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The Purpose           of Vision

2
[Marr, 1982] 

"What does it mean,to see? The plain man’s answer (and Aristotle's
too) would be, to know what is where by looking. In other words, 
vision is the process of discovering from images what is present in 
the world, and where it is."

Image credit: The Sense of Sight (Annie Louisa Swynnerton, 1895)



The First PhD Thesis on Computer Vision

• Machine perception of three-dimensional solids [Roberts 1963]
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The Summer 
Vision Project
General goals:

FIGURE-GROUND. 

divide a vidisector

picture into regions

such as likely objects, 

likely background areas

and chaos

REGION DESCRIPTION. 

analysis of shape and

surface properties

OBJECT IDENTIFICATION. 

name objects by

matching them with a 

vocabulary of known

objects

4[Papert 1966]



Why does vision appear easy to humans?

• Our brains are specialized to do vision. 

• ~50% of the cortex in a human brain is 
devoted for visual processing
(cf. motor control ~20-30%, 

language ~10-20%) 
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Visual perception*: 
540,000,000 years of data
Bipedal movement: 
230,000,000 years of data
Abstract thought: 
100,000 years of data 
*Color vision

Slide adapted from David Heeger



Fast Forward to 2012
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AlexNet

Large Scale Visual 
Recognition Challenge (ILSVRC)
• 1.2M training images, 1K categories 
• Measure top-5 classification error 

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to 
document recognition. Proceedings of the IEEE. 86 (11): 2278–2324, 1998.
A. Krizhevsky, I. Sutskever, G.E. Hinton  ImageNet Classification with Deep Convolutional 
Neural Networks. NIPS 2012

2012 Teams %Error

Supervision (Toronto) 15.3

ISI (Tokyo) 26.1

VGG (Oxford) 26.9

XRCE/INRIA 27.0

UvA (Amsterdam) 29.6

INRIA/LEAR 33.4

CNN based, non-CNN based 

The success of AlexNet, 
a deep convolutional 
network (CNN) 

7 hidden layers (• not counting 
some max pooling layers)
60M parameters •

Cat
CNNs are biologically 
inspired by oriented 
cells in the visual cortex 

INPUT 
32x32

Convolutions SubsamplingConvolutions

C1: feature maps 
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5
C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection
Full connection

Gaussian connections

OUTPUT
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K. He, G. Gkioxari, P. Dollár, R. Girshick, Mask R-CNN, ICCV 2017

Object Detection and Segmentation
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aeroplane? no.

..
person? yes.

tvmonitor? no.

warped region
..

CNN
aeroplane? no.

..
person? yes.

tvmonitor? no.

warped region
..

CNN

MLP

Softmax clf.

Box regressor

!" = FCN($)
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RPN(
!")

RoIAlign

Mask 
FCN



Pose Estimation

Z. Cao ,T. Simon, S.–E. Wei and Yaser Sheikhr. Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields. CVPR 2017 13



Photo Style Transfer

14F. Luan, S. Paris, E. Shechtman & K. Bala. Deep Photo Style Transfer. CVPR 2017



Photo Style Transfer

15F. Luan, S. Paris, E. Shechtman & K. Bala. Deep Photo Style Transfer. CVPR 2017F. Luan, S. Paris, E. Shechtman & K. Bala. Deep Photo Style Transfer. CVPR 2017



A giraffe standing in the grass next  
to a tree.

X. Chen and C. L. Zitnick. Mind’s Eye: A Recurrent Visual Representation for Image Caption Generation. CVPR 2015.

Image Captioning

A man riding a wave on a surfboard in the water.



Image Captioning

17M. Kuyu, A. Erdem & E. Erdem. Image Captioning in Turkish with Subword Units. SIU 2018

Yaris pistinde viraji almakta olan bir yaris arabasi



Visual Question Answering

19

Question: What is the girl reaching into?
Answer: apples

Y. Goyal, T. Khot, D. Summers-Stay, D. Batra, D. Parikh. Making the V in VQA Matter: Elevating the Role of Image Understanding in Visual Question
Answering. CVPR 2017



Can Deep Models Reason?
• Reasoning: “Algebraically manipulating 

previously acquired knowledge in order 
to answer a new question”

• A very broad definition

21Le ́on Bottou. From machine learning to machine reasoning. Machine Learning, 2014.

cartoon: Tom Gauld



Can Deep Models Reason?
• Reasoning: “Algebraically manipulating 

previously acquired knowledge in order 
to answer a new question”

• A very broad definition, which includes

−logical reasoning
−probabilistic inference
−composition rules operating on trainable 

modules

22

cartoon: Tom Gauld

Le ́on Bottou. From machine learning to machine reasoning. Machine Learning, 2014.



23slide adapted from Christopher Manning

• Deep Learning models are large 
correlation engines

• They use inductive bias to learn from 
training data, which is a double-edged
sword
−Generalize well when target and 

training distributions are similar
−Confuse correlation with causation

Can Deep Models Reason?
cartoon: Tom Gauld
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Take 2: Image 
Captioning 



25

Neural 
Nets

Take 2: Image 
Captioning 
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27M. Kuyu, A. Erdem & E. Erdem. Image Captioning in Turkish with Subword Units. SIU 2018

Suda yüzmekte olan bir köpek. 
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Looking Forward
• Intelligence is not just about Pattern Recognition

• Learning is the process of modeling the world…
−explaining and understanding what we see
−imagining things we could see but haven't yet.
−problem solving and planning actions to make things

real.
−building new models as we learn more about

the world.
−sharing our models, communicating to others, 

understanding their models, and learning from them and
with them.

29slide adapted from Josh Tenenbaum
Lake, Ullman, Tenenbaum & Gershman. Building machines that learn and think like people. 
Behavioral and Brain Sciences, 2017

image: Daniel Mróz, Drawings for Stanislaw Lem’s Cyberiad



Explaining and understanding 
what we see

30
Kevin Xu et al. Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. ICML 2015
Chao Ma et al. Visual Question Answering with Memory-Augmented Networks. CVPR 2018

Q: What is the yellow object on the left?
A: Fire hydrant (Ours) A: Stop sign [21] A: Stop sign [2]

Q: What fruit is showing in this picture?
A: Bananas (Ours) A: Bananas [21] A: Bananas [2]

Q: Where is the bird standing on?
A: Sand (Ours) A: Parking meter [21] A: Road [2]

Figure 6. Qualitative results on the VQA benchmark dataset [2].
We visualize the image attention map and highlight the first 3 rel-
evant words in each question by red, blue and cyan. Our method
selectively pays attention to important regions and words that are
critical to answer the questions correctly.

ate our method as it contains heavily imbalanced ques-
tions/answers, which can highlight the effectiveness of our
method in exploiting imbalanced training data. For com-
pleteness, we report the results on VQA v2 [9] in Table 5,
which shows that our method performs well against state of
the art as well.
Table 5. Results on the VQA benchmark v2.0 [9] (test-std).

Y/N Num Other All

MCB [7] 78.8 38.3 53.3 62.3
Ours (ResNet-3000) 79.2 39.5 52.6 62.1

4.3. Visual 7W Telling

The Visual 7W Telling dataset [45] includes 69, 817
training questions, 28, 020 validation questions, and 42, 031
test questions. Each question has four answer choices. Fol-
lowing [45], we report the performance by measuring the
percentage of correctly answered questions. For fair com-
parison, we select top 5000 answers to train networks. We

Table 6. Accuracy on the Visual 7W Telling [45] dataset. We train
the question embedding from scratch. Our method peforms favor-
ably against state-of-the-art methods. The best and second best
values are highlighted by bold and underline.

What Where When Who Why How OverallMethods 47.8% 16.5% 4.5% 10.0% 6.3% 14.9%

LSTM+CNN [2] 48.9 54.4 71.3 58.1 51.3 50.3 52.1
Visual 7W [45] 51.5 57.0 75.0 59.5 55.5 49.8 55.6
MCB [7] 60.3 70.4 79.5 69.2 58.2 51.1 62.2
MLP [14] 64.5 75.9 82.1 72.9 68.0 56.4 67.1

Ours 59.0 63.2 75.7 60.3 56.2 52.0 59.4
Ours + VQA 62.2 68.9 76.8 66.4 57.8 52.9 62.8

validate our algorithm with comparison to the state-of-the-
art algorithms including LSTM+CNN [2], Visual 7W base-
line [45], MCB [7], and MLP [14]. Table 6 shows the
results of this comparison. Note that the top performing
MLP [14] and MCB [7] algorithms both use the word2vec
scheme [24] to generate fixed question embedding. Jabri et
al. [14] mention that it is more helpful to use a fixed ques-
tion embedding on the Visual 7W dataset [45] as its size is
relatively small when compared to the VQA benchmark [2].
We first learn our memory-augmented network as well as
the question embedding from scratch. We report the overall
accuracy as 59.4%. Our method still performs well against
the Visual 7W baseline [45], which affirms the advantage
of memory-augmented network for VQA, as the Visual 7W
baseline [45] does not incorporate external memory. In ad-
dition, we borrow the training and validation questions from
the VQA dataset [2] for training networks. With the use of
larger training data, our method performs well compared to
the MCB method [7], whereas we learn the question em-
bedding from scratch.

5. Conclusion

We make a first attempt to explicitly address the is-
sue of rare concepts in visual question answering. The
main pipeline of the proposed algorithm consists of a co-
attention module to select the relevant image regions and
textual word features, as well as a memory module that
selectively pays attention to rare training data. An LSTM
module plays a role of controller who determines when to
write or read from the external memory block. The out-
puts of the augmented LSTM are the features for learning
a classifier that predicts answers. The proposed algorithm
performs well against state-of-the-art VQA systems on two
large-scale benchmark datasets, and is demonstrated to suc-
cessfully answer questions involving rare concepts where
other VQA methods fail.

Acknowledgments. We gratefully acknowledge the sup-
port of the Australian Research Council through the Centre
of Excellence for Robotic Vision CE140100016 and Laure-
ate Fellowship FL130100102 to I. Reid.
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Figure 3. Flowchart of the proposed algorithm. We use the last pooling layer of pre-trained CNNs to extract image features that encode
spatial layout information. We employ bi-directional LSTMs to generate a fixed-length feature vector for each word. A co-attention
mechanism attends to relevant image regions and textual words. We concatenate the attended image and question feature vectors and
feed them into a memory-augmented network, which consists of a standard LSTM as controller and an augmented external memory.
The controller LSTM determines when to write or read from the external memory. The memory-augmented network plays a key role in
maintaining a long-term memory of scarce training data. We take the outputs of the memory-augmented network as final embedding for
the image and question pair, and feed this embedding into a classifier to predicts answers.

generally consist of input, scoring, attention and response
components. In [35], Sukhbaatar et al. train memory net-
works in an end-to-end manner, which does not require la-
beling supporting facts during the training stage, unlike ear-
lier networks [38]. In [19], Kumar et al. build memory net-
works on neural sequence models with attention. Given a
question, a neural attention mechanism allows memory net-
works to selectively pay attention to specific inputs. This
benefits a wide range of computer vision and language pro-
cessing problems, such as image classification [34], image
caption [42] and machine translation [5, 3, 22]. Other re-
cent neural architectures with memory or attention include
neural Turing machines [10], stack-augmented RNNs [15],
and hierarchical memory networks [4]. In view of the great
potential of memory networks for VQA [30, 40], we pro-
pose to use a memory-augmented neural network to selec-
tively pay more attention to heavy-tailed question and an-
swer pairs. For implementation, we use LSTM to control
reading from and writing to an augmented external mem-
ory. Our memory networks thus significantly differs from
the attention GRU network in [40].

3. Proposed Algorithm

We show the main steps of the algorithm in Figure 3.
Given an input question and reference image, we use a co-
attention mechanism to select the most relevant image re-
gions and textual words in questions. Specifically, we use
the outputs of the last pooling layer of pre-trained CNNs
(VGGNet [33] or ResNet [12]) as image features, which
maintain spatial layout information. We split the ques-
tion into sequential words, which are fed into bi-directional
LSTMs to generate sequentially fixed-length word embed-
dings. The co-attention mechanism computes weights for
each CNN feature vector as well as each textural word

embedding (see Figure 3 the highlighted weights in dif-
ferent colors). We concatenate the relevant image and
question features as an embedding of image and question
pair. We use the standard LSTM network as a controller,
which determines when to read from and write to an ex-
ternal memory. Note that our memory networks essentially
contains two memory blocks: an internal memory inside
LSTM and an external memory controlled by LSTM. The
memory-augmented networks maintain a long-term mem-
ory of heavy-tailed question answers. We use the outputs
of the memory-augmented networks for training classifiers
that predict answers.

In the rest of this section, we first introduce the im-
age feature extractor using pre-trained CNNs, as well as
the question encoder using bi-directional LSTMs. Follow-
ing that, we present the sequential co-attention mechanism
that attends to the most relevant image regions and tex-
tual words. We then present the used memory-augmented
network in more details. We discuss the answer reasoning
scheme at the end of this section.

3.1. Input Representation

Image Embedding. We use the pre-trained VGGNet-16
[33] and ResNet-101 [12] to extract CNN features. Follow-
ing [21, 43], we resize images to 448 ⇥ 448 before feed-
ing them into CNNs. We take the outputs of the last pool-
ing layer of VGGNet-16 (pool5) or the layer under the last
pooling layer of ResNet-101 (res5c) as image features cor-
responding to 14⇥ 14 spatially distributed regions. We de-
note the output features by {v1, . . . ,vN}, where N = 196
is the total number of regions and vn is the n-th feature vec-
tor with the dimension of 512 for VGGNet-16 or 2048 for
ResNet-101.

Question Embedding. As shown in Figure 3, we exploit

Q: What fruit is showing in this picture?           A: Bananas



Visual Reasoning

31Johnson et al. CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning. CVPR 2017

How many objects are
either small cylinders
or red things? 
Answer: 5



Visual 
Reasoning

32E. Perez, F. Strub, H. de Vries, V. Dumoulin, A. Courville. FiLM: Visual Reasoning with a General Conditioning Layer. AAAI 2018



Intuitive Physics
Common• -sense understanding of how the world operates at a 
physical level
Helps• us to perceive, understand and act with our environment

33Battaglia et al. Simulation as an engine of physical scene understanding. PNAS 110(45), 2013 slide adapted from Peter Battaglia



Intuitive Physics

34J. Fischer et al. Functional neuroanatomy of intuitive physical inference. PNAS 113(34), 2016



Intuitive Physics

35A. Lerer, S. Gross, R. Fergus. Learning Physical Intuition of Block Towers by Example. ICML 2016

Learning Physical Intuition of Block Towers by Example

A G

B H

C I

D J

E K

F L

Figure 7. PhysNet mask predictions for synthetic (A–F) and real (G–L) towers of 2, 3, and 4 blocks. The image at the left of each
example is the initial frame shown to the model. The top row of masks are the ground truth masks from simulation, at 0, 1, 2, and 4
seconds. The bottom row are the model predictions, with the color intensity representing the predicted probability. PhysNet correctly
predicts fall direction and occlusion patterns for most synthetic examples, while on real examples, PhysNet overestimates stability (H,L).
In difficult cases, Physnet produces diffuse masks due to uncertainty (D–F,I). B is particularly notable, as PhysNet predicts the red block
location from the small patch visible in the initial image.

Initial frame PhysNet predictions of the future
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In our world, the future is not deterministic,  
there are many possibilities...

image: Tseng Shao-Tsen
Schrödinger's Plates



Imagining Things
“Maybe in our world
there lives a happy little
tree over there.” 

— Bob Ross (The Joy of Painting)

37photo: Acey Harper

“Maybe in our world
there lives a happy little
tree over there.” 
— Bob Ross (The Joy of Painting)

Imagining Things



Imagining Things

38Karacan, Akata, Erdem & Erdem. Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts. arXiv Preprint 2016

building

ground

mountain

sky

Original Attribute SnowyInput Sunset Night

Fog Rain Cold Warm Fog Rain Cold

Original Cloudy

WarmSunny SunnyInput                       Real                    Imagined          Imagined (Cloudy) Imagined (Snowy) Imagined (Sunset)   Imagined (Night)
(w/ Original Attributes)



39Karacan, Akata, Erdem & Erdem. Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts. arXiv Preprint 2016

Semantic Layout

Imagining Things



40Karacan, Akata, Erdem & Erdem. Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts. arXiv Preprint 2016

Semantic Layout

Clear sky + flowers

Imagining Things



41Karacan, Akata, Erdem & Erdem. Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts. arXiv Preprint 2016

Semantic Layout

Sunset

Imagining Things



Imagining Things

43T.Karras, T.Aila, S.Laine and J, Lehtinen, "Progressive Growing of GANs for Improved Quality, Stability, and Variation", ICLR 2018



Planning

45

Y. Zhu, D. Gordon, E. Kolve, D. Fox, L. Fei-Fei, A. Gupta, R. Mottaghi & A. Farhadi. Visual Semantic Planning using Deep Successor
Representations. ICCV 2017



Transfer Learning

46A.R. Zamir, A. Sax, W. Shen, L. Guibas, J. Malik & S. Saraves. Taskonomy: Disentangling Task Transfer Learning. CVPR 2018



Can deep models reason? 

We• are not there yet! But we can see real progress soon..
47

cartoon: Tom Gauld


