIES.

City Number of Number of Number of Number of

Albums Users Photo Sets Photos Unique Words

Amsterdam 39 100 9,923 1,460

Istanbul 58 167 13,645 979

New York 54 428 30,443 18,538

Paris 39 178 21,819 1,521

Tokyo 71 514 36,787 4,007

Venice 62 179 19,729 2,032

Total 323 1,566 132,346 25,118

meet two criteria. It must be composed of coherent chains and these chains

should all together should cover most of the important aspects. However, it is425

difficult to quantitatively evaluate these two notions so we decided to perform

controlled user studies, on which we compare against the previous work by Kim

and Xing [16]. To assess coherence, we employ the next image prediction task

proposed in [16] (Section 5.2), but to evaluate coverage we devised a new exper-

iment (Section 5.3) since there has been no particular attention to this essential430

property.

5.1. Photo Album Summarization

As mentioned earlier, the story graphs provide a collaborative summary of

photo albums on specific themes, which can be used as priors. As for our first

experiment, we conduct an extrinsic evaluation of our proposed summarization435

framework by utilizing story graphs as priors in photo album summarization.

For this task, we collected 6 additional photo albums from Flickr. These photo

albums are related to trips to the either one of the six cities in our data set

but they do not exist in YFCC100M dataset. Each one of these photo albums

consists of 100 different images. Moreover, each album is annotated with 20440

different human-generated summaries, which are obtained using a web tool via

crowdsourcing. In particular, for every album we show the users the whole set of
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photos from the album, which are sorted by time-stamp, and then let them select

10 most representative images among all these images. In our experimental

evaluation, we employ these human-generated summaries as the ground truth.445

For comparison, we test two simple baselines that are based on uniform sam-

pling (Uniform) and K-Means clustering (K-Means), the skipping recurrent neu-

ral network model (S-RNN) by Sigurdsson et al. [15], two subset selection based

summarization methods by Iyer et al. [19], which respectively employ simple

color histograms of hue and saturation channels (DSS-S), and deep features450

from the last fully connected layer of the VGG-16 network (DSS-D)1 and the

DS3 model performing self-summarization with Y = X. In addition to those, we

constructed three story graphs using our framework by taking into account (1)

only visual features (SV ), (2) visual features along with GPS information (SV G),

and (3) both visual, GPS and textual information (SV GT ). Lastly, to observe455

how different network architectures affect the quality of the representations, we

conducted additional summarization experiments by using the visual features

extracted from ResNet-50 [29]. In particular, we employ ResNet-50 as the back-

bone architecture for RMAC instead of the VGG-16 network. ResNet-50 based

features, however, require more physical space as compared to those based on460

VGG-16 as their dimension is 4× larger. Hence, due to the memory constraints,

we could not reconstruct the story graphs with ResNet-50 features, but we en-

code the images in both the story graphs and the photo albums via a ResNet-50

based visual dictionary. We basically carried out the self summarization ex-

periments (Y = X) and the summarization experiments with our best model465

(Y = SV GT ) by additionaly using these alternative visual dictionaries.

We quantitatively evaluate the performance with two metrics: F-measure

[30] and V-ROUGE [31]. F-measure measures the accuracy of automatic sum-

maries considering both precision and recall with respect to human-generated

summaries. V-ROUGE is an extension of the ROUGE metric used for document470

1Here, we intentionally use VGG-16 model for a fair comparison with our approach, which

employs features from the same base network.
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summarization and measures how the automatic summaries correlate with the

human-generated ones based on occurrence-counts of visual elements.

Fig. 6 shows some sample summarization results for the Istanbul trip album.

Uniform baseline gives a low quality summary in that it includes similar and

semantically uninteresting images. K-means baseline generates a summary that475

lacks a coherent story considering the content of the input photo album. The

summaries obtained with these approaches contain repetitive structures such as

multiple photos of mosque ceilings and patterns. Even for the S-RNN method,

which is a recently proposed summarization approach, we observe such an un-

wanted behavior. The results obtained with the DSS methods are much better480

in terms of diversity but they do not demonstrate a smooth transition between

the selected images, hence the coherency is low. The DS3 model in general

selects more complex and diverse photos as the notion of diversity is explicitly

built in the selection mechanism. Especially, the variants that use story graphs

as a prior performs much better as the summaries posses continuity of events.485

Among those, SV GT seems to provide the best result as the images selected for

the summary cover the main events depicted in the input photo album, and

they appear to be semantically more close the summary by a human. Overall,

both of our qualitative and quantitative results show that photo album summa-

rization can benefit from exploiting visual story graphs as a prior to encourage490

producing more coherent summaries.

In Table 2 and Table 3, we report the V-ROUGE and F-measure scores,

respectively. As can be seen, the quality of summaries obtained with the simple

baselines, Uniform and K-means, is lower than the other approaches. S-RNN

also gives unsatisfactory results although its formulation is based on modeling495

how a story evolves within a photo album. DSS method with simple features

(DSS-S) produces slightly better summaries than S-RNN, but it is beaten by

DSS-D, which is somewhat expected as deep features provide better semantic

representations. The summaries obtained by different versions of our proposed

framework, SV , SV G and SV GT , are far better than the competing methods,500

including the deep approaches deep learning based models S-RNN [15] and DSS-
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Figure 6: Sample summarization results. Top: Input photo album. Bottom: Visual summaries

done by a human, the baselines approaches Uniform Sampling, K-Means clustering, S-RNN

[15], DSS-S [19] and DSS-D [19] along with the ones obtained via the DS3 method using self

summarization (Y = X), the story graphs constructed with visual features (Y = SV ), both

visual and GPS features (Y = SV G) and all visual, GPS and textual features (Y = SV GT ).

D [19]. Moreover, we observe that our fully featured story graph SV GT which

employs both visual, GPS and textual information, in general, achieves the best

summarization performance. When we examine the cases where we switch from
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Table 2: V-ROUGE scores for the summarization experiments.

Photo Album Amsterdam Istanbul New York Paris Tokyo Venice

Trip Trip Trip Trip Trip Trip

Uniform 0.31 0.38 0.48 0.33 0.45 0.45

K-means 0.45 0.26 0.39 0.37 0.39 0.29

S-RNN 0.30 0.39 0.41 0.35 0.42 0.33

DSS-S 0.38 0.41 0.39 0.38 0.39 0.24

DSS-D 0.40 0.44 0.49 0.39 0.52 0.27

DS3 (Y = X) 0.48 0.47 0.56 0.52 0.49 0.54

DS3 (Y = SV ) 0.48 0.53 0.61 0.44 0.52 0.57

DS3 (Y = SV G) 0.46 0.42 0.50 0.47 0.53 0.58

DS3 (Y = SV GT ) 0.56 0.49 0.67 0.56 0.63 0.66

DS3 (Y = X)ResNet-50 0.56 0.48 0.61 0.52 0.57 0.53

DS3 (Y = SV GT )ResNet-50 0.59 0.52 0.70 0.69 0.55 0.50

VGG-16 to ResNet-50 as the backbone for our visual features, for some cities,505

we see a slight increase in the V-ROUGE scores. However, the F-measure scores

show no solid improvements. This indicates that ResNet-50 does not provide

a significant gain in terms of the summarization performance. We believe that

the structure of the prior (i.e. the story graphs) plays a more important role

than the visual representations when selecting the most representative photos510

for the visual summaries.

5.2. Next Image Prediction

In our second experiment, we focus on the next image prediction task sug-

gested in [16], which captures a story graph’s ability in predicting what happens

next given an input image. This task is related to evaluating coherence aspect of515

story graphs as the purpose is to identify how related the output image is to the

query in terms of spatio-temporal continuity. We first select a small subset of

canonical images for each city by simply clustering the entire set of photos into

50 clusters and retrieving the most photos that are close to the cluster centers.

Given a query image, we localize the most similar photo in the reconstructed520
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Table 3: F-measure scores for the summarization experiments.

Photo Album Amsterdam Istanbul New York Paris Tokyo Venice

Trip Trip Trip Trip Trip Trip

Uniform 0.02 0.10 0.17 0.05 0.11 0.13

K-means 0.12 0.05 0.06 0.09 0.12 0.05

S-RNN 0.05 0.10 0.11 0.07 0.08 0.08

DSS-S 0.07 0.07 0.09 0.16 0.08 0.16

DSS-D 0.12 0.11 0.17 0.15 0.13 0.18

DS3 (Y = X) 0.16 0.08 0.12 0.13 0.08 0.20

DS3 (Y = SV ) 0.25 0.10 0.14 0.17 0.04 0.17

DS3 (Y = SV G) 0.15 0.12 0.16 0.19 0.15 0.21

DS3 (Y = SV GT ) 0.14 0.10 0.19 0.21 0.11 0.23

DS3 (Y = X)ResNet-50 0.20 0.08 0.07 0.12 0.13 0.15

DS3 (Y = SV GT )ResNet-50 0.09 0.11 0.12 0.18 0.12 0.15

story graph and retrieve its next image in the corresponding chain. In the user

study, subjects are presented with results obtained with our approach and with

those by Kim and Xing’s method [16] and are asked to choose the one which

is the most likely sequence (Fig. 7(a)). We perform the user study on Figure

Eight platform2 in which a total of 331 workers have participated. For each test525

question, we obtain responses from at least 10 users. Fig. 7(b) shows examples

of the next likely images predicted by our approach and the competing method.

The results of the pairwise preference tests are given in Table 4. On average,

our predictions are favored 61% of the time. One noticeable observation found

here is that our approach outperforms the method of Kim and Xing’s method530

by a large margin for the city of New York. We think that this can be explained

by the statistics given in Table 1. The New York dataset has exceedingly large

number of unique words obtained from the user provided tags. As our definition

of the coherence property is based on shared visual and textual elements, our

2Figure Eight is a web-based data annotation company which can be accessed from

https://www.figure-eight.com
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framework is expected to get more coherent photo chains which correspond to535

story lines from high number of unique words.

(a) (b)

Figure 7: Next image prediction. (a) Screenshot of the user interface used in our experiments

on the next image prediction task. (b) Example images predicted by our algorithm and the

method of Kim and Xing [16].

Table 4: User study results for the next image prediction task. The preference rate denotes the

percentage of comparisons in which the users favor one method over the other. On average,

our predictions are preferred 61% of the time against the state-of-the-art method in [16].

Amsterdam Istanbul New York Paris Tokyo Venice Average

Kim and Xing [16] 43.1 48.6 12.3 45.3 42.4 44.9 39.4

Ours (SV GT ) 56.9 51.4 87.7 54.7 57.6 55.1 60.6
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5.3. Coverage

In our last set of experiments, we compare the coverage of the story graphs

generated by our approach and the method of Kim and Xing [16]. For each

city, we first identified a diverse set of tags about the points of interest and540

attractions in that city via inspecting the user tags from YFCC100M dataset

and additionally using the Google search engine. Table 5 shows these tags. For

each tag we also provide an illustrative image just to give the workers an opin-

ion about what that tag is about. In the user study, we then show the photos

compiled from the reconstructed story graphs and ask users to select the tags545

that they think are relevant to one or more images displayed to them (Fig. 8).

For each tag we estimate the percentage of workers who selected the tag for that

particular story graph. Then, we calculate the average selection rate through

all the tags to get the final coverage rate of the story graph with respect to

all the tags of that city. We perform the user study on Figure Eight platform550

in which a total of 238 workers have participated. For each test question, we

obtain responses from at least 10 users. For each city, our story graph achieves a

higher coverage rate than that of Kim and Xing [16]. On average, our proposed

approach covers 46.3% of the tags whereas the method of Kim and Xing covers

34.8% (Table 6). This demonstrates that the photos in the story graphs ex-555

tracted by our method include points of interests and more interesting locations

for a city, resulting in a more inclusive and covering visual narrative of a city.

6. Conclusion

In this study, we proposed an approach to automatically extract story graphs

from large collections of photo albums, which serves as a collaborative and560

structured summary of these albums. We treated this task as a submodular

optimization problem and formulated a greedy approach to find a graph that

maximizes the degrees of coherence, coverage and connectivity of the story-

lines. We demonstrate that story graphs obtained with our approach can be

utilized for photo album summarization. In particular, our story graphs can565
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Table 5: Tags used in coverage experiments.

City Tags

Amsterdam Anne Frank House, Canals, Church, Cycling, Dam Square, Fine arts, Food,

NEMO Science Museum, Night life, Parks, Port of Amsterdam, Rijksmu-

seum, Royal Palace Amsterdam, Van Gogh Museum, Windmills

Istanbul Basilica Cistern, Bath houses, Beyoglu Street, Bosphorus Bridge, City Walls,

Galata Tower, Grand Bazaar, Maiden’s Tower, Mosques, Museums, Obelisk

of Theodosius, Palace, Sea tour, Turkish food

New

York

Broadway, Brooklyn Bridge, Cathedral, Chinatown, Coney Island, Grand

Terminal, Museums, NYC Subway, Parks, Public Library, Skyscrappers,

Statue of Liberty, Times Square, Wall Street

Paris Arc De Triomphe, Art, Cafes, Champs Élysées, Eiffel Tower, Fountains,

Louvre Museum, Montmartre, Moulin Rouge, Musée d’Orsay, Notre-Dame

de Paris, Pantheon, Parks and gardens, Versailles

Tokyo Disneyland, Edo-Tokyo, Fish Market, Ginza Crossing, Japanese food, Kabuki

Theatre, Mount Fuji, Museums, Parks, Rainbow Bridge, Roppongi, Sanrio

Puroland, Skytree, Subway and trains, Temples, Tokyo Imperial Palace, Tra-

ditional clothes

Venice Bridge of Sighs, Carnival Masks, Fine Arts, Glassworks, Gondola, Grand

Canal, Venetian Lagoon, Lido, Museums, Palazzo Ducale, Rialto, San Marco,

St Mark’s Campanile, Venetian Churches

Table 6: User study results for the coverage task. The scores denote the average percentage

of the tags selected by the workers for images included in the story graphs. On average, our

story graphs cover 46% of the tags, providing a significantly higher rate than that of the

state-of-the-art method in [16].

Amsterdam Istanbul New York Paris Tokyo Venice Average

Kim and Xing [16] 34.7 24.3 30.0 41.9 26.7 50.9 34.8

Ours (SV GT ) 45.3 50.1 38.6 43.0 43.4 57.1 46.3
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Figure 8: A screenshot of the user interface used in our experiments on the coverage task.

be interpreted as a kind of prior that represent important concepts, landmarks

and events depicted in the large photo collections, and hence, the images in

the story graphs can serve as a measure of representativeness while extracting

summary of a photo album of similar theme. Our experimental analysis re-

veals that the story graphs obtained by our approach allow to obtain better570

performances than the previous approaches for three different tasks including

photo album summarization, next image prediction, tag coverage. For future

work, it would be interesting to investigate how intrinsic image properties such

as interestingness or aesthetics affect the extracted story graphs. Moreover, we

plan to include some kind of personalization to allow the users to enforce some575

preferences while constructing the story graphs.
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